Freescale Semiconductor
Application Note

Document Number: AN5227

Configuring LS1 Processors for Secure
Boot and Secure Debug using CodeWarrior
for ARMv7

1.Introduction

This document describes the necessary steps required to
configure an LS1 processor for secure boot and secure
debug using CodeWarrior for QorIQ LS series for

ARMv7 ISA.

This document explains:

Steps to generate keys and code signing tool

Steps to program fuses using CodeWarrior for

ARMv7
Secure debug

Board bring-up and board recovery

© 2016 Freescale Semiconductor, Inc. All rights reserved.

Contents

1. INtroducCtion....ccoovviiieiieee e 1
2. Key generation.......cccccceevniiiieeieeeiiiiieee e 2
3. Fuse programmingccccccveeeiieeeeiiiieeenieee e 2
4. Secure debugging using CodeWarrior 14
5. Board bring-up and board recovery.............. 16

h -
P |

Key generation

2.Key generation

Freescale provides code signing tool (CST) to assist you with the secure process. Using the tools
available with CST, various keys can be generated:

RSA public and private keys
CSF header

OTPMK key

Debug response value register

For more information, see SDK Knowledge Center.

3. Fuse programming
To enable fuse programming, POVDD must be high.

To burn fuses using CodeWarrior for ARMv7, perform these steps:
1. Create a CodeWarrior for ARMv7 bareboard project.

NOTE LS1021A Rev. 2 is the default CPU supported by the latest CodeWarrior for
ARMvV7. If LS1021A Rev. 1 is used, then see the README . txt file from the
project, for information about debugging a target with this CPU revision.

2. Choose Run > Debug from CodeWarrior IDE menu bar to start a debug session.

3. Choose Window > Show View > Other. The Show View dialog appears.

4. Expand the Debug node, select Debugger Shell, and click OK. The Debugger Shell view
appears, as shown in the figure below.

Figure 1. Debugger Shell view
%2 Debugger Shell 22 w = T O

CodeWarrior Debugger Shell vl.8
5

In the Debugger Shell console, you can run specific commands for programming fuses.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
2 Freescale Semiconductor

https://freescale.sdlproducts.com/LiveContent/web/ui.xql?action=html&resource=publist_home.html

Fuse programming

The following sections explain how to perform various fuse programming tasks:

3.1.

Programming SFP Configuration Register (SFPCR)

Programming One Time Programmable Master Key (OTPMK)
Programming Super Root Key Hash (SRKH)

Programming Intend to Secure (ITS)

Programming Debug Challenge/Response Value Register (DCVR/DRVR)
Programming Write Protect (WP)

Programming SFP Configuration Register (SFPCR)

The SFPCR register needs to be configured with appropriate default value for writing fuses on top
frequency chips. When performing fuse programming at other platform frequencies, the default value of
program pulse width (PPW) must be overwritten prior to writing the Instruction Register.

Follow these steps to program the SFPCR register:

1.

Read SFPCR default value, as shown in the figure below.

Figure 2. Read SFPCR default value

2.

£ Debugger Shell &1 e = TO

#rmem @xled@@2d -s
led@B2s ex6laseaes - |

e

Program PPW with the optimal value, as shown in the figure below.

Figure 3. Program PPW

{BE Debugger Shell &3 G =

Frmem Bxled3pB28 -s
1280828 @xA1090882 ...a
Hxmem Bxled0B28 -s = Ox??peeo

After board reset, you need to program PPW again.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor

3

Fuse programming

3.2. Programming One Time Programmable Master Key (OTPMK)

Follow these steps to program OTPMK:
1. Check initial state of the SecMon_HP Status register, as shown in the figure below.

Figure 4. Check SecMon_HP Status register initial state
I = =
£ Debugger Shell 2 CREN = 8

-,

CodeWarrior Debugger Shell v1.@
#dmem @xlef@@ld -s|
1206014 oxdsheacon

B

OTPMK ZERO =1 indicates that OTPMK is not programmed in the fuse bank.

