Designing with I²C-Bus Devices

Emmanuel T. Nana

Technical Marketing Manager Secure Interfaces & Power

June 2019 | Session #AMF-IND-T3704

 \square

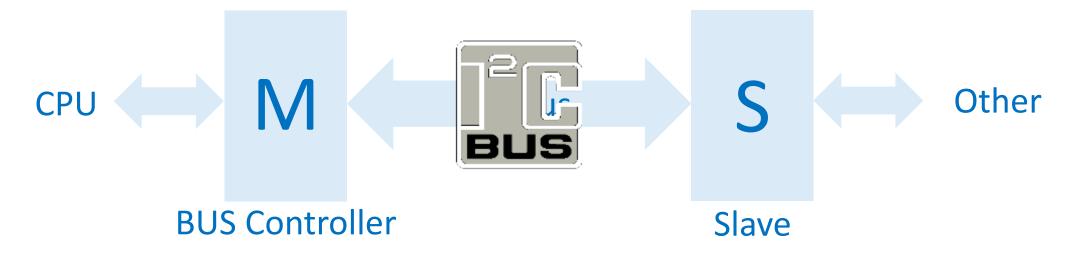
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

NXP Secure Interfaces & Power Solutions

Signal Integrity & Routing Solutions	Load Switches	Interface Solutions	Wireless Connectivity & Smart Sensor Solutions
 Signal Switches & Re-drivers USB 3.1, USB Type-C Thunderbolt PCIe, SATA, SAS DP, HDMI, VGA Audio, Data Memory Interface 	 Over Voltage Protection Over Current Protection Reverse Current Protection Under voltage Lockout Thermal Shutdown Low R_{ON} Low Quiescent Current 	 DisplayPort Bridges UARTS Comparators I²C Bus Buffers I²C Bus Controllers I²C Muxes & Switches Voltage Level Translators 	 NTAG Smart Sensors NFMI Radio Audio over BLE RF & IF Discretes Transceivers LNA's Mixers Switches
Industry leader in high-speed switching. Lowest-power consumption re-drivers	HV Load switching with 100V surge protection.	Industry's largest I ² C Portfolio for Mobile, Computing and Industrial.	Integrated temperature logging solutions. Ultra low-power single-chip solution, providing robust wireless audio streaming.
Security & Authentication	Power Solutions	Bus Peripherals	Smart Audio Solutions
Security & Authentication Anti-Counterfeit Solution 	 Power Solutions USB Power Delivery AC-DC Controllers DC-DC Boost Converters Direct Charging (Rapid Battery Charging) Wireless Charging (Qi/A4WP) Micro-PMIC Powerline Communication Modem 	Bus Peripherals • Real Time Clocks • GPIO Expanders • Temperature Sensors • LCD Drivers • LED Controllers • Capacitive Sensors • Stepper Motor Controllers • EEPROM • Watch IC • Data Converter • DIP Switches	 Smart Audio Solutions Class AB Amplifiers Class D Amplifiers Smart Amplifiers (/w integrated DSP) Software Speaker Protection Audio DAC & ADC

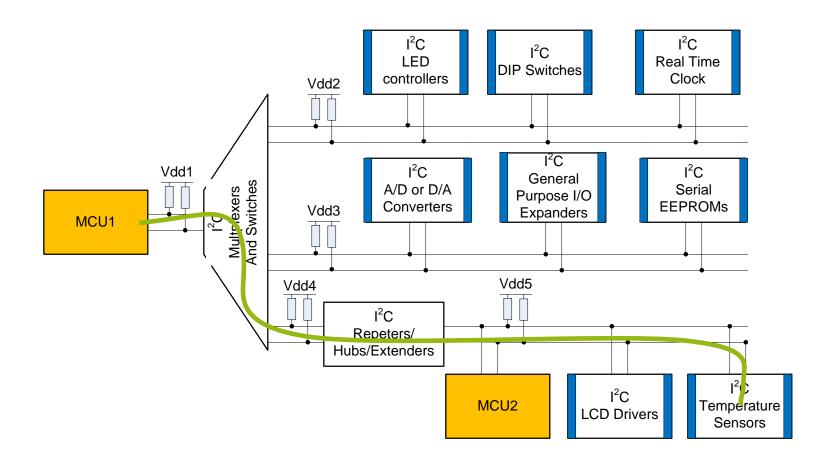
Agenda

- Introduction to I²C
- I²C-Bus Communication Protocol
- I²C-Bus Pull-up Resistor Calculation
- I²C Interface Signals
- I²C-Bus Tools



