

© 2016 Freescale Semiconductor, Inc. All rights reserved.

Freescale Semiconductor
Document Number: AN5227

Application Note

Configuring LS1 Processors for Secure

Boot and Secure Debug using CodeWarrior

for ARMv7

1. Introduction

This document describes the necessary steps required to
configure an LS1 processor for secure boot and secure
debug using CodeWarrior for QorIQ LS series for
ARMv7 ISA.

This document explains:

• Steps to generate keys and code signing tool

• Steps to program fuses using CodeWarrior for

ARMv7

• Secure debug

• Board bring-up and board recovery

Contents

1. Introduction ... 1
2. Key generation .. 2
3. Fuse programming ... 2
4. Secure debugging using CodeWarrior 14
5. Board bring-up and board recovery 16

Key generation

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

2 Freescale Semiconductor

2. Key generation

Freescale provides code signing tool (CST) to assist you with the secure process. Using the tools
available with CST, various keys can be generated:

 RSA public and private keys

 CSF header

 OTPMK key

 Debug response value register

For more information, see SDK Knowledge Center.

3. Fuse programming

To enable fuse programming, POVDD must be high.

To burn fuses using CodeWarrior for ARMv7, perform these steps:

1. Create a CodeWarrior for ARMv7 bareboard project.

NOTE LS1021A Rev. 2 is the default CPU supported by the latest CodeWarrior for

ARMv7. If LS1021A Rev. 1 is used, then see the README.txt file from the

project, for information about debugging a target with this CPU revision.

2. Choose Run > Debug from CodeWarrior IDE menu bar to start a debug session.

3. Choose Window > Show View > Other. The Show View dialog appears.

4. Expand the Debug node, select Debugger Shell, and click OK. The Debugger Shell view
appears, as shown in the figure below.

Figure 1. Debugger Shell view

In the Debugger Shell console, you can run specific commands for programming fuses.

https://freescale.sdlproducts.com/LiveContent/web/ui.xql?action=html&resource=publist_home.html

 Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 3

The following sections explain how to perform various fuse programming tasks:

 Programming SFP Configuration Register (SFPCR)

 Programming One Time Programmable Master Key (OTPMK)

 Programming Super Root Key Hash (SRKH)

 Programming Intend to Secure (ITS)

 Programming Debug Challenge/Response Value Register (DCVR/DRVR)

 Programming Write Protect (WP)

3.1. Programming SFP Configuration Register (SFPCR)

The SFPCR register needs to be configured with appropriate default value for writing fuses on top
frequency chips. When performing fuse programming at other platform frequencies, the default value of
program pulse width (PPW) must be overwritten prior to writing the Instruction Register.

Follow these steps to program the SFPCR register:

1. Read SFPCR default value, as shown in the figure below.

Figure 2. Read SFPCR default value

2. Program PPW with the optimal value, as shown in the figure below.

Figure 3. Program PPW

After board reset, you need to program PPW again.

Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

4 Freescale Semiconductor

3.2. Programming One Time Programmable Master Key (OTPMK)

Follow these steps to program OTPMK:
1. Check initial state of the SecMon_HP Status register, as shown in the figure below.

Figure 4. Check SecMon_HP Status register initial state

OTPMK_ZERO = 1 indicates that OTPMK is not programmed in the fuse bank.

2. Program OTPMK in the fuse bank. If the generated OTPMK key is:

,

then write the key into the eight OTPMK mirror registers, as follows:

Figure 5. Write OTPMK key into mirror registers

 Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 5

3. Check SecMon_HP Status register state again, as shown in the figure below. Ensure that there is

no parity error.

Figure 6. Check SecMon_HP Status register state

OTPMK_ZERO = 0 indicates that OTPMK is programmed in the fuse bank. In addition,
OTPMK_SYNDROME = 0 (bites marked in red) indicates that there is no parity error.

4. Check Secret Value Hamming Error Status Register (SFP_SVHESR). Any non-zero value read
from this register indicates that a hamming code error has been detected.

Figure 7. Check SFP_SVHESR register

5. Permanently write data from the mirror registers into the fuse array (PROGFB).

Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

6 Freescale Semiconductor

Figure 8. Write data into fuse array

6. Reset and check if OTPMK_ZERO is set to 0.

Figure 9. Reset and check OTPMK_ZERO

3.3. Programming Super Root Key Hash (SRKH)

The public key hash obtained while signing images needs to be written in the SRKH registers of the SFP
block. If the key hash obtained while signing images is:

, then

write the key into the eight SRKH mirror registers, as follows:

 Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 7

Follow these steps to program SRKH:

1. Write SRKH fuse values into mirror registers. These values must be swapped before writing the
SRKH mirror registers. Because the Debugger Shell write operation is done via core, and the
core access is little-endian; therefore, using the option is no longer required.