2. Program OTPMK in the fuse bank. If the generated OTPMK key is:
12345678900987654321abcdl2345678900987654321abcdl1234567887654321,

then write the key into the eight OTPMK mirror registers, as follows:

OTPMKR_0 = 12345678
OTPMKR_1 = 90098765
OTPMKR_2 = 4321abcd
OTPMKR_3 = 12345679
OTPMKR_4 = 90098765
OTPMKR_5 = 4321abcd
OTPMKR_6 = 12345679
OTPMKR_7 = 87644230

Figure 5. Write OTPMK key into mirror registers
&2 Debugger Shell 52 g =T O

CodeWarrior Debugger Shell vl.@
Frmem @xle9B@ld -s
le9@814 BxSceeades

¥amem @x1le88234 -5 = Bx12345678
¥amem @x1le8B238 -z = BNI9BEISTES
#amem @xled@23c -5 = @wd32labcd
Famem @xled@24@ -s = Bxl12345679
Eqmem @x1leBB244 -s = BxI8B93765
Fqmem @x1e88248 -5 = 8wx432labcd
¥amem @x1e8824c -5 = Bx12345679
¥ymem @x1eB80258 -5 = Bx87644238
e

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
4 Freescale Semiconductor

4
Fuse programming

3. Check SecMon_ HP Status register state again, as shown in the figure below. Ensure that there is
no parity error.

Figure 6. Check SecMon_HP Status register state
{-@ Debugger Shell &2 e E T 0]

1e98614 @x356080900 R &
Ermem @x1ed8234 -5 = @x12345673
Ermem @x1eBB238 -s = BxIBB9876S =i
¥>mem @x1e8823c -5 = 8x432labcd
¥>mem @x1le88248 -3 = Bx12345679
¥>mem @xle8B244 -z = BNO9BEISTES
#>mem @xled8248 -z = @wd32labcd
Frmem @xled@2dc -s = Bwl2345679
Ermem @x1eB8250 -5 = Bx87644230
#dmem @xledB@ld -s|

12980814 ex3degebes ... b

e

Ll

4

OTPMK ZERO = 0 indicates that OTPMK is programmed in the fuse bank. In addition,
OTPMK SYNDROME = 0 (bites marked in red) indicates that there is no parity error.

4. Check Secret Value Hamming Error Status Register (SFP_SVHESR). Any non-zero value read
from this register indicates that a hamming code error has been detected.

Figure 7. Check SFP_SVHESR register
52 Debugger Shell 53 e = TO

¥>mem @xle8B238 -z = BuOBBOSTES -
#>mem @xle8B23c -z = Bud32labcd
#rmem @xled@24@ -z = Bwl2345679
Ermem @xled8244 -5 = Bx98B93765
Ermem @x1e88248 -s = @x432labcd
¥>mem Ox1e8824c -s = Bx123456879
¥>mem @x1ed88258 -z = @x87644230
#>mem @xle9@@ld -=
12968614 6x350060088 .
Ermem @xle8@824 -s
le80824 GxBE2E2220 s

e

5. Permanently write data from the mirror registers into the fuse array (PROGFB).

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
Freescale Semiconductor 5

A
Fuse programming

Figure 8. Write data into fuse array
f@ Debugger Shell &3 mEETO

Frmem Bx1e8@238 -z = Bx9BB9ETES -
¥rmem BxledB23c -s = Bx432labcd
*>mem Ox1e86248 -s = B8x12345679
¥rmem Bx1le80244 -z = BxOBB93TES
¥rmem 8x1le80248 -z = @xd432labcd
Frmem Bxleff24c -s = Bx12345679
¥rmem Bx1ledB258 -s = BxE7644238

#rmem BxledB@ld -s

19686814 GxE02808006 I
¥>mem Bxle80@24 -=

led@@24 GxwopE08806 e

#xmem Bx1leZBB2E -z = BuB2PERBEE)

6. Reset and check if OTPMK ZERO is set to 0.

Figure 9. Reset and check OTPMK_ZERO
52 Debugger Shell 53 e = TO

Erreset -
thread break: Stopped, 8x@, 8x8®, cpufRMLittle,
1s1821agds-cored.elf (state, tid, pid, cpu, target)
thread break: Stopped, 8x@, @x8, cpufRMLittle,
151821aqds-cored.elf (state, tid, pid, cpu, target)
157e2ee axboaapeas e

reset
thread break: Stopped, 8@, @x8, cpufRMLittle,
1s1821agds-cored.elf (state, tid, pid, cpu, target)
H>mem Ox1e90814 -s

leSBal4 axseasacea s

e

3.3. Programming Super Root Key Hash (SRKH)

The public key hash obtained while signing images needs to be written in the SRKH registers of the SFP
block. If the key hash obtained while signing images is:
9fcfc75adla’7bal3a41426d8f3754e7ed8002alf4f7a3bdcl420cab7cas4ef407, then

write the key into the eight SRKH mirror registers, as follows:

SRKHR_(0 = 9fcfc75a
SRKHR_1 = dla7ba3a
SRKHR_2 = 41426d8f
SRKHR 3 = 3754e7ed
SRKHR_4 = 8002alf4
SRKHR 5 = f7a3bdcl
SRKHR_6 = 420cab7/c

SRKHR_7 = ab4ef407

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
6 Freescale Semiconductor

4
Fuse programming

Follow these steps to program SRKH:
1. Write SRKH fuse values into mirror registers. These values must be swapped before writing the
SRKH mirror registers. Because the Debugger Shell write operation is done via core, and the
core access is little-endian; therefore, using the —s option is no longer required.

Figure 10. Write SRKH fuse values into mirror registers

f@ Debugger Shell &3 CHERE= 0]
#rmem B@xlede2sd Bxafcfc7sa

#rmem Bx1led@258 Bxdlaiba3a

#rmem Bx1ed825cC Axwd1426daT

#rmem Bxled8268 @x3754e7ed

#rmem Bxledo26d Bx8Bazalfd

#rmem BxledB268 @wf7a3bdcl

#rmem Bxled@26cC Bwd2@cabh7c

#rmem Bxled@278 Bxasdetaad

e

2. Check the status of the Scratch Read/Write Register (DCFG_CCSR_SCRATCHRW?2), as shown
in the figure below. Any non-zero value read from DCFG_CCSR_SCRATCHRW?2 indicates a
mismatch in the hash.

Figure 11. Check Scratch Read/Write Register status

f@ Debugger Shell &3 CHERE= 0]
#rmem Bxle80254 Bwafcfc75a
#rmem Bx1e38258 Bxdlaiba3a
#rmem Bx1ed825cC Awd1426daf
#rmem @xled0268 Bx3754e7ed
#rmem 8xled02ed AxBea2alf4
#rmem Bxle3B263 @xft7a3bdcl
Frmem BxledB26C Bwd2@cab?c
#rmem Bxle88278 Bwasdetaad
#xmem @xlees@2@d

>‘1EEBE@4 Bxa8088:6:64E8 P

e

3. Permanently write data from the mirror registers into the fuse array (PROGFB), as shown in the

figure below.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor

A
Fuse programming

Figure 12. Write data into fuse array
1 =] —
£ Debugger Shell i3 Wi E—O

#rmem Bxled@254 = @x9fcfcisa -
#rmem Bxle8@258 = @xdlavbada
#rmem B@xled025c = @xdld426d3T
#rmem Bxled0268 = @8x3754e7ed
#rmem Bxled0264 = @x3082alfa
#rmem Bxle8@268 = @xT7a3bdcl
#rmem Bxle8@26c = Bwd2B8cabic
¥rmem Bxle88278 = BxasSdef4a?
#rmem B@xleed2@d

lee@2dd BxE8888666 P
%xmem @x1ef@828 -5 = BxB2E0EE88 |

B

m

4

To avoid writing data permanently into the fuse array for the SRKH mirror registers, follow these steps:

1. Put the core in the boot hold off state at startup. For this, load the secure boot reset configuration
word (RCW) with BOOT HO = 1. You can generate a new RCW using the Pre-Boot Loader
(PBL) component of QorIQ Configuration and Validation Suite (QCVYS).

2. Open the CodeWarrior connection server (CCS) console and configure a connection to the board,
as shown in the figure below.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
8 Freescale Semiconductor

Fuse programming

Figure 13. Configure a connection in CCS console

{bin) 93 % confiig cc cwWtap

{bin) 94 % cca::config_chain {131020a dap sapdl
{bin) 55 % display ccs::get_config_chain