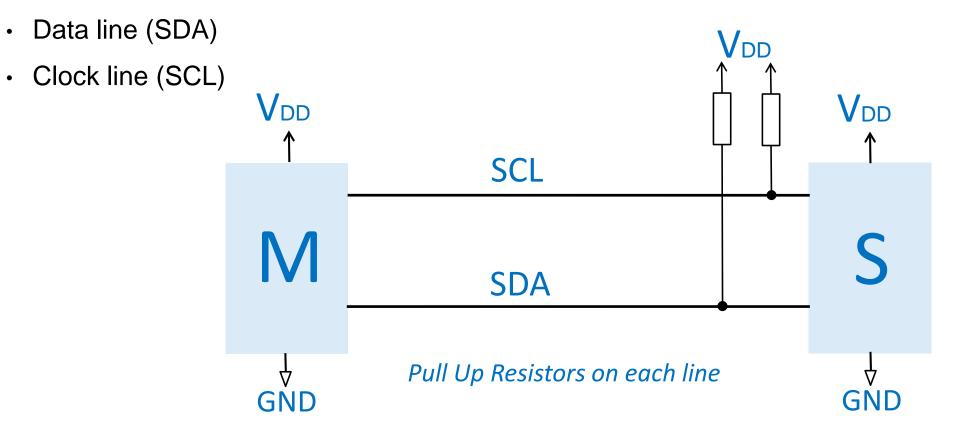
Introduction to I²C-Bus

What is I²C?


- A communication bus for slow speed digital data
- I²C = *Inter Integrated Circuit* (Philips invented in the 1980s)
- Original purpose to link a CPU to other circuits in television sets
- Links one or more SLAVE devices
- To a MASTER (one or more BUS CONTROLLERS)

What is I²C?

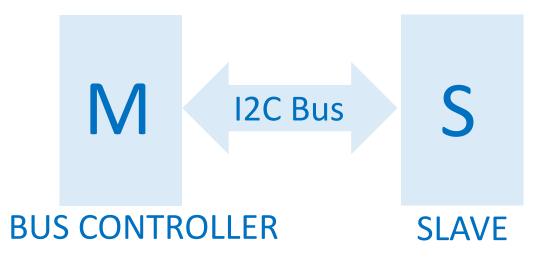
- I²C BUS can have:
 - Multiple masters
 - Multiple slaves
- Only one master talks to one slave at a time
- All the slaves on the same bus must have different address
- Slow speed device cannot understand higher speed transfer



I²C-Bus Physical Layer

Physical Layer = Electrical Connections

Two Wires: Data and Clock (plus ground and supply)



What is the I²C Protocol Layer?

Protocol Layer = Data Format, Traffic, Collision Arbitration

An I²C Bus must have:

Two node types (Master and Slave) Minimum of ONE Slave and ONE Bus Master

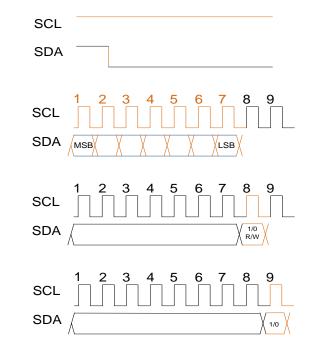
I²C Interface Protocol

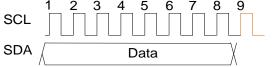
I²C BUS constructs off 9 bit block

START condition: When SCL is HIGH then SDA goes from HIGH to LOW

Address bit 7 bit after START condition

Read or Write bit After 7 bit address, the 8^{th} bit is Read or Write bit 1 = Read cycle or 0 = Write cycle


