

NXP Semiconductors
www.nxp.com

eIQ™ Inference with Tensorflow Lite for
Microcontrollers on i.MX RT1170 -

With Camera
Lab Hand Out - Revision 5

August 2023

 eIQ inference with TensorFlow Lite Micro - Lab Page 2 of 11

Contents

1 Lab Overview .. 3

2 Software and Hardware Installation .. 3
2.1 NXP MCUXpresso SDK Installation .. 3
2.2 Other Software Installation .. 4

3 Create a TensorFlow Model ... 4

4 Convert Model and Labels .. 4
4.1 Convert TensorFlow model .. 4
4.2 Convert Image Data – No Camera Only.. 5

5 Run Demo with TensorFlow Lite for Microcontrollers .. 6
5.1 Copy and Create Files .. 6
5.2 Modify Source Code ... 8
5.3 Run Example .. 10

6 Conclusion ... 11

 eIQ inference with TensorFlow Lite Micro - Lab Page 3 of 11

1 Lab Overview

This lab will cover how to take an existing TensorFlow image classification model and run it on an i.MX
RT embedded device. A Flowers model that can be created in eIQ Toolkit will be used an example. A
camera attached to the board can then be used to look at photos of flowers and the model will
determine what type of flower the camera is looking at.

This lab can also be used without a camera+LCD, but the flower image will need to be converted to a C
array and loaded at compile time. Instructions for that version of the lab can be found in the “eIQ
TensorFlow Lite for Microcontrollers Lab for RT1170 – Without Camera.pdf” document.

This lab is written for the i.MX RT1170 evaluation board. It can also be used with the following boards
that support a camera interface by downloading their respective SDK packages:

• i.MX RT1050

• i.MX RT1060

• i.MX RT1064

• i.MX RT1160

• i.MX RT1170

Also note that the i.MX RT1170, i.MX RT1060, and i.MX RT1064 evaluation kits come with a camera
sensor. The i.MX RT1050-EVKB does not come with a camera sensor but uses the same camera as the
i.MX RT1060. If using the camera, it is highly recommended to also purchase the LCD screen as well. An
LCD screen compatible with the i.MX RT1060, i.MX RT1050, and i.MX RT1064 boards can be found
here. An LCD screen compatible with the i.MX RT1160 and i.MX RT1170 boards can be found here. Also
be aware that there is an updated version for each of those LCD panels so if you have an older version
of the LCD panel there may be a small software change required for any SDK examples that use the
LCD.

2 Software and Hardware Installation

This section will cover the steps needed to install the eIQ software and TensorFlow on your computer.

2.1 NXP MCUXpresso SDK Installation
1. Install the latest version of MCUXpresso IDE
2. Install a terminal program like TeraTerm.
3. Download the latest MCUXpresso SDK for i.MXRT1170. It includes the eIQ software platform

and demos.
a) On the SDK builder page, make sure to select the “eIQ” middleware.

https://www.nxp.com/part/RK043FN02H-CT#/
https://www.nxp.com/part/RK055HDMIPI4MA0#/
https://community.nxp.com/t5/i-MX-RT-Knowledge-Base/Updated-LCD-panels-for-i-MX-RT-EVKs/ta-p/1452416
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://ttssh2.osdn.jp/index.html.en
https://mcuxpresso.nxp.com/en/select?device=EVK-MIMXRT1170

 eIQ inference with TensorFlow Lite Micro - Lab Page 4 of 11

b) Then click on the Download SDK button and accept the license agreement to download the

zip file.

2.2 Other Software Installation
4. Download and install Python 3.9. **The 64-bit edition is required and for compatibility it is

highly recommended to use Python 64-bit 3.9.x**: https://www.python.org/downloads/

5. Open a Windows command prompt and verify that the python command corresponds to
Python 3.9.x.
python -V

6. Update the python installer tools:
python -m pip install -U pip
python -m pip install -U setuptools

7. Install other useful python packages. Not all of these will be used for this lab but will be useful

for other eIQ demos and scripts.
python -m pip install numpy scipy matplotlib ipython jupyter pandas sympy nose imageio
python -m pip install netron seaborn west pyserial sklearn opencv-python pillow

8. If on Windows, install Vim 9.0: https://www.vim.org/download.php#pc. There is a binary
convertor program named xxd.exe located inside that package that will be needed.

