NXP Semiconductors
Application Note

Document Number: ANXxxx

Building Linux Kernel in CodeWarrior

ARMvS

1. Introduction

This application note defines guidelines for configuring
CodeWarrior for ARMvS for Linux Kernel
development.

This document explains:

¢ Installing standalone toolchain supplied with
NXP Linux SDK

¢ Configuring CodeWarrior for ARMvS for
building Linux Kernel

¢ Building Linux Kernel with CodeWarrior for
ARMvVSE

© Freescale Semiconductor, Inc., 2016. All rights reserved.

Contents

1. INtroduCtion..........cccoiiiiiiiiiiieeee e 1

2. RequiremMents.......ccccccoeiiiiiiiiieiii e 2

3. Installing SDK standalone toolchain............... 2

4. Configuring CodeWarrior for ARMv8 for building
Linux Kernel ... 2

5. Building Linux Kernel using CodeWarrior for
ARMVS ..ot 6

h -
P]

Requirements

2. Requirements

For building Kernel using CodeWarrior for ARMvVS, is necessary a host computer with Linux OS and
CodeWarrior for ARMvS Linux version installed.

3. Installing SDK standalone toolchain

Linux SDK provides a standalone toolchain which can be used for building different application outside
Yocto. In our case, we can use the standalone toolchain for building U-Boot using CodeWarrior for
ARMVS.

To build and install the standalone toolchain with Yocto, perform these steps:

$ cd build <machine> release

$ bitbake fsl-toolchain

$ cd build <machine> release/tmp/deploy/sdk

$./fsl-gorig-glibc-<host-system>-<core>-toolchain-<release>.sh

NOTE The default installation path for the standalone toolchain is: /opt/fsl-qoriqg/.
You need to specify this path while installing the standalone toolchain.
For additional information about building and installing the standalone toolchain
with Yocto, see SDK Knowledge Center.

4. Configuring CodeWarrior for ARMvS8 for building Linux
Kernel

To create a project for building U-Boot inside CodeWarrior for ARMvS, perform these steps:

1. Choose File > New > C Project
. Specify the project name and select Empty Project as Project type
3. Uncheck the Use default location and use the Browse button to find the location for Linux
Kernel source
4. Chose Cross GCC as Toolchain
5. Click Next

Building Linux Kernel in CodeWarrior ARMv8 Application Note
2 NXP Semiconductors

https://freescale.sdlproducts.com/LiveContent/web/ui.xql?action=html&resource=publist_home.html

Configuring CodeWarrior for ARMvS for building Linux Kernel

C Project

C Project e

@, Directory with specified name already exists. r

Project name: _U—Bnnt ‘

["] Use default location

Location: [!sdk,’LSZOBSA—SDK—Zm 6071 &yocto,/buildils2088ardb,n'tmp,n'workjl'| [Browse... J

Choose file system: | default =

Project type: Toolchains:

® = GNU Autotools ~ Cross ARM GCC
® = Yocto Project ADT Autotools Project

¥ & Executable Linux GCC

® Empty Project
@& Hello world ANSI C Project
@ Hello world ARM C Project
* = Shared Library
® (= Static Library
* (= Yocto Project ADT CMake Project
» (= Others
*» = Makefile project
* (= Remote Makefile Proiect g
[show project types and toolchains only if they are supported on the platform

® <Back

- Cancel Finish

6. Choose both Debug and Release configurations and click Next

C Project

Select Configurations p—
Select platforms and configurations you wish to deploy on r
Projecttype: Executable
Toolchains: Cross GCC
Configurations:

& ® Debug select all
& i Release
Deselectall
Advanced settings...

Use "Advanced settings" button to edit project's properties.

Additional configurations can be added after project creation.