ACK


Synchronization bit between master and slave 0 = ACK and 1 = NACK

Data Byte

8-bit after address byte is data byte from master or slave

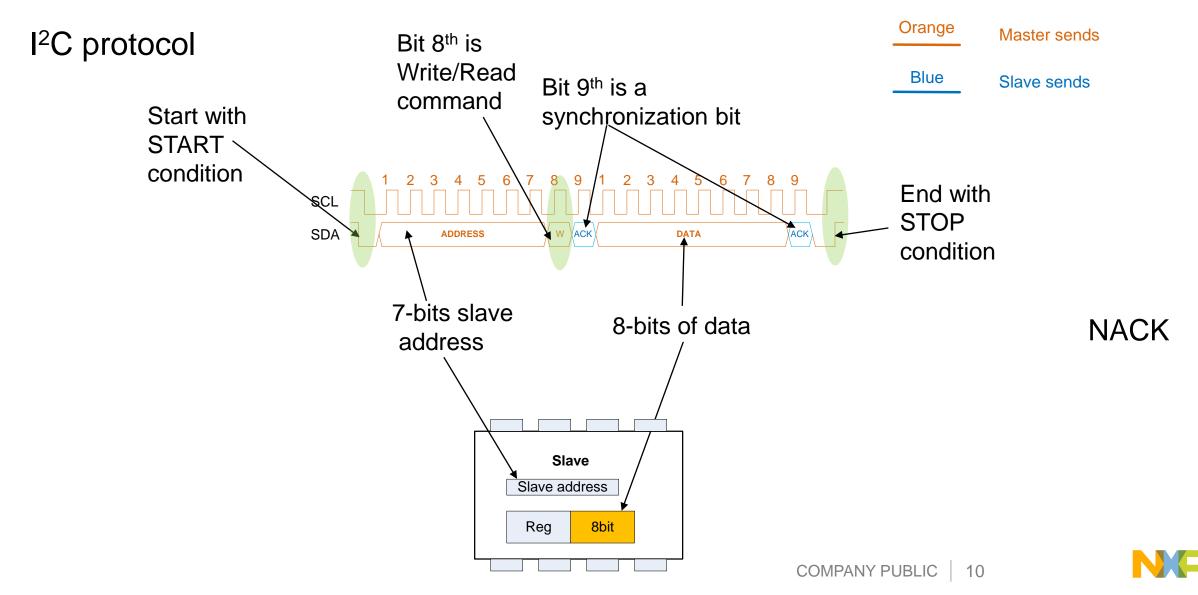
STOP condition: When clock line (SCL) is HIGH then the data line (SDA) goes LOW to HIGH

All slaves on this bus pay attention !!!

Master wants to talk slave with this address

Master wants to read or write 0: Write cycle 1: Read cycle

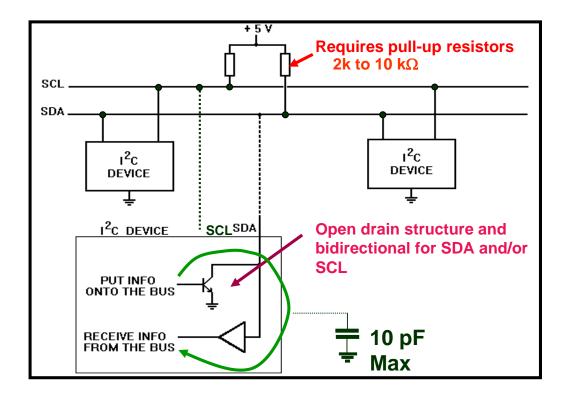
Slave or master: 0: I am here or data received 1: not me or data not received


Data byte Master sends data when write cycle Slave sends data when read cycle

Master notifies the slave this is the end of transaction

Complete I²C Interface Protocol

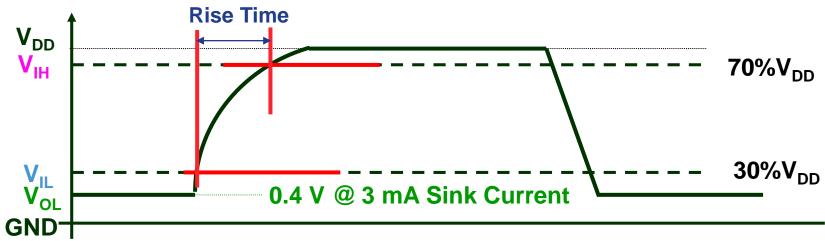
I²C-Bus Pull-up Resistor Calculation



6

I/O (SDA & SCL) Driver Architecture

SDA and SCL are open drain/collector


• Required pull-up resistors to pull the line to logic "1"