Chain Position O: LS1020RA

Chain Positicn 1: CoreSight ATE Funnel
Chain Poaiticn 2: CoreSight TMC

Chain Poaiticn 3: CoreSight TMC

Chain Positicn 4: CoreSight TMC

Chain Position 5: CoreSight CTI

Chain Positicn 6: CoreSight CTI

Chain Poaiticn 7: CoreSight CTI

Chain Positicn 8: CoreSight ATE Funnel
Chain Positicn 9: Cortex-A7

Chain Positicn 10: Cortex-A7 PMO
Chain Positicn 11: Cortex-47
Chain Positicon 12: Cortex-A7 PFMO
Chain Positicn 13: Core3ight CTI
Chain Positicn 14: Core3ight CTI
Chain Poaiticn 15: Cortex-A7 ETM
Chain Position 16: Cortex-AT7 ETM
Chain Position 17: DAP

Chain Positicn 18: SAP2

3. Write SRKH fuse values into mirror registers. These values must be swapped before writing the
SRKH mirror registers.

Figure 14. Write SRKH fuse values into mirror registers

(bin) 180 % ccs::write _mem 18 Oxle80254 4 O OxdSacTciaf
{bin) 181 % ccs:iwrite_mem 18 Oxle80258 4 0 Ox3abaa7dl
{bin) 182 % cco:iwrite _mem 13 Oxle8025c 4 0 Ox8fed4241
(bin) 183 % ccs::write mem 18 OxleB80260 4 0 Oxede75437
(bin) 184 % ccs::write mem 18 OxleB80264 4 0 Oxf4al10280
(bin) 185 % ccs::write_mem 18 OxleB80268 4 0 Oxclbda3f?
{bin) 186 % ccs:iwrite _mem 18 Oxle8026c 4 0 OxTcakOc42
(bin) 187 % ccs::write_mem 18 Oxle80270 4 0 0x07f44ead

4. Get the core out of the boot hold off state.

|ibin3 130 % cca::write_mem 18 OxleeOOed 4 0 0x01000000

5. Check the status of the Scratch Read/Write Register (DCFG_CCSR_SCRATCHRW?2). Any non-
zero value read from DCFG_CCSR_SCRATCHRW?2 indicates a mismatch in the hash.

(bin) 192 % disp ceca::read_mem 18 Oxlee0204 4 0 1
+0 +4 +8 +C
[0x01EEQ204] 00000000

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 9

A
Fuse programming

NOTE You are recommended to use SAP2 access to write SRKH fuse values into mirror
registers. DAP access is also available but it is little-endian, whereas SAP2 access is
big-endian.

3.4. Programming Intend to Secure (ITS)

The ITS bit signifies the intensions of the original equipment manufacturer (OEM) to make the system
secure. This is part of OEM Security Policy Register (SFP_OSPR).

Follow these steps to program ITS:
1. SetITS, as shown in the figure below.

Figure 15. Set ITS
f@ Debugger Shell &2 —REN = B

¥rmem @xled0208 -s = @xe4B00006
X

2. Permanently write data from the mirror registers into the fuse array (PROGFB), as shown in the
figure below.

Figure 16. Write data into fuse array
i — = “
[£% Debugger Shell 53 Wi E—O

Frmem BxleSBB28 -s = GwB2000800

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
10 Freescale Semiconductor

Fuse programming

3.5. Programming Debug Challenge/Response Value Register
(DCVR/DRVR)

It is mandatory to program DCVR and DRVR fuses to activate secure debug. Original 64-bit value for
DCVR is c0c0c0c0d0d0d0d0 and if DRVR key is f1f1f1fla5a5a5ab, then this needs to be

written into the four DRVR mirror registers, as follows:

DCVR_0 = d0d0d0do
DCVR_1 = c0c0c0c0
DRVR_0 = abababas
DRVR 1 = f1f1fl1fl

Follow these steps to program DCVR/DRVR:
1. Set Debug Level (DBLEV) to “001, conditionally open via challenge response, without
notification”.

Figure 17. Set Debug Level
'EE Debugger Shell &3 CREY =R

%mem @xleSB284 -5 = @xPlepeeea|
e

NOTE The Debug Challenge Value Register and Debug Response Value Register are
intended to be used only when debug permissions are set to one of the conditional
access modes.

CodeWarrior only handles the “Debug Level set to 001, conditionally open via
challenge response, without notification” conditional access mode.

