

THE WORLD'S BEST POWER MOSFETS FOR MOTOR CONTROL – EVER!

CHRIS BOYCE HEAD OF MARKETING & BUSINESS DEVELOPMENT, NXP POWERMOS BUSINESS LINE FTF-SMI-N1889 MAY 16, 2016

PUBLIC USE

"Dad, what do you do at work?"

https://www.facebook.com/nrklivsstil/videos/10154044139728619/

AGENDA

Key "Motor Control" Takeaways

- New, Big, Diverse Opportunities
- Power MOSFETs Make a Difference
- NXP has Optimized Devices

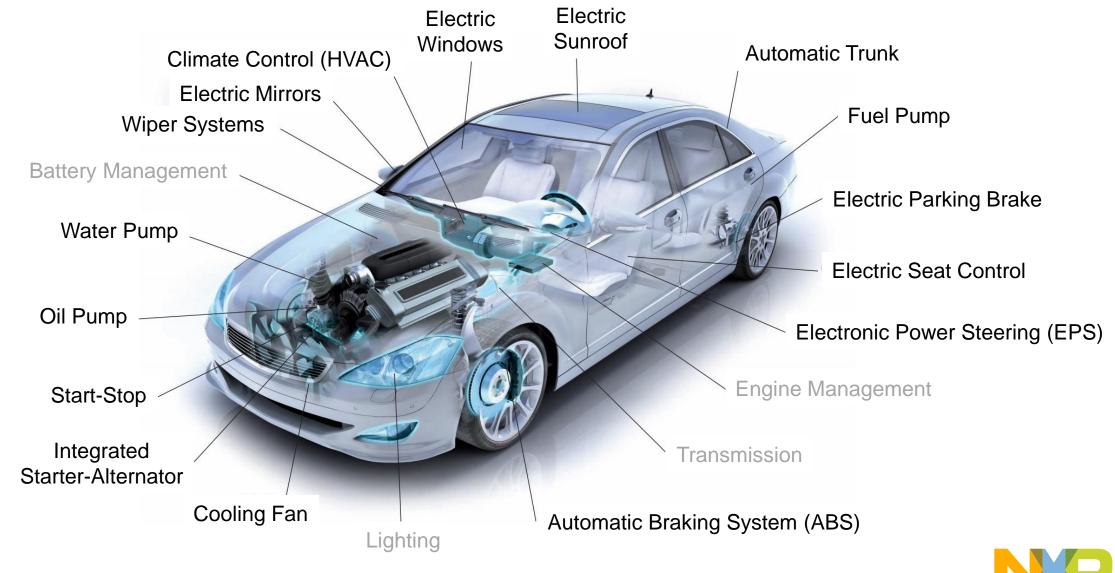
Perfect for Solution-selling with Micros

NEW, BIG, DIVERSE OPPORTUNITIES

When Planets Align...

- Sometimes, technologies, cost curves, capabilities and application requirements simply align
 - Increasingly powerful DC motors
 - Higher performance batteries
 - Smart microcontrollers and software
 - Efficient, robust power components

The Power Tool Story



Mobility

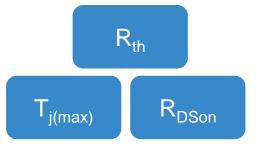
Motor Control in Cars

POWER MOSFETS MAKE A DIFFERENCE

Key MOSFET Requirements in Motor Control (1)

1. Breakdown voltage, V_{DS}

- Increasing battery voltages for higher power solutions
- 30V and 40V MOSFETs mainstream today; some 60V devices for new designs
- 100V requirement for fork-lift trucks, light electric vehicles and similar


2. Max current, I_D rating

- I_D rating most important for management of fault condition, e.g. locked rotor
- MOSFET must survive until OCP activates, typically 1-2ms to several seconds

3. Thermal performance

- Low thermal resistance, R_{th} , allows better performance at higher temperatures
- Higher $T_{j(max)}$ enables improved ID(max), $P_{tot(max)}$, repetitive avalanche and SOA
- Low R_{DSon} required to manage temperature rather than for system efficiency

Key MOSFET Requirements in Motor Control (2)

4. Avalanche Rating

- MOSFETs often taken into avalanche in motor control applications
- High avalanche rating, E_{DS(AL)S}, preferred
- Sometimes difficult to compare between manufacturers due to ratings cited at different ${\rm I}_{\rm D}$

5. Spike Control

- Often an issue driven by EMI qualification concerns
- Managing reverse recovery can help; Qr should be as low as possible and recovery waveform should be symmetrical (S-Factor =1)

Key MOSFET Requirements in Motor Control (3)

6. Gate Drive

 Preference for both Logic Level (collapsing battery voltage) and Standard Level (immunity to false turn on) depending on application

7. Safe Operating Area (SOA)

- Considered important in fault conditions where collapsing battery voltage means gate is not driven so hard
- MOSFETs sometimes driven straight from micro
- (Also important in battery protection)