Key Electrical Parameters

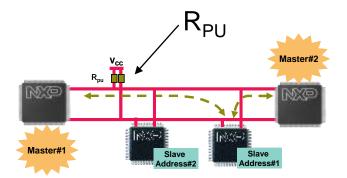
	Standard Mode	Fast Mode	Fast Mode Plus	High Speed Mode	
Bit Rate (kb/s)	0 to 100	0 to 400	0 to 1000	0 to 1700	0 to 3400
Max Load (pF)	400	400	560	400	100
Rise time (ns)	1000	300	120	160	80
Noise filter (ns)	-	50	10	10	10

Calculating Pull-up Resistors

1) $R_{MIN} < R_{PU} < R_{MAX}$

2) $R_{MIN} = (V_{DDMAX} - V_{OLMAX}) / I_{OLMAX}$

		R _{MIN}					
V _{DDMAX}	V _{OLMAX}	I _{OLMAX} = 3mA	I _{OLMAX} = 6mA*	I _{OLMAX} = 12mA**	I _{OLMAX} = 30mA***		
2.7 V	0.6 V	700 Ω	350 Ω	175 Ω	70 Ω		
3.6 V	0.6 V	1.0 kΩ	500 Ω	250 Ω	100 Ω		


* I²C Bus with a buffer

** EXPxxxx bus

*** I²C Fast-mode Plus Bus

3)	R_{MAX}	*	$C_{MAX} =$	1	.18*t _r
					I

MODE	Frequency	t _r	C _{MAX}	R _{MAX}
Standard	100 kHz	1000 ns	400 pF	2.96 kΩ
Fast Mode	400 kHz	300 ns	400 pF	885 Ω
Fast Mode Plus	1000 kHz	120 ns	560 pF	252 Ω

Glossary

- R_{PU}: Pull-up resistor
- R_{MIN}: Minimum pull-up resistor
- R_{MAX}: Maximum pull-up resistor
- V_{DDMAX}: Maximum supply rail
- V_{OLMAX}: Maximum output voltage low
- I_{OLMAX}: Maximum sink current
- C_{MAX}: Maximum load capacitance
- t_r: Rise time

How to Calculate the I²C-Bus Pull-up Resistors?

Minimum value

There is a minimum resistor value determined by the I²C spec limit of 3 mA

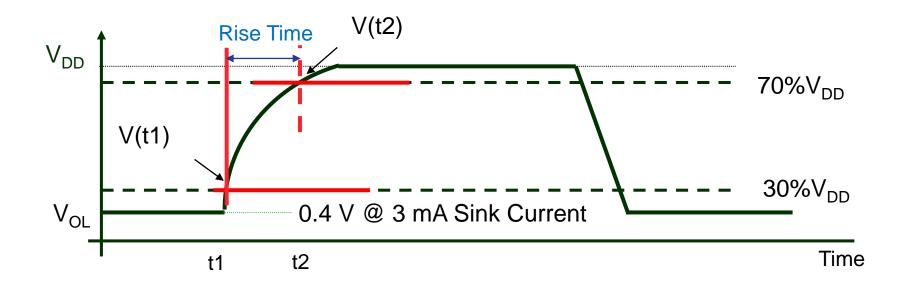
R = $(Vdd_{max} - Vol_{max})/0.003A$ Example: using a 5±0.5 V bus: R = $(5.5V - 0.4V)/0.003A = 1.7 k\Omega$

Maximum value

Determined by the I²C-bus rise time requirements: $V(t1) = 0.3*Vdd = Vdd (1-1/e^{t1/RC})$; then t1 = 0.3566749*RC $V(t2) = 0.7*Vdd = Vdd (1-1/e^{t2/RC})$; then t2 = 1.2039729*RC t = t2-t1 = 0.8472979*RCFor standard-mode I²C-bus: t = rise time = 1000ns (1 µs) so RC = 1180.2 ns

Example: at a bus load of 400 pF: $R_{max} = 2.95 \text{ k}\Omega$

For fast-mode:


I²C-bus rise time = 300 ns @ 400 pF: R_{max} = 885 Ω

How Does User Derive the Rise Time for I²C-Bus?