Figure 10. Write SRKH fuse values into mirror registers

2. Check the status of the Scratch Read/Write Register (DCFG_CCSR_SCRATCHRW2), as shown
in the figure below. Any non-zero value read from DCFG_CCSR_SCRATCHRW2 indicates a
mismatch in the hash.

Figure 11. Check Scratch Read/Write Register status

3. Permanently write data from the mirror registers into the fuse array (PROGFB), as shown in the
figure below.

Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

8 Freescale Semiconductor

Figure 12. Write data into fuse array

To avoid writing data permanently into the fuse array for the SRKH mirror registers, follow these steps:

1. Put the core in the boot hold off state at startup. For this, load the secure boot reset configuration
word (RCW) with BOOT_HO = 1. You can generate a new RCW using the Pre-Boot Loader
(PBL) component of QorIQ Configuration and Validation Suite (QCVS).

2. Open the CodeWarrior connection server (CCS) console and configure a connection to the board,
as shown in the figure below.

 Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 9

Figure 13. Configure a connection in CCS console

3. Write SRKH fuse values into mirror registers. These values must be swapped before writing the
SRKH mirror registers.

Figure 14. Write SRKH fuse values into mirror registers

4. Get the core out of the boot hold off state.

5. Check the status of the Scratch Read/Write Register (DCFG_CCSR_SCRATCHRW2). Any non-
zero value read from DCFG_CCSR_SCRATCHRW2 indicates a mismatch in the hash.

Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

10 Freescale Semiconductor

NOTE You are recommended to use SAP2 access to write SRKH fuse values into mirror
registers. DAP access is also available but it is little-endian, whereas SAP2 access is
big-endian.

3.4. Programming Intend to Secure (ITS)

The ITS bit signifies the intensions of the original equipment manufacturer (OEM) to make the system
secure. This is part of OEM Security Policy Register (SFP_OSPR).

Follow these steps to program ITS:

1. Set ITS, as shown in the figure below.

Figure 15. Set ITS

2. Permanently write data from the mirror registers into the fuse array (PROGFB), as shown in the
figure below.

Figure 16. Write data into fuse array

 Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 11

3.5. Programming Debug Challenge/Response Value Register

(DCVR/DRVR)

It is mandatory to program DCVR and DRVR fuses to activate secure debug. Original 64-bit value for
DCVR is and if DRVR key is , then this needs to be

written into the four DRVR mirror registers, as follows:

Follow these steps to program DCVR/DRVR:
1. Set Debug Level (DBLEV) to “001, conditionally open via challenge response, without

notification”.

Figure 17. Set Debug Level

NOTE The Debug Challenge Value Register and Debug Response Value Register are
intended to be used only when debug permissions are set to one of the conditional
access modes.
CodeWarrior only handles the “Debug Level set to 001, conditionally open via
challenge response, without notification” conditional access mode.

2. Write DCVR and DRVR values into mirror registers, as shown in the figure below.

Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

12 Freescale Semiconductor

Figure 18. Write DCVR and DRVR values into mirror registers

3. Check Secret Value Hamming Error Status Register (SFP_SVHESR). Any non-zero value read
from this register indicates that a hamming code error has been detected.

Figure 19. Check SFP_SVHESR register

3. Permanently write data from the mirror registers into the fuse array (PROGFB), as shown in the
figure below.

 Fuse programming

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 13

Figure 20. Write data into fuse array

NOTE Secure debug requires you to set the Secure Access register, CSU_SA0, to
0x00000100. Configuring a register is possible using the command; however,

Central Security Unit (CSU) registers cannot be accessed from PBL, during Secure
Boot. Therefore, you need to configure the CSU_SA0 register in U-Boot.

3.6. Programming Write Protect (WP)

Setting WP bit prevents further writes to the mirror registers of the OEM section, until the next system-
on-chip (SoC) reset. After the WP fuse is programmed, writes to mirror registers and further
programming of the fuse block is permanently disabled.

Follow these steps to program WP:

1. Set WP, as shown in the figure below.

Secure debugging using CodeWarrior

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

14 Freescale Semiconductor

Figure 21. Set WP

2. Permanently write data from the mirror registers into the fuse array (PROGFB).

Figure 22. Write data into fuse array

NOTE Ensure that WP is programmed in the end.