8. Size

11

- Trend towards greater power density
- Enabled by R_{DSon} and thermal performance

"NextPower Cordless" NXP MOSFETS OPTIMIZED FOR MOTOR CONTROL

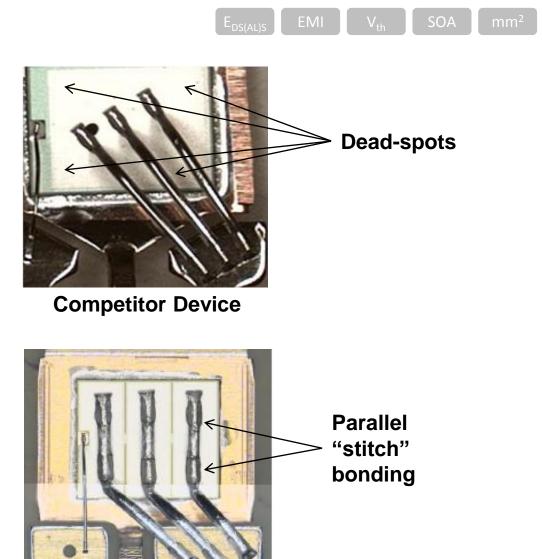
NextPower Cordless Portfolio

Profe	essio	nal		
TO22	0		R _{DS (on)} (V _{GS} =10V)	I _D [max]
401/	SL	PSMN1R5-40PS	1.6mΩ	150A
40V	LL	PSMN1R9-40PL	1.6mΩ	150A
	SL	PSMN2R6-60PS	2.6mΩ	150A
60V	LL	PSMN2R5-60PL PSMN3R3-60PL	2.6mΩ 3.4mΩ	150A

DIY

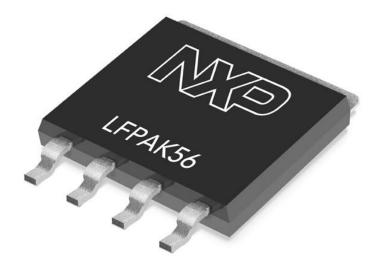
TO22	20		R _{DS(ON)} (V _{GS} =10V)	I _D [max]
401/	SL	PSMN2R8-40PS	2.8mΩ	100A
40V	LL	PSMN2R1-40PL	2.2mΩ	150A
	SL	PSMN3R9-60PS	3.9mΩ	130A
60V	LL	PSMN4R2-60PL	3.9mΩ	130A

LFPA	<56	AND	R _{DS (on)} (V _{GS} =10V)	I _D [max]	LFPA	LFPAK56		R _{DS (on)} (V _{GS} =10V)	I _D [max]
30V	LL	PSMN0R9-30YLD PSMN1R0-30YLD PSMN1R2-30YLD PSMN1R4-30YLD PSMN2R4-30YLD	0.87mΩ 1.0mΩ 1.2mΩ 1.4mΩ 2.4mΩ	300A 300A 100A 100A 100A	30V	LL	PSMN3R0-30YLD PSMN4R0-30YLD PSMN6R0-30YLD PSMN7R5-30YLD	3.1mΩ 4.1mΩ 6.0mΩ 7.5mΩ	100A 95A 66A 51A
40V	LL	PSMN1R0-40YLD PSMN1R4-40YLD	1.1mΩ 1.4mΩ	300A 240A	40V	LL	PSMN1R6-40YLC PSMN1R8-40YLC	1.5mΩ 1.8mΩ	100A


NextPowerS3 types in **bold** text

150A Maximum Current in TO220

- Increased bond-wire diameters
 - -3 x 350µm >>> 3 x 500µm wires
 - Approximately 2X increase in cross section area
- Parallel "stitch" bonding
 - Increased contact area from wire to die surface
 - Improved current spreading over die surface


NextPower Cordless Device

LFPAK – The Toughest Power Package

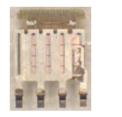
Power-SO8 Compatible (5mm x 6mm)

QFN/DFN3333 Compatible (3.3mm x 3.3mm)

"No glue, no wires, 175 °C"

"Tougher just got smaller"

LFPAK – Copper Clip Advantage

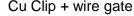


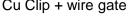
Al wire bonding

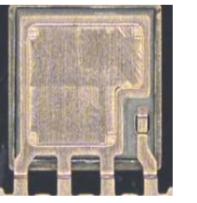
Cu Clip + wire gate

Cu Clip + Au bump

Ribbon Bond


#NXPFTF


Cu wire bonding


16

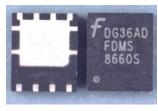
PUBLIC USE

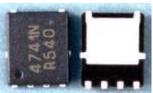
Cu Clip + wire gate

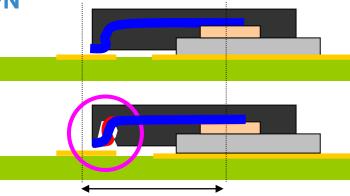
Integrated Cu Clip gives:

- $T_{j(max)} = 175^{\circ}C$ •
- Low R_{package}
- Low R_{ds(on)}

Not all power packages are created EQUAL

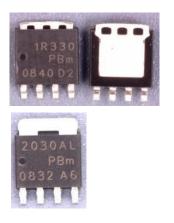

- Low R_{th}(j-pcb)
- Low inductance
- Effective heat removal reduced heat spots
- Single source-attach process
- High reliability
- Automotive AEC-Q101 qualified


Integrated Cu clip **NXP (LFPAK)**



LFPAK – Mechanical & Thermal Toughness

Movement due to thermal and/or mechanical stress in PCB

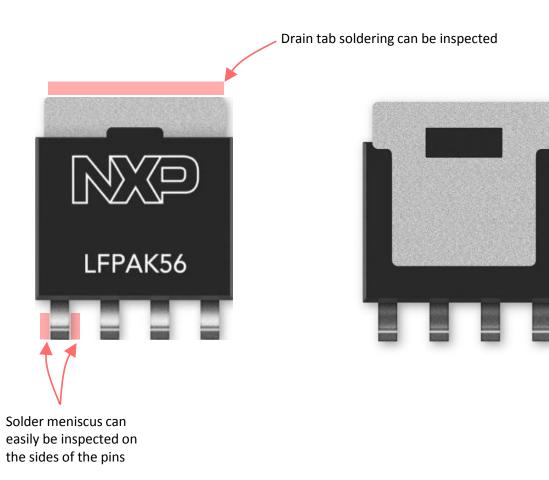



Fully encapsulated pins do not allow for movement.

Cracks in mould compound can lead to moisture ingress, ionic contamination and early failure.

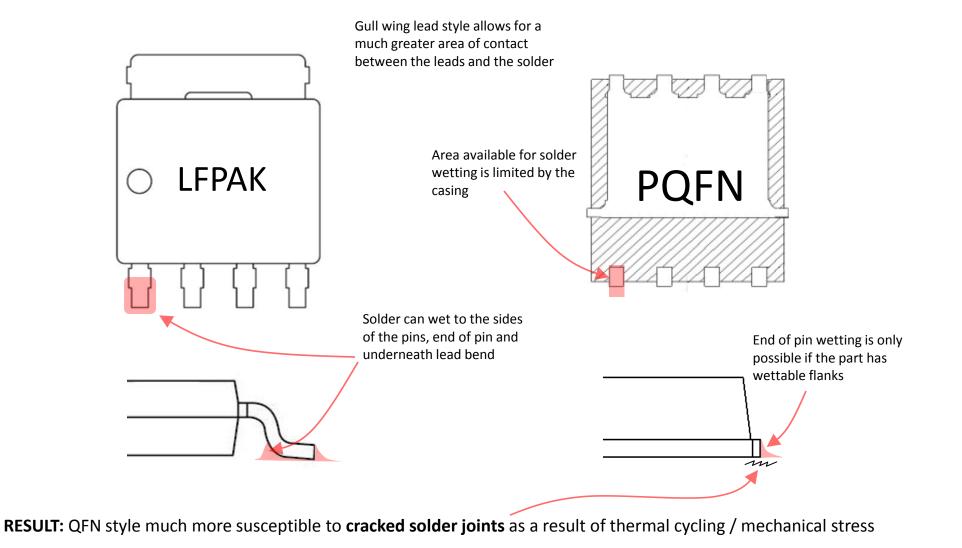
Risk of solder joint failure under source and gate pins.

LFPAK56 & LFPAK33

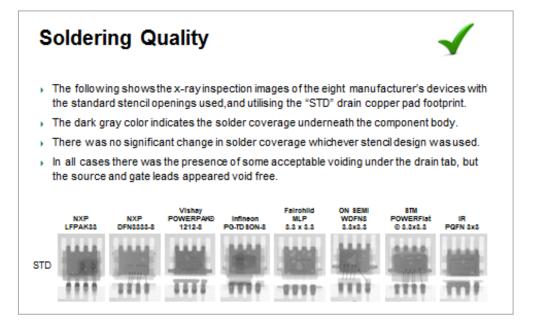


mechanical stress in PCB

LFPAK pins absorb stresses associated with thermal expansions and mechanical strains from PCB bending and flexing



LFPAK – AOI Solder Inspection


LFPAK – Solder Wetting

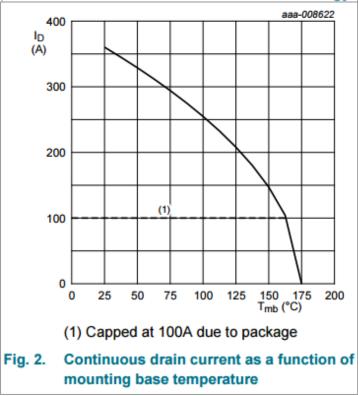


LFPAK – 100% Footprint Compatible

- Competitor devices confirmed to fit on NXP's "universal footprints" (5x6 and 3x3)
- · LFPAK confirmed to fit on all competitor recommended footprints