I²C-bus rise time is determined as in the following:

- 1) $V(t1) = 0.3^*V_{DD} = V_{DD} (1-1/et1/RC) \rightarrow t1 = 0.3566749^*RC (EQ1)$
- 2) $V(t2) = 0.7^*V_{DD} = V_{DD} (1-1/et2/RC) \rightarrow t2 = 1.2039729^*RC (EQ2)$
- 3) Subtract EQ1 from EQ2 \rightarrow t _{rise time} = t2-t1 = 0.8472979*RC or R*C = 1.18*t _{rise time}

Effect of Pull-up Resistors

- Minimum pull-up resistor limits the maximum current sink that affects the voltage output low (VOL).
 - Increasing pull-up resistor above RMIN leads to decreasing VOL and higher noise margin
 - Decreasing pull-up resistor below RMIN leads to increasing VOL and lower noise margin
- Maximum pull-up resistor affects the rise time and speed
 - Increasing pull-up resistor above RMAX leads to slower/possible rise time violation or lower speed
 - Decreasing pull-up resistor below RMAX leads to faster rise time and speed

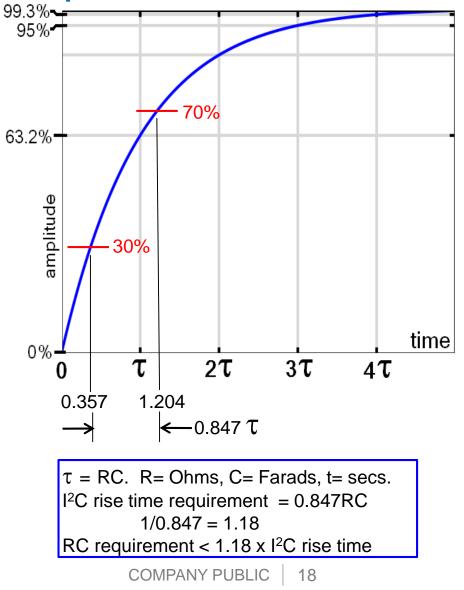
Bus Loading and Timing Relationship

The I²C bus specifications require certain bus rise times. Those times are defined with the time measured between the bus LOW and HIGH limit levels of 30% and 70% of VDD.

From the expression V (t) = VDD* $(1 - 1 / e^{t / \tau})$, and as shown on the curve at the right, the time for the bus to rise to 30%VDD is 0.357 τ .

The time to rise to 70%VDD is 1.204 τ , so the I²C rise time, to rise from 30% to 70% of VDD,

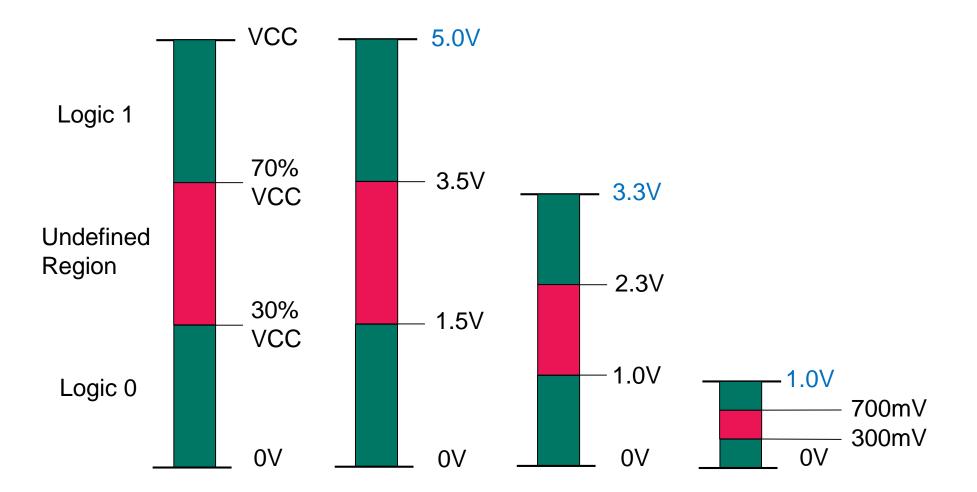
is $(1.204 - 0.357) = 0.847^{*}\tau$.