9. Verify the PATH was set correctly by opening a Windows command prompt and typing “xxd -v”
into the command prompt. You should not get any errors about an unrecognized command.

3 Create a TensorFlow Model

This lab will use the Flowers model generated by eIQ Toolkit as part of the eIQ Toolkit Data Import lab.

There are many other ways that a TensorFlow Lite model could be created including through cloud
based ML tools, TensorFlow scripts and labs, and other methods. This lab will focus on how to get an
already existing TFLite model to run on NXP silicon using eIQ enablement software.

4 Convert Model and Labels

Once you have a Tensorflow Lite file, the next step is to convert the TFLite file into a C header file that
can be imported into an MCUXpresso SDK example.

For this lab, we’ll use the flower identification model created using the eIQ Toolkit. It will be assumed
that the name of that model is flower_model.tflite

4.1 Convert TensorFlow model
1. Use the xxd utility to convert the .tflite binary file into a C array that can be imported into an

embedded project. Navigate to the directory that the .tflite file is located and then convert it
using XXD:
• If using Windows Command Prompt: xxd -i flower_model.tflite > flower_model.h
• If using Windows Powershell: xxd -i flower_model.tflite | out-file -encoding ASCII flower_model.h

https://www.python.org/downloads/
https://www.vim.org/download.php#pc
https://community.nxp.com/t5/eIQ-Machine-Learning-Software/eIQ-Toolkit-for-MCU-Getting-Started-Labs/ta-p/1305564
https://www.tensorflow.org/lite/models/modify/model_maker/image_classification

 eIQ inference with TensorFlow Lite Micro - Lab Page 5 of 11

2. The generated header file will need to be modified slightly to integrated it into the MCUXpresso
SDK. Open up the flower_model.h file and make the following changes to the top of the file.
Also make note of the array name as it will be used in the next section. Also the
kTensorArenaSize may need to be larger depending on the model (or smaller to save RAM size).
The value below works well for the Flower model being used for this lab.

#ifdef __arm__
#include <cmsis_compiler.h>
#else
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif

#define MODEL_NAME "flower_model"
#define MODEL_INPUT_MEAN 127.5f
#define MODEL_INPUT_STD 127.5f

constexpr int kTensorArenaSize = 1000 * 1024;

static const uint8_t flower_model_tflite[] __ALIGNED(16) = {

3. It should look like the following when changed:

4. Next, use a text editor to create a new file named flower_labels.h to create an array of the

label names. Copy and paste the following code into that newly created flower_labels.h file:
 const char* labels[] = {
 "daisy",
 "dandelion",
 "roses",
 "sunflowers",
 "tulips"
 };

4.2 Convert Image Data – No Camera Only
Now that the model has been converted, an image also needs to be converted into a C array.
Preferably pick an image in the flower photo repository used during the eIQ Toolkit data import lab so
that result on the PC can be compared to the result on the RT1170. For this lab, we’ll pick the file
flower_photos/daisy/102841525_bd6628ae3c.jpg

http://download.tensorflow.org/example_images/flower_photos.tgz
https://community.nxp.com/t5/eIQ-Machine-Learning-Software/eIQ-Toolkit-for-MCU-Getting-Started-Labs/ta-p/1305564

 eIQ inference with TensorFlow Lite Micro - Lab Page 6 of 11

5. Use the following Python script program to convert the selected JPG file to a C array. Make sure
the path to the image is correct relative to the location the script is executed from and also
make sure to include the indentions of the last 4 lines:

import cv2
import numpy as np
img = cv2.imread('flower_photos/daisy/102841525_bd6628ae3c.jpg')
img = cv2.resize(img, (128, 128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
with open('daisy.h', 'w') as fout:
 print('#define STATIC_IMAGE_NAME "daisy"', file=fout)
 print('static const uint8_t daisy [] = {', file=fout)
 img.tofile(fout, ', ', '0x%02X')
 print('};\n', file=fout)

6. It should look like the following when you open the newly generated daisy.h file:

5 Run Demo with TensorFlow Lite for Microcontrollers

The final step is to take the TensorFlow Lite Micro Label Image example and modify it to use the
newly retrained model.

