
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

FAE

Allen Willson

Edge Node Development with
MagniV

October 2019 | Session #AMF-AUT-T3876

COMPANY PUBLIC 1COMPANY PUBLIC 1

01. MagniV Product Overview
02. DEVKIT-S12ZVC Development Board
03. Set up the Development Environment
04. Hands-on Sessions

Agenda

COMPANY PUBLIC 2

01. MagniV Overview

COMPANY PUBLIC 3

S12 MagniV – Integrated Solutions
Technology Sweet-spot for Actuators, Sensors & User Interfaces

Digital Logic
Processor, PWMs, Timers,

SRAM, SPI, SCI, GPIO,
Watchdogs, etc. High-Voltage

Analog
12V-Voltage
Regulator,

Physical Interfaces
for CAN or LIN

Low Side & High Side
Drivers for

Power MOS-FET
or RelaysNon-Volatile

Memory
Flash, EEPROM

Standard C-MOS Process
(LL18 Low Leakage 180nm) UHV Process

SenseAct Motorcontrol Sensor Interface

COMPANY PUBLIC 4

S12 MagniV: Product Families

S12ZVM

S12ZVM
BLDC/DC motors

S12ZVC
CAN nodes

S12VR
Relay driven motors

S12ZVL
LIN Nodes

MM912_S812

• Window lift
• Sunroof

• Fuel pump
• Oil pump

• Safety sensors
• Emission sensors

• Sensors
• Door modules

Reduced PCB Space Improved manufacturing efficiency and quality

Reduced Bill of Material Simplified development

S12VR

S12ZVC
S12ZVL

Industry’s broadest portfolio of integrated solutions for motor control and interface nodes
• Broadest memory range – up to 256K
• Industry’s only integrated CAN Phy
• True AEC-Q100 Grade 0 Temperature performance (up to 150C Ta)

• ASIL-A-compliant, ASIL-B-capable (S12Z Devices)
• Unmatched tools and software ecosystem
• Conforms to global robustness standards and OEM requirements

• Power doors • Fans
• Wipers

• Gear shift • Steering wheel
switches

SenseAct Motorcontrol Sensor Interface

COMPANY PUBLIC 5

MagniV Building Blocks

GPIO

Timer
16Bit

(25-64MHz)

PWM
8/16Bit

(25-64MHz)

EEPROM (ECC)
128B – 4kB

Flash (ECC)
8kB – 192kB

S12- or S12Z-CPU
25/32/50MHz bus

BDM/BDC

CAN-
PHY

VREG for tot. supply:
•70mA w/o ext comp. or
•170mA with ext. ballast

Temp
Sense

RAM (ECC)
512B - 8kB

PLLRCosc.
+/-1.3%

Pierce Osc.

MSCAN Sent

1-4ch HVI (12V-input
with wake-up and ADC)

High-Voltage
Components

Digital
Components

5V Analogue
Components

MCU Core
and Memories Packaging

Win
Wdog

Key
Wakeups

Motorcontrol PWM
With Fault protection

Programmable
Trigger Unit

List Based ADC
10-12Bit resolution

1-2 S/H-units
Up to 16ch total

Current Sense
(2 x Op-Amp)

PGPIO
20mA

NGPIO
25mA

Stepper Motor
Driver with SSD

RTC

Segment LCD (4x40)

Sound Generator

LQFP:
32/48/64/100/144-pin

QFN:
32-pin (5x5mm)

LQFP-EP:
48/64-pin

LIN-
PHY

V-SUP
SENSE

V-BAT
SENSE

HS-
drivers

LS-
drivers

Charge Pump

4-6ch Gate Drive Unit
for FET Qg=50-150nC

SCI SPI IIC

32kHz low power Osc

2ch ACMP
With 1x6-Bit-DAC

COMPANY PUBLIC 6

MagniV Concept: Shrink Your Application
Integration of High-Voltage (HV) Analog Features into a Standard Automotive MCU

• Single device
• Reduced space

• Standard MCU
• Multiple analog ICs

Traditional Solution MagniV

COMPANY PUBLIC 7

SafeAssureTM Program Applied to S12 MagniV
Safety Hardware
Common safe hardware platform for application
software:
 Voltage/clocks monitoring
 Memories w/ error correction
Window Watchdog...

Safety Process
 ISO26262 development process for most products
 Safety-Element-Out-Of-Context

Safety Support
 FIT rates
 Dynamic FMEDA
 Safety manual
 Technical support as required

Safety Software
S12Z core self-test available to complement
the built-in hardware safety features

Product Families Part Development FMEDA Report Dependant Failure Analysis Safety
Manual

Core Self test and User
GuideCodename Process Availability

S12ZVL Knox ISO 26262
S12ZVC Hearst ISO 26262 Yes
S12ZVM Carcassonne Standard (autopad)
S12ZVM Obidos ISO 26262 Yes Yes
S12ZVM Carcassonne+ ISO 26262

Q4'16
Yes, included (www) (autopad)

S12ZVMB Toledo ISO 26263 in FMEDA
S12ZVMA VMA32 ISO 26264 report
S12ZVH/VHY Lumen2W