Verified by independent consultancy (reports available)

LFPAK – Maximum Current


- 100A limit set at LFPAK launch in 2007 when best $R_{\text{DS(on)}}$ was ~3m Ω (25V). This value has endured.
- Incorrectly labelled "package limit", in reality it was a production test limit
- + $R_{DS(on)}$ of new PSMN0R7-25YLD is 0.7m $\!\Omega$
- Planning to increase LFPAK max current datasheet rating to >100A

	iting values					
	. <mark>imiting values</mark> e with the Absolute Maximum Ra	ating System (IEC 60134).				
Symbol	Parameter	Conditions		Min	Max	Uni
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	30	V
V _{DGR}	drain-gate voltage	25 °C \leq T _j \leq 175 °C; R _{GS} = 20 k Ω		-	30	V
V _{GS}	gate-source voltage			-20	20	V
P _{tot}	total power dissipation	T _{mb} = 25 °C; <u>Fig. 1</u>		-	238	W
ID	drain current	V _{GS} = 10 V; T _{mb} = 25 °C; <u>Fig. 2</u>	[1]	-	100	Α
		V _{GS} = 10 V; T _{mb} = 100 °C; <u>Fig. 2</u>	[1]	-	100	Α

PSMN1R0-30YLD

1.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

LFPAK Maximum Current

PSMN1R0-30YLD – Current Rating

PSMN1R0-30YLD

N-channel 30 V, 1.0 mΩ, 300 A logic level MOSFET in LFPAK56 using NextPowerS3 Technology 27 October 2015 Product of

Product data sheet

190

Α

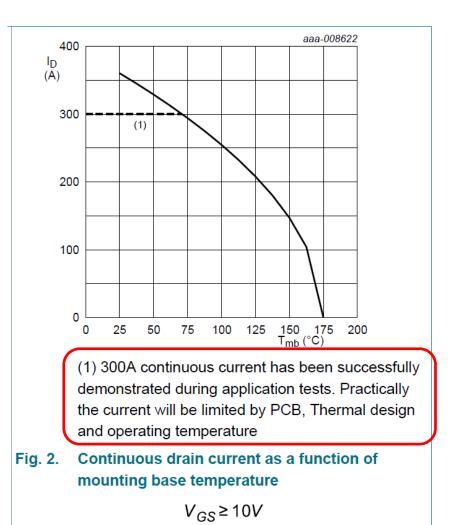
4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	-	30	V
I _D	drain current	T _{mb} = 25 °C; V _{GS} = 10 V; <u>Fig. 2</u>	[1]	-	-	300	А

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


1		i				1	
	I _D	drain current	V _{GS} = 10 V; T _{mb} = 25 °C; <u>Fig. 2</u>	[1]	-	300	А
			V_{GS} = 10 V; T_{mb} = 100 °C; <u>Fig. 2</u>		-	255	А

Avalanche ruggedness

I _{AS}	non-repetitive avalanche
	current

 300A Continuous current has been successfully demonstrated during application tests. Practically the current will be limited by PCB, Thermal design and operating temperature.

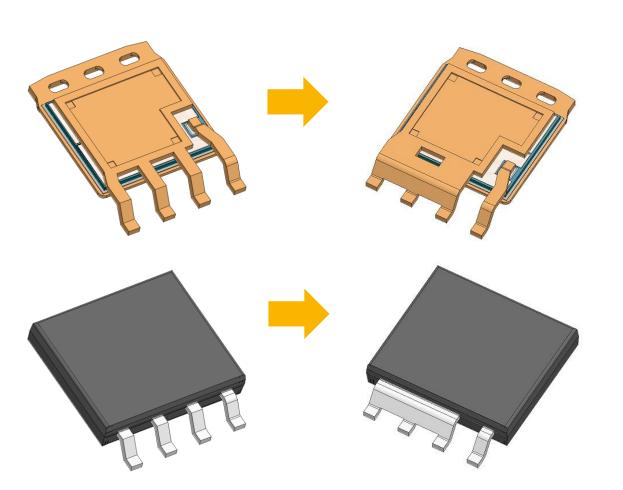
[2] Protected by 100% test

LFPAK – Maximum Current

LFPAK – Maximum Current

Heatsink @ 25 °C	NXP PSMN0R9-30YLD	NXP PSMN1R0-30YLD	ON Semi	AOS AON6500	IR IRFH8303PbF	Infineon BSC011N03LS
Tj [max] (°C)	150	175	150	150	150	150
Tmb (°C)	25	25	25	25	25	25
Delta T (°C)	125	150	125	125	125	125
Rdson [max] VGS=10V 25°C (mΩ)	0.87	1.02	1.1	0.95	1.1	1.1
Rdson Tjmax Correction Factor	1.64	1.8	1.55	1.5	1.7	1.4
Rdson [max] VGS=10V Tjmax (mΩ)	1.43	1.84	1.71	1.43	1.87	1.54
Rth (j-mb) [max] (K/W)	0.43	0.63	1.2	1.5	0.8	1.3
Calculated Id [max] 25°C (A)	451	360	247	242	289	250
Datasheet Id [max] 25°C (A)	300	300	246	200	100	100
	(package limited)	(package limited)		(package limited)	(source bonding	(package limited)
					limited)	
Avalanche Current, I _{AS} [max] 25°C (A)	190 (100% tested)	190 (100% tested)	Not quoted	Not quoted	Not quoted	50
Safe Operating Current, VDS=20V, 10ms (A)	9	6	9 (theoretical,	4 (theoretical,	1	0.35
			no Spirito)	no Spirito)		