2. Write DCVR and DRVR values into mirror registers, as shown in the figure below.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
Freescale Semiconductor 11

Fuse programming

Figure 18. Write DCVR and DRVR values into mirror registers
f@ Debugger Shell &3 mEET 5]

#rmem Bxlef82fd -s = BwBlEEEEEE
#xmem Ex1e88288 -z = Bwdededede
#xmem @xle8@28c -s = BxcBcBCBCd
#xmem @x1ed@218 -z = Bxa5a5atas
#xmem Bxledf2l4 -s = @xflfiflifl
F

3. Check Secret Value Hamming Error Status Register (SFP_ SVHESR). Any non-zero value read
from this register indicates that a hamming code error has been detected.

Figure 19. Check SFP_SVHESR register
#@ Debugger Shell &3 mERET =)

#rmem Bxled02ed -s = @xeleeooRE
#rmem B@x1ed0288 -s = @xdededade
#rmem Bxled828c -5 = BxcBcBcOco
#rmem Bxled@218 -z = @xa5a5a5as
#rmem Bxledd2ld4 -s = @xflfliflfl
#imem @xledeaZd -s

le8@B24 BxE8888666 P

o

3. Permanently write data from the mirror registers into the fuse array (PROGFB), as shown in the
figure below.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
12 Freescale Semiconductor

Figure 20. Write data into fuse array

Fuse programming

Hrmem
Hrmem
#rmem
#rmem
#rmem
#rmem

Bxlesd2Ed
BxlesB208
Bxledd2B8¢c
BxlesBd216
BxlesB214
Bxlesaa24

-
2% Debugger Shell 52

-5

w5 =

= 0O

BxB 168066
Bwdadadade
BxcBcBcBod
BxaSa5asas
exflfififl

lesB@24 awxbooaoans s

%dmem @xleBeB28 -5

= PxB2A8e088]

o

NOTE

Secure debug requires you to set the Secure Access register, CSU SAO, to
0x00000100. Configuring a register is possible using the pbi command; however,
Central Security Unit (CSU) registers cannot be accessed from PBL, during Secure
Boot. Therefore, you need to configure the CSU_SAO register in U-Boot.

3.6. Programming Write Protect (WP)

Setting WP bit prevents further writes to the mirror registers of the OEM section, until the next system-
on-chip (SoC) reset. After the WP fuse is programmed, writes to mirror registers and further

programming of the fuse block is permanently disabled.

Follow these steps to program WP:

1. Set WP, as shown in the figure below.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor

13

A
Secure debugging using CodeWarrior

Figure 21. Set WP
ﬁ@ Debugger Shell &3 CREYER B

#rmem Bxle30280 -s = Bx0le08088
o

2. Permanently write data from the mirror registers into the fuse array (PROGFB).

Figure 22. Write data into fuse array
i — = ~
[£% Debugger Shell 53 Wi E—O

Frmem BxleSBB28 -s = GwB2000800

NOTE Ensure that WP is programmed in the end.

After fuses have been burned, a pop-up window appears in CodeWarrior asking for Secure Debug key.

NOTE You need to use the —s option with the mem command because memory access is

little-endian, by default, and it needs to be changed to big-endian.
All commands issued in Debugger Shell are scriptable.

4. Secure debugging using CodeWarrior
To use CodeWarrior for debugging a target with a Debug Secure LS1 CPU, perform these steps:

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
14 Freescale Semiconductor

Secure debugging using CodeWarrior

1. Choose Run > Debug Configurations from the CodeWarrior IDE menu bar. The Debug

Configurations dialog appears.

2. Click Edit next to the Connection menu in the Target Settings panel. The Properties for
<connection launch configuration> window appears.

3. Click Advanced, sclect Secure debug key option, and enter the key.

Figure 23. Enter secure debug key

Target connection lost settings
When an active connection is lost, do the following:

() Try to reconnect

Timeout (seconds): | 20
() Terminate the debug session(s)
@ Ask me
Advanced CC5 settings
CCStimeout (seconds): 60

[Enable logging
JTAG config file

Mone

Advanced TAP settings

["] Force shell download

Secure debug key: OwflflflflaSa5a5as

4. Click OK to close the Properties for <connection launch configuration> window.
5. Click Debug in the Debug Configurations dialog to debug the project.

If you start a debug session without entering the secure debug key as mentioned in the steps above,
then a pop-up window appears asking for secure debug key, as shown in the figure below.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
Freescale Semiconductor

15

Board bring-up and board recovery

Figure 24. Pop-up window asking for secure debug key

Secure Debug Challenge/Response
Specify the Response Value (hex) for the Challenge Value Oxc0c0c0c0d0d0d0d0.