Standard Upon request

(autopad)
S12ZVH Lumen4W

No NoS12VR Tomar
S12VR Tomarino
S12VRP Tomar+

https://nxp1.sharepoint.com/teams/8_8/Shared%20Documents/Forms/AllItems.aspx?id=/teams/8_8/Shared%20Documents/MagniV/1)%20MagniV%20General%20Information/Functional%20Safety%20(ISO26262%20ASIL)
http://www.nxp.com/files/microcontrollers/doc/user_guide/MC9S12ZVxSM.pdf
https://nxp1.sharepoint.com/teams/8_8/Shared%20Documents/Forms/AllItems.aspx?id=/teams/8_8/Shared%20Documents/MagniV/1)%20MagniV%20General%20Information/Functional%20Safety%20(ISO26262%20ASIL)
http://compass.freescale.net/livelink/livelink?func=ll&objid=235118196&objAction=browse&sort=name

COMPANY PUBLIC 8

S12ZVC Family (Hearst)
Integrated small CAN nodes
Key Features:
• S12Z core (up to 32MHz bus frequency)
• On chip CAN PHY:

– CAN-supply requires ext. Ballast Transistor
– dominant Txd timeout
– Emission limits of major OEMs can be met without need of Choke (up to 500kbps)

• On-chip-voltage-regulator - Supply-cpability:
– 70mA total with no ext components
– 170mA total with ext. Ballast transistor

• High Voltage Input (HVI) with internal connection to ADC for analog 12V
measurements

• Specific features for sensor type applications:
– list-based 12-Bit ADC (LADC)
– 16ns resolution Timer / PWM
– 2x Analog Comparator with 8Bit DAC
– SENT

• ISO26262 support (FMEDA, safety guide)

Family Options:
• Flexible Memory Options: 64kB to 128kB Flash version

• 48-LQFP or 64-LQFP-EP Packaging

• C / V / M / W Temperature options (up to 150°C Ta)

• Fully featured (S12ZVCAx) or reduced featureset S12ZVCx)

1-2kB
EEPROM

(ECC)

64-192kB
Flash (ECC)

S12Z 32MHz Bus

CAN-PHY 12-Bit
LADC

Temp
Sense

4-12kB
RAM
(ECC)

PLLRCosc.
+/-1.3%

Pierce
Osc.

2 HV Input1#
EVDD

2 x SCI MSCAN

G
P
I
O

VREG

70, or up to 170mA
with ext. Ballast

VSUP
sense

2x
SPI IIC Sent

tx

4#
NGPIO

BDM
BDC KWU Win

Wdog

2ch
ACMP

VREG for CAN PHY
with ext. ballast

HR-PWM
4ch16b

PWM
4ch16b

HR-Tim
4ch16b

Tim
8ch16b

Target Applications:
• Any kind of automotive CAN-node (non-Autosar)
• Powertrain sensors & actuators
• CAN-based user-interfaces

+
-

8-bit DAC
+ OpAmp

+
-

High-Voltage
Components

Digital
Components

5V Analog
Components

MCU Core
and Memories

COMPANY PUBLIC 9

S12ZVC Family Differences in Feature Set
Product Name S12ZVCAx (fully featured) S12ZVCx (reduced feature set)
Package 64-LQFP-EP 48-LQFP 64-LQFP-EP 48-LQFP
Flash memory (ECC) 192 / 128 / 96kB 64kB 192 / 128 / 96kB 64kB 192 / 128 / 96kB 64kB 192 / 128 / 96kB 64kB
EEPROM (ECC) 2kB 1kB 2kB 1kB 2kB 1kB 2kB 1kB
RAM (ECC) 12kB 4kB 12kB 4kB 12kB 4kB 12kB 4kB
CAN / SCI / SPI / IIC 1/2/2/1 1/2/2/1 1/1/1/1 1/1/1/1 1/2/2/1 1/2/2/1 1/1/1/1 1/1/1/1
SENT (Tx) 1 1 1 1 1 1 1 1
16-bit Timer (16ns) 4ch 4ch 4ch 4ch 4ch 4ch 4ch 4ch
16-bit Timer (std.) 8ch 8ch 4ch 4ch 8ch 8ch 4ch 4ch
16-bit PWM (16ns) 4ch 4ch 3ch 3ch 4ch 4ch 3ch 3ch
16-bit PWM (std.) 4ch 4ch 4ch 4ch 4ch 4ch 4ch 4ch

LADC 16c/12b 16c/12b 10c/12b 10c/12b 16c/10b 16c/10b 10c/10b 10c/10b

ACMP 5V (rail to rail) 2 2 2 2 - - - -

DAC (8-bit) 1 1 1 1 - - - -
Temperature V / M / W C / V / M V / M / W C / V / M

COMPANY PUBLIC 10

MagniV S12ZVC One Pager
S12ZVC Smallest Integrated CAN MCU

 System in a Package - Highly integrated part which is ideal for space constrained applications such as
Actuators, Sensors, CAN nodes etc.