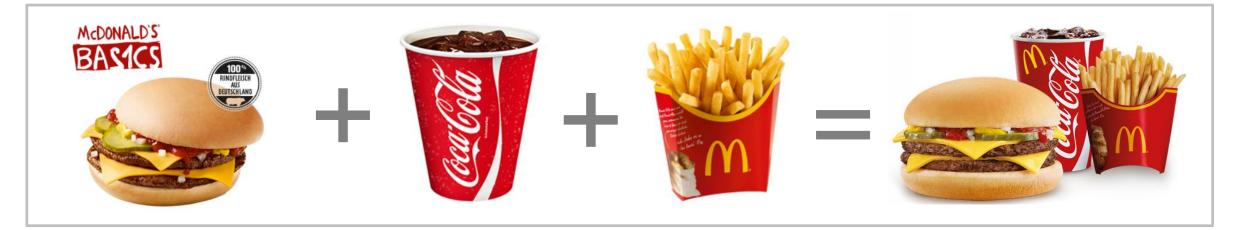
- NXP max current raised to 300A
- Avalanche current raised to 190A, 100% production tested
- NXP best in class on all parameters



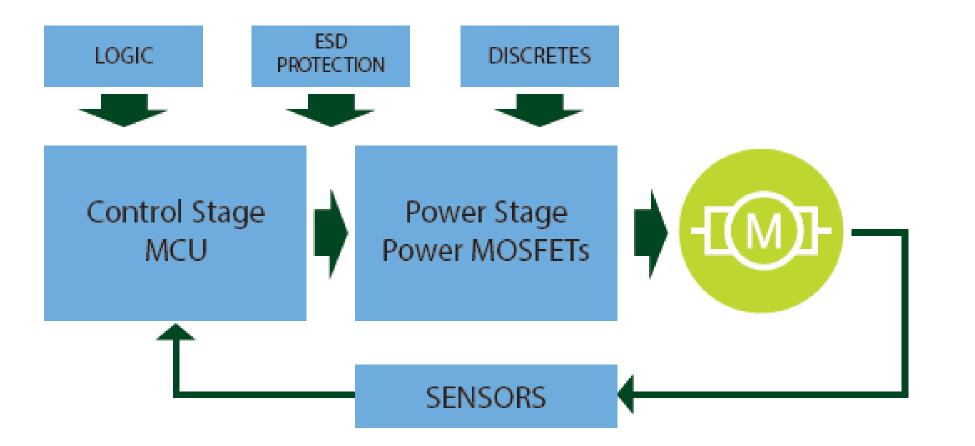
#NXPFTF 26 PUBLIC USE

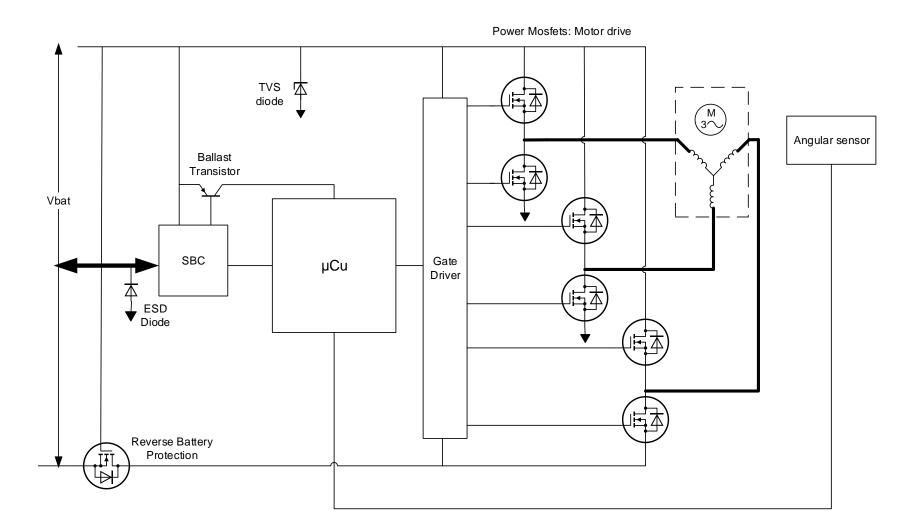
LFPAK Roadmap – Merged Leads

- Lower package resistance $-0.07 m\Omega$ (-30%)
- Higher current
- Improved thermal performance
- Power-SO8 compatible
 - No change to PCB footprint