Use "Manage configurations” buttons either on toolbar or on property pages.
® <Back Cancel Finish

7. Specify the Cross compiler prefix, Cross compiler path and click Finish

Building Linux Kernel in CodeWarrior ARMv8 Application Note

NXP Semiconductors

A——————————_—_—_—_—
Configuring CodeWarrior for ARMvS for building Linux Kernel

C Project

<

Cross GCC Command

|

(T |

Configure the Cross GCC path and prefix

Cross compiler prefix: |aarch64-fsl-linux- |

Cross compiler path: |,"opt,"fsl—qoriq,"LSZDSBA-SDK,'sysmotsfxss_ﬁq—fslsdk-linux,"usr,"bin/aar(hﬁfl—fsl-linux | IBmwse...I

® Next > { Cancel I { Finish

8. Project is created and will appears in Project Explorer view

[t5 Project Explorer 58 [# Target Connect = b
G ¥

¥ % > Kernel [kernel-source Is1088a_ls2088a_layersc|”

» zyarch

» B Archives

> ¥ Binaries

> zx block

> Gy crypto

b > Debug

* x Documentation

> =y drivers

b Gy firmware

b Gy fs

> cxinclude

» i Includes

B Zginit

* Eyipc

» iz kernel

>z lib

P mm

b = net

> i samples

> = scripks -

k

Building Linux Kernel in CodeWarrior ARMv8 Application Note

N

NXP Semiconductors

Configuring CodeWarrior for ARMvS for building Linux Kernel

9. Go to Project > Properties > C/C++ build, select Builder settings and uncheck Generate
Makefiles automatically

[ElBuilder Settings | @ Behavior | < Refresh Policy
Builder
Builder type:
| Use default build command

Build command: |make | Variables...

Makefile generation

"~ Generate Makefiles automatically
Build location

Build directory: | /sdk/LS2088A-SDK-20160719-yocto/build_|s2088ardb/tmp/work/|s2088ardb-fsl-linux/lir

| Workspace...| File system... | | Variables... |

| Restore Defaults | | Apply |

| Cancel | I OK I

10. Update the Build directory with Linux Kernel source code path

11. Select Behavior, empty the Build (incremental build) field and change clean to distclean in
Clean field

=l Builder Settings | ® Behavior | «* Refresh Policy

Build settings
(& Stop on first build error | Enable parallel build

workbench Build Behavior
workbench build type: Make build target:
| Build on resource save (Auto build) Variables.

Note: See Workbench automatic build preference

Build (Incremental build) | Variables... |
Clean distclean | Variables... |
| Restore Defaults | | Apply |
| Cancel | I OK j

12. Go to Project > Properties > C/C++ build > Environment and add environmental variables
for:

Name: CROSS_COMPILE
Value: aarch64-fsl-linux-
Click Add to all configuration

Building Linux Kernel in CodeWarrior ARMv8 Application Note
NXP Semiconductors 5

A——————————_—_—_—_—
Building Linux Kernel using CodeWarrior for ARMv8

Name: ARCH
Value: armo64
Click Add to all configuration

Name: PATH

Value: /opt/fsl-qoriq/L.S2088A-SDK/sysroots/x86 64-fslsdk-linux/usr/bin:/opt/fsl-
qoriq/LS2088A-SDK/sysroots/x86_64-fslsdk-linux/usr/bin/aarch64-fsl-
linux:/usr/sbin:/usr/bin:/bin

Click Add to all configuration

13. Go to Project > Properties > C/C++ build > Settings and uncheck EIf Parser and check on
GNU EIf Parser

[&iBinary Parsers | @ Error Parsers

Binary parser:
Elf Parser
Mach-0 64 Parser
PEWindows Parser | Move Down |
HP-UX SOM Parser

| Moveup |

Mach-O Parser (Deprecated)

« GNU EIf Parser

Cygwin PE Parser
AlIX XCOFF32 Parser

Binary Parser Options
addr2line Command:

addr2line | Browse... |
c++filt Command:

c++filt | Browse... |

5. Building Linux Kernel using CodeWarrior for ARMv8

In order to build Linux Kernel using CodeWarrior for ARMvS, two build activities must be created
under Project > Make Target > Build from the menu bar.