 Low System Cost - Directly powered by Battery. Integrated CAN Phy, Vreg, High Voltage pins, and Op Amps
reduce system-, test-, qualification- and manufacturing cost. Emission limits of major OEMs can be met without
need of Choke (up to 500kbps)

 High Reliability - High immunity to EMI and ESD stresses, CAN HS/LS compliant with +/- 8kV ESD capability.
 Enablement - Supported by comprehensive hardware and software system (free low-level drivers to enterprise

3rd party tools) which reduces development costs and time to market.

S12ZVC(A)
Flash 64 – 192 kB 12V VREG 12V/70mA, 170mA with ballast
RAM 4-12 kB EVDD 1ch 5V/20mA (source)
EEPROM 1-2 kB NGPIO 4ch 5V/25mA (sink)
Core S12Z ADC 10-16ch 10Bit (12Bit)
Speed 32 MHz DAC 8bit DAC with OpAmp
Op Range 5.5V – 18V Comparator 2# rail to rail
HVI 2 Timer 8ch/16B + 4ch/16B (16ns)
CAN Phy 1 PWM 4ch16B + 4ch/16B (16ns)

Op range 5.5V – 18V Comms 1MSCAN, 2SCI, 2SPI, 1IIC, 1SENT-Tx

Temp 150°C Ta Packages 64-LQFP-EP, 48-LQFP

Targeted Applications
•CAN nodes
•CAN switch panel / user interface
•CAN actuators, sensors
•HVAC
•Lighting controls
•Seat positioning
•Seatbelt pretentionner
•Ultrasonic Sensors
•Occupant detection
•Powertrain Sensors (Nox)

Enablement Tools
•Evaluation Boards / Hardware

• VLG-MC9S12ZVC
•CodeWarrior, Cosmic
•LIN drivers

Part Numbers
64LQFP EP 48LQFP Flash

En
ha

nc
ed

An

al
og

S912ZVCA19F0VKH S912ZVCA19F0CLF 192kB
S912ZVCA12F0VKH S912ZVCA12F0CLF 128kB
S912ZVCA96F0VKH S912ZVCA96F0CLF 96kB
S912ZVCA64F0VKH S912ZVCA64F0CLF 64kB

R
ed

uc
ed

An
al

og

S912ZVC19F0VKH S912ZVC19F0CLF 192kB
S912ZVC12F0VKH S912ZVC12F0CLF 128kB

S912ZVC96F0VKH S912ZVC96F0CLF 96kB

S912ZVC64F0VKH S912ZVC64F0CLF 64kB

Te
m

p
O

pt
io

ns

"V"=105°C Ta; "M"=125°C Ta

"W"=150°C Ta “C”=85°C Ta

Fast 12Bit ADC, 2 Op Amps,
high res PWM/Timer

Integrated CAN Transceiver

15 Year Longevity

Safe Assure™

Ultra-Reliable Industrial

CLICK FOR

MagniV™

Ultrasonic
Powertrain

Sensor
CAN
Phy

Hi-res
Timer

VREG

ADC EVDD

Sensor

S12ZVC

12V Battery
Voltage

Directly powered by Car
Battery

AEC-Q100 Grade0
Up to 150°C Ta

1-2kB
EEPROM

(ECC)

64-192kB
Flash (ECC)

S12Z 32MHz Bus

CAN-PHY 12-Bit
LADC

Temp
Sense

4-12kB
RAM
(ECC)

PLLRCosc.
+/-1.3%

Pierce
Osc.

2 HV Input1#
EVDD

2 x SCI MSCAN

G
P
I
O

VREG

70, or up to 170mA
with ext. Ballast

VSUP
sense

2x
SPI IIC Sent

tx

4#
NGPIO

BDM
BDC KWU Win

Wdog

2ch ACMP
With 1x6-Bit-DAC

VREG for CAN PHY
with ext. ballast

HR-PWM
4ch16b

PWM
4ch16b

HR-Tim
4ch16b

Tim
8ch16b

2ch
ACMP

+
-

8-bit DAC
+ OpAmp

+
-

HVI

CAN
network

Supply
monitoring

Sensor supply

Osc/PLL

COMPANY PUBLIC 11

S12ZVC for Sensors in Powertrain

S12ZVC benefits:
• Limited PCB-space
• ASIL-requirements
• High resolution timers

and DMA enabled
LADC

• On-chip analog
comparator and DAC

• EVDD 5V switchable
sensor supply

3.5 to 40V

Battery
Voltage

1-2kB
EEPROM

(ECC)

64-192kB
Flash (ECC)

S12Z 32MHz Bus

CAN-PHY 12-Bit
LADC

Temp
Sense

4-12kB
RAM

(ECC)

PLLRCosc.
+/-1.3%

Pierce
Osc.