SOLUTION-SELLING WITH MICROS


Solution-Selling



Motor Control

System Overview for BLDC Motor Control

Unmanned Aerial Vehicle UAV

Unmaned Aerial Vehicle (UAV) Reference-Design and NXP Cup Initial Proposal

. Gregory Camuzat / Mohit Kedia / Iain Galloway

March 25st. 2016

Туре	Qty	Prefered Solution	Specs
Microcontroller	1	NXP MKV11Z128VFM7	32-bit ARM M0+ 75MHz 128KB Flash 16KB RAM KMS, CAN, 32-QFN 5x5mm
Gate driver	1	Fairchild FAN7888MX	3 half-bridge gate-drive IC 20-SOIC 7.5*12.8mm
MOSFET	6	NXP PSMN1R4-30YLD	V _{DB} 30V, I _D 100A, I _{DM} 1019A, R _{DSon} 1.42mΩ, 56-LFPAK 4*5mm
OpAmp	4	Fairchild FAN4852IMU8X	9MHz low-power dual CMOS Amplifier 8-MSOP 3*3mm
CAN Transc.	1	NXP TJA1051TK/3, 118	High-speed CAN transceiver (2Mbit/s) with 8kV ESD protection 8-HVSON 3x3mm

31³¹

Motor Control

3-Phase Brushless DC (BLDC) Motor

Control is done with 6 or 9 MOSFETs

Benefits

- High Controllability
- Low Losses
- Better Lifetime
- Less Noise

Control

• 6-9 MOSFETs

Brushed DC Motor

Control is done with 1, 2 or 4 MOSFETs

Benefits

Low cost

Opportunities

Relays Replacement

Control

• 1-4 MOSFETs

Power Needs

High Power Solution: BLDC

Application Focus: Power Train and Body Control

- EPS
- Braking
- HVAC
- Cooling fan
- Water pump
- Transmition

Low Power Solution: BLDC & Brushed DC Motor

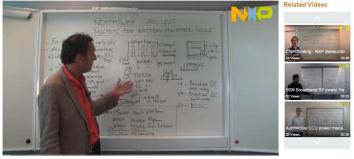
Application focus: Body Control

- Mirror control (Brushed)
- Windows lifter (BLDC)
- Seat control (Brushed)
- Sun roof control (BLDC)
- Valve shutters (Brushed)

TOOLS & INFO

NextPower Cordless on the Web

ND				L Sign In or Register	🕀 English 🔻	` ∏ Cart
			ALL -	Search		Q
PRODUCTS SOLU	UTIONS SUPPORT	ABOUT				
Microcontrollers and Processors	NXP > Discretes and Logi					⊠≺
Discretes and Logic	Robust MOS	FEISTOR	power tool	applications		
 ESD Protection, TVS, Filtering and Signal Conditioning 	Overview Product	S				
 MOSFETs Automotive MOSFETs High Side Switches 		-	MOSFETs designe	introduce NextPower Cordle of specifically for power tool um drain current of up to 150	motor control app	
 Low Side Switches Pre-Drivers RF Small-Signal MOSFETs Standard MOSFETs Squib Drivers 			section has grown motor technologies drills, saws, sande	ol retailer these days and you Driven by price and perforn s, portable ranges have expa rs, planes and angle grinder	nance advances i anded to include s s - with specificat	n battery and screwdrivers, ions that were
Diodes			previously only ava	ailable in mains powered ver	sions. Now garde	n tools are
Logic			going the same wa trimmers and ever	ay with the introduction of con chainsaws.	rdless lawnmowe	rs, hedge
 Bipolar Transistors 						
	<u>nx</u>	o.com/ne	xtpower-cord	less		