Building Linux Kernel in CodeWarrior ARMv8 Application Note
6 NXP Semiconductors

Building Linux Kernel using CodeWarrior for ARMvS§

Create Make Target Create Make Target
Target name: [distclean] Target name: | config |
Make Target Make Target

& same as the target name] same as the target name

Make target: Make target: [Iscripts,fkconﬂg,fmergeﬁconﬁg.sh arc|
Build Command Build Command
& use builder settings "] Use builder settings
Build command: Build command: [sh
Build Settings Build Settings
& stop onfirst build error Stop on first build el
& Runall project builders & Runall project builders
| cancel || ok Cancel ok

Once configured we have two build targets.

Make Targets

Make Targets for: Kernel
Target Location
distclean Remove
config

| Cancel | Build |

Go to Project > Make Target > Build, select distclean and click Build. A “make distclean”
command will run removing all the object and temporary files. Below message will be displayed when
build is complete in Console view.
Problems & Tasks & Console &2 Properties #it Call Graph - = 8
P olg BH-E ME-0-

CDT Build Console [Kernel]
17:32:42 *#*** Build of configuration Debug for project Kernel #**#
make distclean

CLEAN scripts/basic

CLEAN scripts/kconfig

CLEAN .config

17:32:44 Build Finished (took 2s.176ms)

Building Linux Kernel in CodeWarrior ARMv8 Application Note
NXP Semiconductors 7

A——————————_—_—_—_—
Building Linux Kernel using CodeWarrior for ARMv8

Go again to Project > Make Target > Build, select config and click Build. A ”sh
scripts/kconfig/merge config.sh arch/armé64/configs/defconfig

arch/armé64/configs/freescale.config” command will run and configure the Linux Kernel
to be built for LS2088 ARDB board in this case.

Problems Tasks E Console 2 Properties i Call Grap Conneckl = 3
COs BHTE ME-0-

CDT Build Console [Kernel]

Value requested for CONFIG_SENSORS_INA2XX not in final .config -

Requested value: CONFIG_SENSORS INA2XX=y

Actual value:

Value requested for CONFIG VFIO FSL MC not in final .config
Requested value: CONFIG VFIO FSL MC=y
CONFIG VFIO FSL_MC=y

Actual value: CONFIG_VFIO_FSL_MC=y

Value requested for CONFIG_VFIO FSL_MC not in final .config
Requested value: CONFIG_VFIO FSL_MC=y
CONFIG VFIO FSL MC=y

Actual value: CONFIG VFIO FSL MC=y

17:34:04 Build Finished (took 2s.373ms)

To build Linux Kernel, go to Project > Build Project from the menu bar. Below message will be
displayed when build is complete in Console view.

[*1 Problems ¥ Tasks & Console % | Properties ¥ Call Graph 5. Connectio = ©

L ilg BB B0
CDT Build Console [Kernel]
Building modules, stage 2. -
MODPOST 6 modules
cc drivers/staging/fsl-dpaa2/dce/fsl-dce-api-time-trial.mod.o
LD [M] drivers/staging/fsl-dpaa2/dce/fsl-dce-api-time-trial.ko
cc net/802/p8022.mod.o
LD [M] net/802/p8022.ko
cc net/802/psnap.mod.o
LD [M] net/802/psnap.ko
cc net/802/stp.mod.o
LD [M] net/802/stp.ko
cC net/bridge/bridge.mod.o
LD [M] net/bridge/bridge.ko
cc net/1lc/1lc.mod.o
LD [M] net/llc/1llc.ko

17:43:59 Build Finished (took 8m:475.747ms)

Building Linux Kernel in CodeWarrior ARMv8 Application Note
8 NXP Semiconductors

How to Reach Us:

Home Page:

nxp.com

E-mail:

nxp.com/support

Document Number: ANXXxx

6 October 2016

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. Freescale reserves the right
to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can
be found at the following address: nxp.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorlQ, and Processor Expert are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of
their respective owners.

© 2016 Freescale Semiconductor, Inc.

http://www.nxp.com/
http://www.nxp.com/support
file:///C:/CodeWarrior/ARMv7/App_Notes/ARMv7_App_Note_Source_Files/nxp.com/SalesTermsandConditions
file:///C:/CodeWarrior/ARMv7/App_Notes/ARMv7_App_Note_Source_Files/nxp.com/SalesTermsandConditions