2 HV Input1#
EVDD

2 x SCI MSCAN

G
P
I
O

VREG

70, or up to 170mA
with ext. Ballast

VSUP
sense

2x
SPI IIC Sent

tx

4#
NGPIO

BDM
BDC KWU Win

Wdog

2ch ACMP
With 1x6-Bit-DAC

VREG for CAN PHY
with ext. ballast

HR-PWM
4ch16b

PWM
4ch16b

HR-Tim
4ch16b

Tim
8ch16b

2ch
ACMP

+
-

8-bit DAC
+ OpAmp

+
-

CAN
BUS

5V Sensor
Supply

NOX-
Sensor

Particle
Sensor

Humidity/Air
Mass

Hydrocarbon-
Sensor

Urea-Sensor

Hi-temp
Sensor

COMPANY PUBLIC 12

MagniV Integrated Solutions Roadmap

2016

B
ru

sh
ed

 M
ot

or
G

en
er

al
 P

ur
po

se

Production

First Sample Date
(left edge)

Product Qualification
(right edge)

Product Idea

Concept

Development

High temp
(AEC-Q100

Grade0)

High Voltage
PWM command

LIN applications

CAN applications

32-128kB, 64pin,
6ch GDU, 50MHz

64-192kB, 48-64pin, 32MHz

8-32kB, 32-48pin, 32MHz

S12ZVMC (no CAN-PHY)

16-32kB, 32pin, 25MHz

C
AN

N

od
es

LI
N

N

od
es

48-64kB, 32-48pin, 25MHz

MM912H/G634

48-64kB, 48/64pin, 4ch GDU, 32MHz

S12VR

64-128kB, 32-48pin,
PGA, MSCAN, 32MHz

S12ZVML31

S12ZVL

S12VR

M
O

S-
FE

T
co

nt
ro

l
R

el
ay

co
nt

ro
l

256kB, 80pin, 6ch GDU, 50 MHz

S12ZVMC (with PHY)

S12ZVC

S12ZVH
64-128kB, 100/144pin,

LCD, 4 stepper drivers, 32MHz

S12ZVHL/HY/FP
32-64kB, 100/144pin,

LCD, 2 stepper drivers, 32MHz

B
ru

sh
le

ss
M

ot
or

S12ZVML

S12ZVM
16-32kB; 48/64pin, 6ch GDU, 50MHz

S12ZVMB

2017

General Business Use

48-64kB, 48pin, 25MHz

S12VRP

S12ZVMA

2018

16-32kB, 32/48pin, 2ch GDU, 32MHz

S12ZVL

COMPANY PUBLIC 13

S12 MagniV Software
Type Software Package Availability Price Model Device Support

Software
Development

Tool

Cosmic Dev Tool Available Paid VR,ZVL,ZVC, ZVM

CodeWarrior Dev Tool Available Paid VR,ZVL,ZVC, ZVM

Processor Expert- configuration tool and low level drivers Available Free VR,ZVL,ZVC, ZVM

Model Based Development Toolbox for MATLAB®/Simulink® Available Free ZVC, ZVM

Runtime
Software

S12Z NVM Standard Software Driver for flash module Available Free VR,ZVL,ZVC, ZVM

LIN Stack- full implementation of LIN2.x and SAE J2602 Available Free VR,ZVL,ZVC, ZVM

Core Self Test- ASIL-A support Available Paid VR,ZVL,ZVC, ZVM

Core Self Test- ASIL-B support >90% cov. Available Paid VR,ZVL,ZVC, ZVM

Bootloader Available Free VR,ZVL,ZVC, ZVM

AMMCLIB- Automotive Math and Motor Control Lib Available Free Evaluation
Paid Production ZVM

Autosar MCAL 4.0 - S12ZVM256 Available Paid ZVM256

Autosar MCAL 4.0 - S12ZVC192 Available Paid ZVC

Autosar OS 4.0.80 Release to Market Available Paid ZVM128

Autosar OS 4.0.80 Patch for ZVC Available Free ZVC

Last Updated 24APR17

Preliminary - Subject to change

COMPANY PUBLIC 14

02. DEVKIT-S12ZVC
Development Board

COMPANY PUBLIC 15

MagniV Ecosystem – The Complete Solution

Hardware (Evaluation board, target application)

MC ToolBox:
Rapid prototyping with

Matlab Simulink

FreeMASTER:
-Graphical User

Interface
-Instrumentation

Autosar OS

Customer Application Software

Math and Motor Control Libraries:
- Standard optimized math functions and motor control algorithms

- Includes Matlab Simulink Models

LI
N

 D
riv

er
s FSL production

Software

FSL enablement
Software

3rd Party production
Software

MC Dev Kit
Reference
Software

N
VM

 D
riv

er
s

C
AN

/L
IN

 S
ta

ck

Graphical Init Tool

MCAT
Tuning
Tool

Compiler and Debugger

COMPANY PUBLIC 16

Get to Know the DEVKIT-S12ZVC

DEVKIT-S12ZVC
Features

The DEVKIT-S12ZVC is an ultra-
low-cost development platform
for S12Z microcontrollers.

