

© Freescale Semiconductor, Inc., 2016. All rights reserved.

NXP Semiconductors
Document Number: ANxxxx

Application Note

Building U-Boot in CodeWarrior ARMv8

1. Introduction

This application note defines guidelines for configuring

CodeWarrior for ARMv8 for U-Boot development.

This document explains:

• Installing standalone toolchain supplied with

NXP Linux SDK

• Configuring CodeWarrior for ARMv8 for

building U-Boot

• Building U-Boot with CodeWarrior for ARMv8

2. Requirements

For building U-Boot using CodeWarrior for ARMv8, is

necessary a host computer with Linux OS and

CodeWarrior for ARMv8 Linux version installed.

Contents

1. Introduction ... 1
2. Preliminary background 2
3. Changes in CodeWarrior ARMv8 stationery

project .. 2
4. Debugging ... 6

Installing SDK standalone toolchain

Building U-Boot in CodeWarrior ARMv8 Application Note

2 NXP Semiconductors

3. Installing SDK standalone toolchain

Linux SDK provides a standalone toolchain which can be used for building different application outside

Yocto. In our case, we can use the standalone toolchain for building U-Boot using CodeWarrior for

ARMv8.

To build and install the standalone toolchain with Yocto, perform these steps:

$ cd build_<machine>_release

$ bitbake fsl-toolchain

$ cd build_<machine>_release/tmp/deploy/sdk

$./fsl-qoriq-glibc-<host-system>-<core>-toolchain-<release>.sh

NOTE The default installation path for the standalone toolchain is: /opt/fsl-qoriq/.

You need to specify this path while installing the standalone toolchain.

For additional information about building and installing the standalone toolchain

with Yocto, see SDK Knowledge Center.

4. Configuring CodeWarrior for ARMv8 for building U-Boot

To create a project for building U-Boot inside CodeWarrior for ARMv8, perform these steps:

1. Choose File > New > C Project

2. Specify the project name and select Empty Project as Project type

3. Uncheck the Use default location and use the Browse button to find the location for U-Boot

source

4. Chose Cross GCC as Toolchain

5. Click Next

https://freescale.sdlproducts.com/LiveContent/web/ui.xql?action=html&resource=publist_home.html

 Configuring CodeWarrior for ARMv8 for building U-Boot

Building U-Boot in CodeWarrior ARMv8 Application Note

NXP Semiconductors 3

6. Choose both Debug and Release configurations and click Next

7. Specify the Cross compiler prefix, Cross compiler path and click Finish

Configuring CodeWarrior for ARMv8 for building U-Boot

Building U-Boot in CodeWarrior ARMv8 Application Note

4 NXP Semiconductors

8. Project is created and will appears in Project Explorer view

9. Go to Project > Properties > C/C++ build, select Builder settings and uncheck Generate

Makefiles automatically

 Configuring CodeWarrior for ARMv8 for building U-Boot

Building U-Boot in CodeWarrior ARMv8 Application Note

NXP Semiconductors 5

10. Update the Build directory with U-Boot source code path

11. Select Behavior, empty the Build (incremental build) field and change clean to distclean in

Clean field

12. Go to Project > Properties > C/C++ build > Environment and add environmental variables

for:

Name: CROSS_COMPILE

Value: aarch64-fsl-linux-

Click Add to all configuration

Name: ARCH

Value: arm64

Click Add to all configuration

Name: SDKTARGETSYSROOT

Value: /opt/fsl-qoriq/LS2088A-SDK/sysroots/aarch64-fsl-linux

Click Add to all configuration

Building U-boot using CodeWarrior for ARMv8

Building U-Boot in CodeWarrior ARMv8 Application Note

6 NXP Semiconductors

NOTE SDK toolchain is a sysrooted toolchain. This means that GCC will start to look for

target fragments and libraries starting from the path specified by the sysroot option.

Name: PATH

Value: /opt/fsl-qoriq/LS2088A-SDK/sysroots/x86_64-fslsdk-linux/usr/bin:/opt/fsl-

qoriq/LS2088A-SDK/sysroots/x86_64-fslsdk-linux/usr/bin/aarch64-fsl-linux:/usr/sbin:/bin

Click Add to all configuration

Name: KCFLAGS

Value: “--sysroot=${ SDKTARGETSYSROOT }”

Click Add to all configuration

13. Go to Project > Properties > C/C++ build > Settings and uncheck Elf Parser and check on

GNU Elf Parser

5. Building U-boot using CodeWarrior for ARMv8

In order to build U-Boot using CodeWarrior for ARMv8, two build activities must be created under

Project > Make Target > Build from the menu bar.

 Building U-boot using CodeWarrior for ARMv8

Building U-Boot in CodeWarrior ARMv8 Application Note

NXP Semiconductors 7

Once configured we have two build targets.

Go to Project > Make Target > Build, select distclean and click Build. A “make distclean”

command will run removing all the object and temporary files. Below message will be displayed when

build is complete in Console view.

Building U-boot using CodeWarrior for ARMv8

Building U-Boot in CodeWarrior ARMv8 Application Note

8 NXP Semiconductors

Go again to Project > Make Target > Build, select ls2085ardb_defconfig and click Build. A ”make

ls2085ardb_defconfig” command will run and configure the U-Boot to be built for

LS2088ARDB board in this case.

To build U-Boot, go to Project > Build Project from the menu bar. Below message will be displayed

when build is complete in Console view.

How to Reach Us:

Home Page:

nxp.com

E-mail:

nxp.com/support

Document Number: ANxxxx

29 September 2016

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. Freescale reserves the right
to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can
be found at the following address: nxp.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorIQ, and Processor Expert are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of
their respective owners.

© 2016 Freescale Semiconductor, Inc.

http://www.nxp.com/
http://www.nxp.com/support
file:///C:/CodeWarrior/ARMv7/App_Notes/ARMv7_App_Note_Source_Files/nxp.com/SalesTermsandConditions
file:///C:/CodeWarrior/ARMv7/App_Notes/ARMv7_App_Note_Source_Files/nxp.com/SalesTermsandConditions