5.1 Copy and Create Files
1. Open MCUXpresso IDE and select a workspace location in an empty directory.

2. Drag-and-drop the unzipped SDK folder into the Installed SDKs window, located on a tab at the

bottom of the screen named “Installed SDKs”. You will get the following pop-up, so hit OK.

3. Once imported, the Installed SDK panel will look something like this

4. Next import the desired project. In the Quickstart Panel, select Import SDK examples(s)…

 eIQ inference with TensorFlow Lite Micro - Lab Page 7 of 11

5. Select the evkmimxrt1170 board and click on Next

6. Import the tflm_label_image_cm7 example. Then click on Finish to select that project.

7. Now we need to import both the new model file and labels file that was generated in the last

section into this project.
8. Open the directory location to place the model by right clicking on the model folder in the

Project Explorer and selecting Utilities->Open directory browser here

 eIQ inference with TensorFlow Lite Micro - Lab Page 8 of 11

9. It should open a directory at something like something like:

C:\Users\<username>\Documents\MCUXpressoIDE_11.8.0_1165\workspace\evkmimxrt1170
_tflm_label_image_cm7\source\model

10. Inside that model directory, copy the flower_model.h file and the flower_labels.h file amd
daisy.h file generated in the previous section.

11. Directory should look like the following when finished:

5.2 Modify Source Code
Now edit the source files to include these new files

1. Double click on the model.cpp file under the “source\model” folder in the Project View to open
it.

7. On line 24 add the following #include for the ops resolver that supports all the operands used

by this retrained model:
#include "tensorflow/lite/micro/all_ops_resolver.h"

8. On line 29, comment out original #include for the original model defined in model_data.h. Then

add a new #include to bring in the new model with flower_model.h. It should look like the
following when finished:

9. On line 45, change the model name to the array name in flower_model.h:

10. To reduce the size of the project, the Label Image example only supports the specific operands

required by the default Mobilenet model. Our retrained model uses a few new operands. These

specific operands can be determined by analyzing the model with an application called netron

and then manually add the operands as described in Section 7.1 of the eIQ TensorFlow Lite

Library User's Guide. Or alternatively all the TFLite operands can be supported in a project by

 eIQ inference with TensorFlow Lite Micro - Lab Page 9 of 11

using the built in tflite::AllOpsResolver method. For this lab we’ll use the latter method in order

to provide the greatest compatibility with other models. On line 63 in model.cpp, comment out

the original resolver line. Then add a new line

 tflite::AllOpsResolver micro_op_resolver;

It will look like the following when done:

11. Next open the output_postproc.cpp file.

12. On line 12, comment out original #include for the original label file. Then add a new #include to

bring in the new labels file. It should look like the following when finished:

12. Next open the image_capture.c file

13. Make the following changes to bring in the daisy image for inferencing in image_capture.c:

a. Comment out the #include on line 12 for image_data.h and add #include “daisy.h”.

b. Change line 52 for the IMAGE_Decode argument to the name of the daisy array, daisy

 eIQ inference with TensorFlow Lite Micro - Lab Page 10 of 11

13. Finally change the build configuration to “Release” by clicking on the project and going to the
menu bar and going to Project->Build Configurations->Set Active->Release. This will enables
high compile optimizations. This will significantly decrease the inference time of TFLM projects.

14. Build the project by clicking on “Build” in the Quickstart Panel and make sure there are no

errors.

5.3 Run Example
15. Plug the micro-B USB cable into the board at J11 on the i.MXRT1170 board.

16. Open TeraTerm or other terminal program, and connect to the COM port that the board

enumerated as. Use 115200 baud, 1 stop bit, no parity.

17. Debug the project by clicking on “Debug” in the Quickstart Panel.

18. It will ask what interface to use. Select CMSIS-DAP.

 eIQ inference with TensorFlow Lite Micro - Lab Page 11 of 11

19. The debugger will download the firmware and open up the debug view. It may take some time

to download the firmware. Click on the Resume button to start running.

20. Open up a terminal window, and you the result of the inference from the static image:

6 Conclusion

This lab demonstrated how to import a Tensorflow Lite model into the Tensorflow Lite for
Microcontrollers inference engine provided as part of eIQ so that the model can be ran on
embedded system. These same steps could also be used for other TFLite models to enable a wide
world of opportunity for new smarter applications.