Features include easy access to
all MCU I/O´s, a standard- based
form factor compatible with the
Arduino™ pin layout, providing a
broad range of expansion board
options, and an USB serial port
interface for connection to the
IDE, the board has option to be
powered via USB or an external
power supply. ADC

Potentiometer

User
Switches

RGB
LED Main

Power Supply

I/Os Headers
Freedom+ and Arduino

I/Os Headers
Freedom+ and Arduino

LIN Interface

USB/OSBDM
Interface

RESET
Switch

http://www.nxp.com/devkit

http://www.nxp.com/devkit

COMPANY PUBLIC 17

Power Supply and Communications

USB/OSBDM Connector
CON 1X5 USB_MICRO_AB_RECEPTACLE
RA SMT 0.65MM SP 105H AU

Description Name PIN
CANH J8-01
CANL J8-02
VBAT J8-03
GND J8-04

Description Name PIN
VBAT J10-01
GND J10-03

COMPANY PUBLIC 18

Input/Output Connectors

J1

Arduino Compatibility
The internal rows of the I/O headers on
the DEVKIT-S12ZVC are arranged to
fulfill Arduino™ shields compatibility .

J2

FUNCTION PORT PIN
PWM PT7 J2-01
PWM PP7 J2-02

SPISS PWM PS3 J2-03
SPIMOSI PWM PS1 J2-04
SPIMISO PS0 J2-05
SPISCK PS2 J2-06

GND J2-07
AREF J2-08

SDA PJ1 J2-09
SCL PJ0 J2-10

FUNCTION PORT PIN PIN PORT FUNCTION
RXD PS4 J1-01 J1-02 PT2 GPIO
TXD PS5 J1-03 J1-04 PT3 GPIO
PWM PP0 J1-05 J1-06 PT6 GPIO
PWM PP1 J1-07 J1-08 PT4 GPIO
PWM PP2 J1-09 J1-10 PT5 GPIO

PWM PP3 J1-11 J1-12

PWM PP4 J1-13 J1-14

PWM PP5 J1-15 J1-16

COMPANY PUBLIC 19

Input/Output Connectors

J3

J4

Arduino Compatibility
The internal rows of the I/O headers on
the DEVKIT-S12VC are arranged to
fulfill Arduino™ shields compatibility .

FUNCTION PORT PIN
VIN J3-01
VDD J3-02
RESET J3-03
P3V3 J3-04
P5V0 J3-05
GND J3-06
GND J3-07
VIN J3-08

J3-02
J3-04
J3-06PDA10
J3-08PDA11
J3-10PDA12
J3-12PDA13
J3-14PDA14
J3-16PDA15

FUNCTION PORT PIN

FUNCTION PORT PIN PIN PORT FUNCTION
ADC AN7 J4-01 J4-02
ADC AN6 J4-03 J4-04
ADC AN5 J4-05 J4-06 PS6
ADC AN4 J4-07 J4-08 PS7
ADC AN3 J4-09 J4-10 PL1
ADC AN2 J4-11 J4-12 PL0
ADC AN1 J4-13 J4-14 AN9
ADC AN0 J4-15 J4-16 AN8

COMPANY PUBLIC 20

Programming Interface and User Peripherals

Peripheral ID MCU Port Description
Buttons SW2 PAD11 User switch (Active high)

SW3 PAD10 User switch (Active high)
SW1 RESET RESET Switch

Potentiometers R59 AN1 Potentiometer connected to ADC port
AN0/AN1

LED D2 PP4 RGB LED - Green
PP5 RGB LED - Red
PP6 RGB LED - Blue

D3 - OSBDM PWR LED, ON when OSBDM is
successfully enumerated as USB device.

D5 - OSBDM STATUS LED. ON when OSBDM
is successfully transmitting as USB device.

D4 VDDX MCU Power LED Indicator. ON when
VDDX is regulating to +5V

D1 RESET RESET LED Indicator
Communication J6 - OSBDM USB

J8 CAN CAN Interface

RGB LED

RESET

Potentiometer

MICR
O USB

User – Push Button

User – Push Button

CAN

BDM

Caution: When powered from the USB bus, do not exceed the 500mA maximum allowable current drain.
Damage to the target board or host PC may result.

COMPANY PUBLIC 21

03. Set Up the Development
Environment

COMPANY PUBLIC 22

CodeWarrior v10.7 – Startup

Launch CodeWarrior

View Welcome screen
• Close it, or just wait 30seconds
• Processor Expert starts in

background

COMPANY PUBLIC 23

Default / Empty View
Toolbar and Menubar

Project
Pane

Command
Pane

Perspectives/Views

Editor

Build Console & Navigator

COMPANY PUBLIC 24

Create Bareboard Project (1)

1) Go to file  New  Bareboard Project
2) Make a name for your Project (e.g. “labs”)
3) Create a workspace folder click next

4) Select your device
S12Z  MC9S12ZVCA128  click next

COMPANY PUBLIC 25

Create Bareboard Project (2)

5) Select OSBDM
connection click next

6) Use defaults  click next 7) Select Processor
Expert  click Finish

COMPANY PUBLIC 26

Project View Processor Expert Configuration Pane

PEx Module
Parameters

Project Files

PEx Components

Project Controls
& Commands

COMPANY PUBLIC 27

Hardware View

Register List

Pin Muxing

Configurations

COMPANY PUBLIC 28

04. Hands-on LABS

COMPANY PUBLIC 29

Hello World (GPIO)

COMPANY PUBLIC 30

Hello World: Introduction
Summary: A GPIO input (PAD10) is continuously polled to detect a
high or low level. A GPIO output (PP4) is set corresponding to the
level and drives the LED.