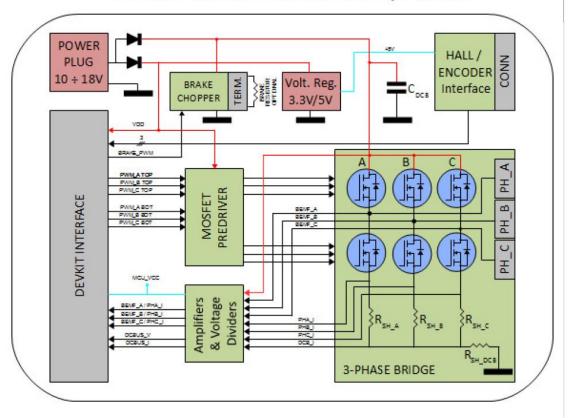


NXP PowerMOS on the Web

					👤 Sign In or F	Register 🛛 🌐 Eng	glish 🔹 🐂 C	art
				ALL -	Search			Q
PRODUCTS SC	DLUTIONS	SUPPORT	ABOUT					
Microcontrollers and Processors Discretes and Logic		Discretes and Logic	MOSFETS Autom	otive MOSFETs				$\boxtimes \prec$
ESD Protection, TVS, Filtering and Signal Conditioning	Ove	rview Products						
MOSFETs Automotive MOSFETs High Side Switches Low Side Switches	X	Download XLS	Download PDF	≡⊠ Email L	ink			
 Pre-Drivers RF Small-Signal MOSFETs Standard MOSFETs Squib Drivers 	_	Products/Parts 84 of 415	Order	Package version	Package name	Product status	Channel type	Numb transis
Diodes		Show/Hide Parameters (7 Hidden)	Distributor	SOT23	D2PAK	Development	□ N	1
Logic		€ Reset Filters		SOT78A	D2PAK-7	End of life	N/P	2
Bipolar Transistors		Compare Selected		SOT223	DFN1006-3	Not for design in	P	
dentification and Security nterface and Connectivity				SOT226	DFN2020MD-6	Production		
Media and Audio Processing Power Management		BUK7Y07-30B	Buy Options	SOT669	LFPAK56; Power- SO8	Production	N	1
RF Sensors		BUK7Y08-40B	Buy Options	SOT669	LFPAK56; Power- SO8	Production	Ν	1
Automotive Products Software and Tools		BUK7Y10-30B	Buy Options	SOT669	LFPAK56; Power- SO8	Production	Ν	1
RODUCT SELECTOR sily locate your ideal product		BUK7Y102-100B	Buy Options	SOT669	LFPAK56; Power- SO8	Production	N	1
sed on technical specifications. / Now >		BUK7Y113-100E	Buy Options	SOT669	LFPAK56; Power- SO8	Production	Ν	1
		BUK7Y12-100E	Buy Options	SOT669	LFPAK56; Power- SO8	Production	Ν	1
		BUK7Y12-40E	Buy Options	SOT669	LFPAK56; Power- SO8	Production	Ν	1

- Full parametric search
- Datasheets
- Application notes
- Device models
- Footprint & package data
- Samples
- Quick Learning videos

NextPower Cordless, mosfets for battery powered tools - NXP Quick Learning 28

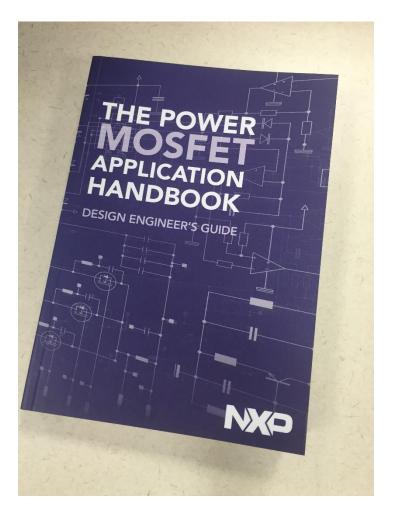

Reference Design

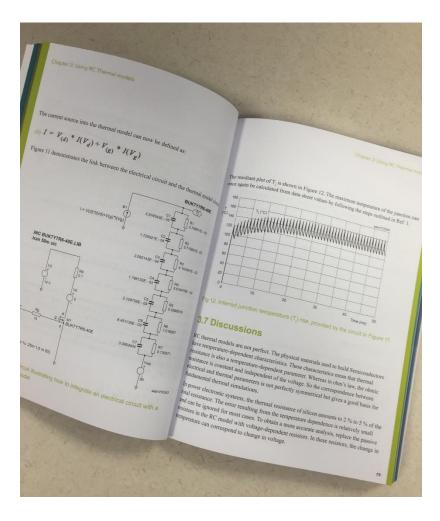
FRDM-MC_SHIELD for Automotive FRDM boards			STATUS : HW design done		
	NXP PARTS				
	REFERENCE	PCS	PART NUMBER	PACKAGE	
	D1, D3	2	PMEG3020EH	SOD123LF	
	D4, D5, D6	2	BAS316	SOD323	
	Q2, Q3, Q4	3	BUK7K52-60EX	LFPAK	
Contractor Contractor	Q6	1	PMV130ENEAR	SOT23	

Freedom Power Management Board Supporting 10-15 different µC

The first full for reference design solution using it will be FRDM-KEAZ128 + DEVKIT-MCSHIELD that has motor control software

DEVKIT-MCSHIELD for BLDC/PMSM




Brochures, Application Information and Sales Tools

Application Handbook

KEY "MOTOR CONTROL" TAKEAWAYS

- New, Big, Diverse Opportunities
- Power MOSFETs Make a Difference
- NXP has Optimized Devices

Perfect for Solution-selling with Micros

A Glimpse of the Future?

https://www.youtube.com/watch?v=AUq3mBuENiw

SECURE CONNECTIONS FOR A SMARTER WORLD

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE, MIFARE Classic, MIFARE DESFire, MIFARE Plus, MIFARE Flex, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale, the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2015–2016 NXP B.V.