To prevent this dialeg from appearing, specify the Response Value in the
"‘Secure debug key' field of the Connection configuration

| Ok | | Cancel |

5.Board bring-up and board recovery

RCW is required to configure board connection and run commands for burning fuses. If the flash is
empty and hardcoded RCW cannot be set for the board, then you should use the CodeWarrior RCW
override feature to recover the board.

Due to the missing RCW, the double data rate (DDR) memory may not be functional, and an invalid
memory error may occur while starting a debug session.

Perform these steps if starting with an empty flash or board recovery is needed:

1.

2.

Create a CodeWarrior for ARMv7 bareboard project. If the DDR memory is not functional, then
create the project by selecting Download OCRAM as the launch configuration.

Choose Run > Debug Configurations from the CodeWarrior IDE menu bar. The Debug
Configurations dialog appears.

Click Edit next to the Connection menu in the Target Settings panel. The Properties for
<connection launch configuration> window appears.

Click Edit next to the Target menu. The Properties for <connection launch configuration>
Target window appears.

Specify a JTAG configuration file for RCW override in the Target type menu by clicking the
Edit button next to this menu, as shown in the figure below.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

16

Freescale Semiconductor

Board bring-up and board recovery

Figure 25. Select JTAG configuration file for RCW override

o=

9.

10.
11.
12.

Parent profile: B11883-11

Name: 1s1021twr-corel_RAM_LS1021 ATWR_Download Target

Description:

Template: None = | | Apply Defaults
Target type: | LS102:ATWR_RCW_1000-300-1600.6¢ -

Initialization | Memory

Execute target reset (applies to initial launch only)

Target Run out of reset Initialize target Initialize target script
LS102xATWR_RCW_1000-300-1600.b¢t (=]
LS1021A 1 [
Cortex-AT-0 [} 0
Cortex-A7-1 [} 0
DAP
SAP2

MNote: Target initialization files only apply to cores being launched.

NOTE The JTAG configuration file for RCW override contains valid values for RCW
registers and allows CodeWarrior to connect to the board.

Select OCRAM file as the initialization file for the new target type on the Initialization page.
Select memory initialization file for the target type on the Memory page.

Click OK to close the Properties for <connection launch configuration> Target window.
Click OK to close the Properties for <connection launch configuration> window.

Click Debug in the Debug Configurations dialog to debug the project.

Import target task specific to the flash device.

Open the flash programmer target task in the ARM Flash Programmer Task editor window and
change the running address of the algorithm with the OCRAM address of the processor, as
shown in the figure below.

Figure 26. ARM Flash Programmer Task editor window

13.

ARM Flash Programmer Task

Flash Devices Target RAM
Device Name Base Address Address: 0x 10000000
JS2EF00AMZIEWHA (B4Mxlbxd) 060000000 Size: Ox 00020000

[] Verify Target Memory Writes

’Add De\.rice] ’Remove Device]

Use the Program/Verify Action option of the Add Action menu available in the ARM Flash
Programmer Task editor window to write RCW and U-Boot images into the flash device. For

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 17

Board bring-up and board recovery

more information, see Programming eMMC/SD Card using CodeWarrior for ARMv7
Application Note (AN5184)

NOTE Ensure to select the Erase sectors before program checkbox and apply correct
address offset.

14. Execute the target task.

After the flash device has been programmed successfully with the U-Boot image, the board is
recovered and is ready for use.

NOTE Flash programmer procedure is scriptable and therefore, you can run it from
Debugger Shell.

The procedure mentioned above allows you to program all board images, including the header files,
using CodeWarrior.

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note
18 Freescale Semiconductor

http://www.nxp.com/files/soft_dev_tools/doc/app_note/AN5184.pdf
http://www.nxp.com/files/soft_dev_tools/doc/app_note/AN5184.pdf

How to Reach Us:

Home Page:
freescale.com

E-mail:
freescale.com/support

Document Number: AN5227
18 January 2016

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorlQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners. ARM, Cortex and TrustZone are trademarks or registered trademarks of ARM Ltd or its
subsidiaries in the EU and/or elsewhere. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

http://www.freescale.com/SalesTermsandConditions