GPIO
VsupSW3

PAD10 PP4

Red LED

COMPANY PUBLIC 31

Hello World: Key Points
• Out of reset, default clocks and GPIO are enabled
• GPIO requires configuring
− Input or output direction
−GPIO function

• Hands on: Using next slides:
−Create GPIO components using PEx
−Generate PEx initialization code, and create main routine
−Build and debug

COMPANY PUBLIC 32

Create SW3 Input

1) Component Library
2) CPU Internal Peripherals
3) Port I/O
4) Double-click “BitIO”

5) Move to PEX component pane
6) Right-click “Bit1:BitIO” and rename it to “SW3”
7) Double-click “SW3” to edit its configuration

COMPANY PUBLIC 33

Configure SW3
1) Choose the

configurations to make
this pin an input with
no pull resistor.

2) Generate code.
3) Open
“Generated_Code” in the
project tree to see what
was made by PEX.

COMPANY PUBLIC 34

Inspect the Generated Code
1) Double-click “main.c” to edit

2) In the left margin of the editor
window, right-click and choose
“show line numbers”

3) Be careful where you add user
code!

4) Right-click “PE_low_level_init()”
and choose “open declaration” to
see the code generated by PEX.

COMPANY PUBLIC 35

PEX Software API’s

• Open SW3:BitIO component view
• Inspect SW3:BitIO Methods list

− Why are some enabled/disabled?
• Right-click methods and choose

“Help”
• Drag-n-drop “GetVal” into main code

COMPANY PUBLIC 36

Exercise!
1) Create a new BitIO component

− Pin: PP4
− Name: “LedRed”
− Direction: Output
− Init. Value: 1

2) Generate PEX code
3) In main():

− Add a local variable “bool level”
− In a forever loop, use available BitIO Methods
 Read SW3 into “level”
 Put “level” to RedLed

4) Build and debug

void main(void)
{

/* Write your local variable definition here */

bool level;

/*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/

PE_low_level_init();

/*** End of Processor Expert internal initialization. ***/

/* Write your code here */

/* For example: for(;;) { } */

for (;;)
{

level = SW3_GetVal();

LedRed_PutVal(level);

}

/*** Don't write any code pass this line, or it will be deleted during code generation. ***/

/*** RTOS startup code. Macro PEX_RTOS_START is defined by the RTOS component. DON'T MODIFY THIS
CODE!!! ***/

#ifdef PEX_RTOS_START
PEX_RTOS_START(); /* Startup of the selected RTOS. Macro is defined by the RTOS component.

*/

#endif
/*** End of RTOS startup code. ***/

/*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/

for(;;){}
/*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/

} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

Code Solution

COMPANY PUBLIC 37

Build

Clicking Build or Debug
launches the built-in makefile.

Console shows success/fail
status of the session.

COMPANY PUBLIC 38

Errors Can Be Navigated

Move the editor to the
suspicious line of code

by double-clicking the error

COMPANY PUBLIC 39

Debug
Resume/Pause

End Session
Step/Over/Return/Instruction-mode

Locals
Globals
Registers
Peripherals

Breakpoints

COMPANY PUBLIC 40

Hello World + Interrupts
(GPIO + Timer)

COMPANY PUBLIC 41

Hello World + Interrupts: Introduction

Summary: An
interrupt is
implemented to
service the TIM0
instead of software
polling of the prior
project

COMPANY PUBLIC 42

Hello World + Interrupts: Reference Manual + PEx Files

• Processor
Expert includes
vector table
source code

• Reference manual includes a
generic vector table text
description.

COMPANY PUBLIC 43

Timer Component

1) Component Library
2) CPU Internal Peripherals
3) Timer
4) Add “TimerInt” to your project
5) Move to PEX Components pane
6) Double-click “TI1:TimerInt” to edit its configuration

COMPANY PUBLIC 44

Timer Component: Configuration
1) Choose source “T0C0”

2) Configure the interval period to be
500ms (type into ‘Value’ field)

3) Inspect Events tab to ensure
interrupt is defined

Experiment with this value and observe
result in Component Inspector

COMPANY PUBLIC 45

Navigate to the Interrupt Service Routine

1) Interrupt Service Routines are
auto-generated into the
‘Events.c’ source file

2) Macros are used to tie the ISR
back to the vector definition in
‘Vectors.c’ standard include file.