After fuses have been burned, a pop-up window appears in CodeWarrior asking for Secure Debug key.

NOTE You need to use the option with the command because memory access is

little-endian, by default, and it needs to be changed to big-endian.
All commands issued in Debugger Shell are scriptable.

4. Secure debugging using CodeWarrior

To use CodeWarrior for debugging a target with a Debug Secure LS1 CPU, perform these steps:

 Secure debugging using CodeWarrior

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 15

1. Choose Run > Debug Configurations from the CodeWarrior IDE menu bar. The Debug

Configurations dialog appears.

2. Click Edit next to the Connection menu in the Target Settings panel. The Properties for

<connection launch configuration> window appears.

3. Click Advanced, select Secure debug key option, and enter the key.

Figure 23. Enter secure debug key

4. Click OK to close the Properties for <connection launch configuration> window.

5. Click Debug in the Debug Configurations dialog to debug the project.

If you start a debug session without entering the secure debug key as mentioned in the steps above,
then a pop-up window appears asking for secure debug key, as shown in the figure below.

Board bring-up and board recovery

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

16 Freescale Semiconductor

Figure 24. Pop-up window asking for secure debug key

5. Board bring-up and board recovery

RCW is required to configure board connection and run commands for burning fuses. If the flash is
empty and hardcoded RCW cannot be set for the board, then you should use the CodeWarrior RCW
override feature to recover the board.

Due to the missing RCW, the double data rate (DDR) memory may not be functional, and an invalid
memory error may occur while starting a debug session.

Perform these steps if starting with an empty flash or board recovery is needed:

1. Create a CodeWarrior for ARMv7 bareboard project. If the DDR memory is not functional, then

create the project by selecting Download OCRAM as the launch configuration.

2. Choose Run > Debug Configurations from the CodeWarrior IDE menu bar. The Debug

Configurations dialog appears.

3. Click Edit next to the Connection menu in the Target Settings panel. The Properties for

<connection launch configuration> window appears.

4. Click Edit next to the Target menu. The Properties for <connection launch configuration>

Target window appears.

5. Specify a JTAG configuration file for RCW override in the Target type menu by clicking the

Edit button next to this menu, as shown in the figure below.

 Board bring-up and board recovery

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

Freescale Semiconductor 17

Figure 25. Select JTAG configuration file for RCW override

NOTE The JTAG configuration file for RCW override contains valid values for RCW
registers and allows CodeWarrior to connect to the board.

6. Select OCRAM file as the initialization file for the new target type on the Initialization page.

7. Select memory initialization file for the target type on the Memory page.

8. Click OK to close the Properties for <connection launch configuration> Target window.

9. Click OK to close the Properties for <connection launch configuration> window.

10. Click Debug in the Debug Configurations dialog to debug the project.
11. Import target task specific to the flash device.

12. Open the flash programmer target task in the ARM Flash Programmer Task editor window and
change the running address of the algorithm with the OCRAM address of the processor, as
shown in the figure below.

Figure 26. ARM Flash Programmer Task editor window

13. Use the Program/Verify Action option of the Add Action menu available in the ARM Flash

Programmer Task editor window to write RCW and U-Boot images into the flash device. For

Board bring-up and board recovery

Configuring LS1 Processors for Secure Boot and Secure Debug using CodeWarrior for ARMv7 Application Note

18 Freescale Semiconductor

more information, see Programming eMMC/SD Card using CodeWarrior for ARMv7
Application Note (AN5184)

NOTE Ensure to select the Erase sectors before program checkbox and apply correct
address offset.

14. Execute the target task.

After the flash device has been programmed successfully with the U-Boot image, the board is
recovered and is ready for use.

NOTE Flash programmer procedure is scriptable and therefore, you can run it from
Debugger Shell.

The procedure mentioned above allows you to program all board images, including the header files,
using CodeWarrior.

http://www.nxp.com/files/soft_dev_tools/doc/app_note/AN5184.pdf
http://www.nxp.com/files/soft_dev_tools/doc/app_note/AN5184.pdf

freescale.com

freescale.com/support

Document Number: AN5227

18 January 2016

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners. ARM, Cortex and TrustZone are trademarks or registered trademarks of ARM Ltd or its
subsidiaries in the EU and/or elsewhere. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

http://www.freescale.com/SalesTermsandConditions