BACK UP SLIDES

STRUCTURED FOR SUCCESS

Digital Networking

High-performance multicore solutions that transport, analyze and secure data from the edge of the network to the cloud

Standard Products

Leading supplier for all major automotive, identification, wireless infrastructure, industrial, mobile, lighting, consumer and computing manufacturers

Security & Connectivity

Best-in-class security, contactless performance and the most complete solutions to produce unmatched mobile and IoT solutions

Automotive

Sensor and processing technology driving all aspects of the secure connected cars of today and the autonomous cars of tomorrow

RF

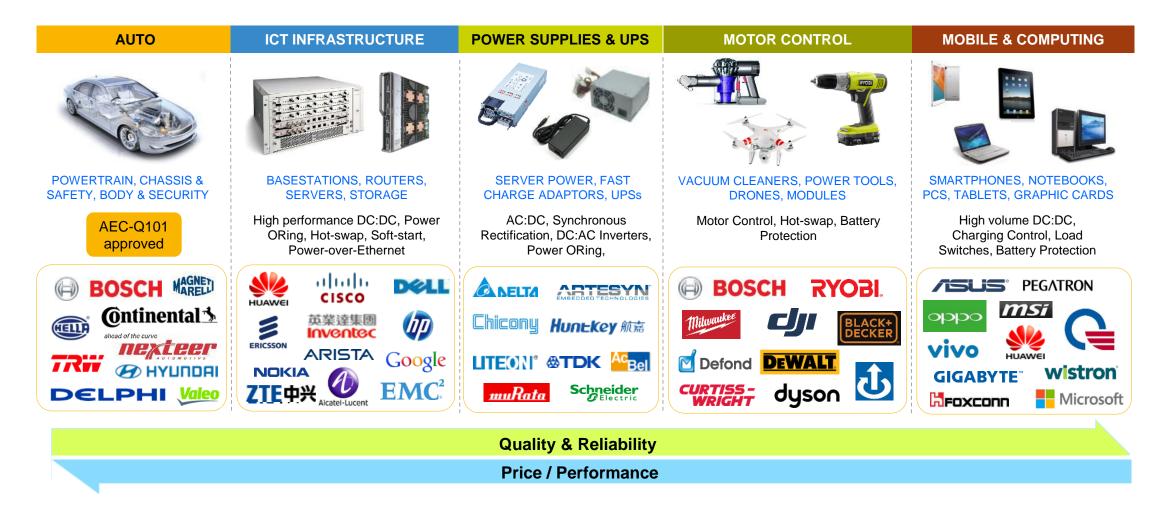
Solutions spanning the smartphone, wireless infrastructure, broadcast, medical, mobile radio, military, aviation, cooking and industrial markets

NXP Standard Products

Your 1st Choice for Diodes, Transistors, ESD & EMI Filtering, ssMOS, Power MOS, ESwitches and Logic

Global Trends	Reflected In >10,000 Types	Enabled By	Results
Energy efficiency Connected & smart device Reliability in product & service	 Small-signal Diodes & Transistors Medium Power Diodes & Transistors Protection & Signal Conditioning Small-Signal MOSFETs Power MOSFETs eSwitches Logic Devices 	 Cost efficient supply chain High quality with <0.1 PPM failure rate Extended AECQ-100/101 portfolio Best in Class packages 	 #1 GA Discretes (incl. ESD protection) #2 PowerMOS Automotive #3 Logic STANDARD PRODUCTS IS YOUR 1st CHOICE SUPPLIER WITH 12.1 % MARKET SHARE 12.4%
Click on the image to watch the video about our Fab in Hamburg	Click on the image to open the Discretes Selection Guide 2016	RaD San Jose (HQ, Logic) Nijmegen (Logic) Hamburg (HQ, Discrete) Manchester (HQ, PowerMos) FRONT END Hamburg, Germany Nijmegen, the Netherlands Eack END AsBN, China Guandong, China Cabuyao, China Cabuyao, China Cabuyao, China Manchester (HQ, PowerMos)	12,3% 12,2% 12,1% 2011 2012 2013 2014 2015 AND UP TO 70 BLN PCS SHIPPED ANUALLY!

Standard Products @ a Glance


NXP In Automotive Power

- #2 in automotive power MOSFET market
- Largest portfolio of AEC-Q101 qualified devices
- Leadership in engine, transmission, steering & braking applications

PowerMOS Focus Markets

Standard MOS Summary Portfolio

R _{DS(ON)} [max] a	$R_{DS(ON)}$ [max] at V_{GS} = 10V Released products as of Jan-				
Package / BV _{DSS}	LFPAK33		D2PAK	TO-220 Family	
25V	2.8 - 8.65	0.7 – 6.5	-	_	
30V	2.4 – 18.1	0.87 – 13.6	1 – 22.6	1.3 – 22	
40V	-	1.1 – 14	1.3 – 7.6	1.6 – 7.6	
55V60V	11.3	4 – 24.7	2 – 75	2.2 – 75	
75V80V	-	8.5 – 45	3 – 46	3.3 – 17	
100V	36.6 – 71	12 – 72.4	3.9 – 90	4.3 – 90	

NP