TI1.c

Vectors.c

COMPANY PUBLIC 46

Exercise #2 – Create
Objective

− Toggle the Green LED in the Timer interrupt
service routine

Steps 1
1) Delete the SW3 code from main() before

continuing.
2) Create a new BitIO component at pin PP5

as an output to drive the Green LED
− Configure parameters
− Generate code

3) Add code to the TI1_Interrupt() function to
toggle the LED – use ‘NegVal()’ method

− May need to enable this method in the
components pane

Steps 2
4) ‘Events.c’ will need to have access to

the NegVal() method
− Find the generated header file for your

new BitIO component and add it to the
appropriate location in Events.c

COMPANY PUBLIC 47

Exercise #2 – Build & Debug (1)
1) Build & Debug the project
2) Run the code to make sure it works!
3) Use the Reset button to set the

processor and peripherals back to
initial hardware configuration

4) Place a breakpoint in main.c around
line 50 at ‘PE_low_level_init()’

5) Run to breakpoint
6) Open the ‘Registers’ view and scroll

down to “Timer Module TIM0”
7) Expand the list to view timer registers
8) Step-over the ‘PE_low_level_init()’

call
9) See changes in timer at Registers

view

COMPANY PUBLIC 48

Exercise #2 – Build & Debug (2)
• Manually change the timer

registers to make a new duty
cycle of the LED
−TIM0 compare register TIM0TC0
−TIM0 modulo register TIM0TC7
−Click on the ‘value’ cell and enter a

new hexadecimal value to change
the periodic rate of the timer.

−Press ‘Enter’ to write it in.

• Just Resume running to
see the new periodic rate

COMPANY PUBLIC 49

CAN Communications
(MSCAN + CANPHY)

COMPANY PUBLIC 50

S12ZVC CAN Features
• MSCAN V3 module
− Implementation of CAN 2.0 A/B protocol (Bosch)
−Five receive buffers
−Three transmit buffers

• One on-chip CAN physical layer module
− ISO 11898-2 and ISO 11898-5 compliant for 12V

battery system
−Low-power mode with remote CAN wake-up
−High Speed interface for baud rates of up to

1Mbit/s
−CAN bus protection

COMPANY PUBLIC 51

S12ZVC CAN Architecture

MSCAN Digital Controller CAN Physical Layer

COMPANY PUBLIC 52

CAN Communication: Introduction
• Objective: A CAN frame is

transmitted when SW3 is
pressed. When a CAN
message is received, the LED
blinks.

• Key ingredients to
communicate via CAN bus
1) Accurate main clock
2) PHY configuration
3) Protocol engine configuration
4) Message filter configuration

COMPANY PUBLIC 53

Connecting the EVB to VCAN4

COMPANY PUBLIC 54

1) Main Clock Configuration

1. Start a new Bareboard project with
S12ZVCA128 (File-> New…)

2. Open “CPU” in component inspector
3. Enable external clock at 8MHz
4. Set internal bus clock to 16Mhz
5. Set High Speed Clock to External
6. Generate code

COMPANY PUBLIC 55

2) Physical Layer Initialization

1. Add the Peripheral Initialization
method “Init_CANPHY” from
the Component Library.

2. ‘Enable’ the PHY
3. Check configurations.

COMPANY PUBLIC 56

3a) CAN Protocol Engine Configuration

1. Add a “FreescaleCAN” component
to the project, from the Components
Library.

2. Open the CAN component’s
properties by double-clicking it, in
the Components tab.

COMPANY PUBLIC 57

3b) CAN Protocol Engine Configuration

1. Input “250” to set the bit rate

COMPANY PUBLIC 58

3c) CAN Protocol Engine Configuration
1. Correct the pin assignment issue, and it disappears from

view…
2. Disable interrupts
3. Set bit timing parameters

COMPANY PUBLIC 59

4) Message Filter Configuration

• For easy prototyping, use two 32-bit filters and open
acceptance code & mask.

• Acceptance mask:
− ‘0’ means we must match the received ID with the acceptance code

bit field
− ‘1’ means we don’t care

• Acceptance code: the received ID bit must match a ‘1’ or ‘0’
 With the default setting, all messages will be received.

COMPANY PUBLIC 60

Now… Re-create SW3 Input and Red LED Output

1) Create a new BitIO component
− Name: “SW3”
− Pin: PAD10
− Direction: Input

2) Create a new BitIO component
− Name: “LedRed”
− Pin: PP4
− Direction: Output
− Init. Value: 1

COMPANY PUBLIC 61

Exercise (1)
Pseudocode
• Inside of main(), create a continuous loop.
• In the loop, check for the arrival of an RX message

using the GetStateRX() method
• If a message is received, light the red LED and delay

for a while, then clear the red LED and continue
− GetStateRX - Returns a value of the reception complete flag.
 ANSIC prototype: bool GetStateRX(void)

Return value:bool - The value of the receiver complete flag of the given
buffer. Possible values: false - message buffer is empty true -
message buffer isn't empty

• Omission! Processor Expert forgot to clear the RX
buffer flag “CAN0RFLG_RXF”, so add the following:

− Get this RX handler working before you continue.

http://127.0.0.1:63306/help/ntopic/com.freescale.doc.processorexpert.components/DOCs/BeanCodeTypicalUsage.html#Bool
http://127.0.0.1:63306/help/ntopic/com.freescale.doc.processorexpert.components/DOCs/BeanCodeTypicalUsage.html#Bool

COMPANY PUBLIC 62

Exercise (2)
Pseudocode
• (within the same continuous loop…)
• If SW3 is pressed, a CAN frame is

transmitted, followed be short delay.

1. Use the SW3 GetVal() method to check for a
button press

2. When the SW3 is true, use the CAN1
SendFrameExt() method to send a message
frame

− SendFrameExt - Sends a frame. This method
automatically selects a free transmit buffer for data
transmission. The user cannot specify a transmit buffer.

− ANSIC prototype: byte SendFrameExt(dword MessageID,
byte FrameType, byte Length, byte *Data)

COMPANY PUBLIC 63

Coding Solution

COMPANY PUBLIC 64

VCAN4

CAN Communication Project 1
Transmission:
1. Press Push button 2 to send the message with ID: 0xAA and data: 0x33, 0x44
2. Press Push button 3 to send the message with ID: 0x55 and data: 0x11, 0x22

Reception:
1. If any message with ID = 0x33 is received green led will turn on
2. If any message with ID = 0x11 is received blue led will turn on

COMPANY PUBLIC 65

CAN Communication Project 2
Transmission:
1. Create an ADC peripheral to read pin AN1 (potentiometer)
2. Create a Timer peripheral with periodic interrupt
3. On timer interrupt, convert the voltage on AN1 and transmit by CAN message

Reception:
1. Set a filter/mask combination to only receive ID 0A5

VCAN4

COMPANY PUBLIC 66

ValueCAN4 & Vehicle Spy

COMPANY PUBLIC 67

VSPY3

Configure Hardware
(click here)

Detected Hardware

COMPANY PUBLIC 68

Hardware Configuration

1) Connect to HW

2) Select HS CAN

3) Choose baud rate 250,000 then write-in
4) Close the window

COMPANY PUBLIC 69

1) Connect to HW
2) Start analyzer
3) Scroll / no-scroll
4) Message view
5) No bus errors

RX Messages

COMPANY PUBLIC 70

Define TX Messages
1) Launch Message Editor

2) Add a Transmit message

3) Set message parameters
Type, ID, Len, data bytes

4) F6 hotkey

COMPANY PUBLIC 71

Press F6 on keyboard
and see LED blink on
the EVB

Return to Messages Tab

COMPANY PUBLIC 72

VSPY3 – Periodic Transmission

1. Open menu item [Spy Networks  TX Panel]
2. Set a periodic rate (slow enough that you can see the LED blink)

and hit ENTER
3. Return to Message tab and view CAN traffic…

COMPANY PUBLIC 73

Thank You for Participating!

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

	Edge Node Development with MagniV
	Agenda
	01. MagniV Overview
	S12 MagniV – Integrated Solutions�Technology Sweet-spot for Actuators, Sensors & User Interfaces
	S12 MagniV: Product Families
	MagniV Building Blocks
	MagniV Concept: Shrink Your Application�Integration of High-Voltage (HV) Analog Features into a Standard Automotive MCU
	SafeAssureTM Program Applied to S12 MagniV
	S12ZVC Family (Hearst) �Integrated small CAN nodes
	S12ZVC Family Differences in Feature Set
	MagniV S12ZVC One Pager
	S12ZVC for Sensors in Powertrain
	MagniV Integrated Solutions Roadmap
	S12 MagniV Software
	02. DEVKIT-S12ZVC �Development Board
	MagniV Ecosystem – The Complete Solution
	Get to Know the DEVKIT-S12ZVC
	Power Supply and Communications
	Input/Output Connectors
	Input/Output Connectors
	Programming Interface and User Peripherals
	03. Set Up the Development Environment
	CodeWarrior v10.7 – Startup
	Default / Empty View
	Create Bareboard Project (1)
	Create Bareboard Project (2)
	Project View
	Hardware View
	04. Hands-on LABS
	�Hello World (GPIO)
	Hello World: Introduction
	Hello World: Key Points
	Create SW3 Input
	Configure SW3
	Inspect the Generated Code
	PEX Software API’s
	Exercise!
	Build
	Errors Can Be Navigated
	Debug
	Hello World + Interrupts�(GPIO + Timer)
	Hello World + Interrupts: Introduction
	Hello World + Interrupts: Reference Manual + PEx Files
	Timer Component
	Timer Component: Configuration
	Navigate to the Interrupt Service Routine
	Exercise #2 – Create
	Exercise #2 – Build & Debug (1)
	Exercise #2 – Build & Debug (2)
	CAN Communications�(MSCAN + CANPHY)
	S12ZVC CAN Features
	S12ZVC CAN Architecture
	CAN Communication: Introduction
	Connecting the EVB to VCAN4
	1) Main Clock Configuration
	2) Physical Layer Initialization
	3a) CAN Protocol Engine Configuration
	3b) CAN Protocol Engine Configuration
	3c) CAN Protocol Engine Configuration
	4) Message Filter Configuration
	Now… Re-create SW3 Input and Red LED Output
	Exercise (1)
	Exercise (2)
	Coding Solution
	CAN Communication Project 1
	CAN Communication Project 2
	ValueCAN4 & Vehicle Spy
	VSPY3
	Hardware Configuration
	RX Messages
	Define TX Messages
	Return to Messages Tab�
	VSPY3 – Periodic Transmission
	Thank You for Participating!
	Slide Number 75