Because $\tau = RC$, meeting the I²C rise time requirements means the pull-up "R" and bus capacitance "C" must satisfy the relationship:

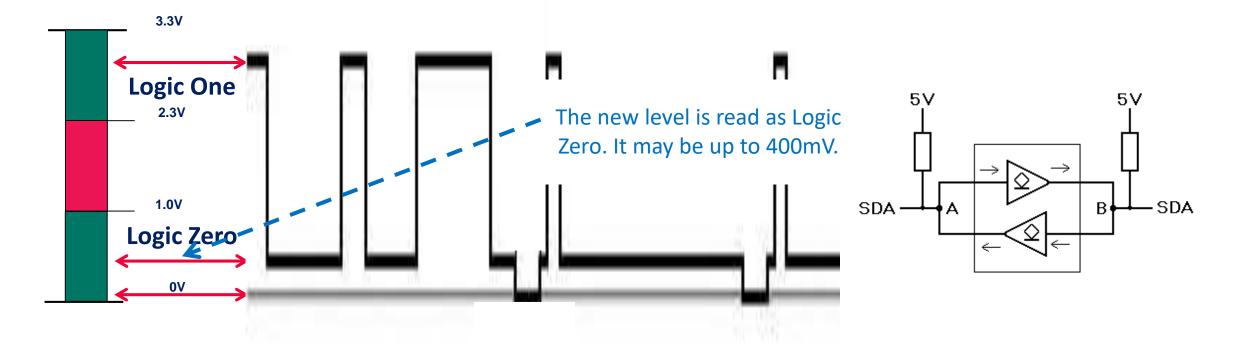
 $0.847 \text{ RC} \ll I^2 \text{C}$ rise time specification

or RC <= I^2C rise time specification / 0.847

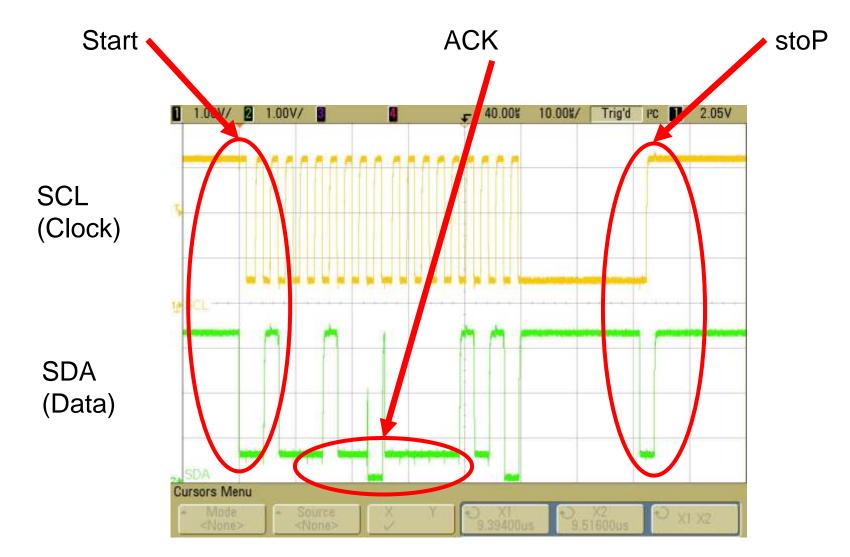
or <u>RC <= I²C rise time specification x 1.18</u>


For example, to meet the Fast-mode 300 ns rise requirement, the RC product must be less than 1.18 x 300 <= 354 ns.

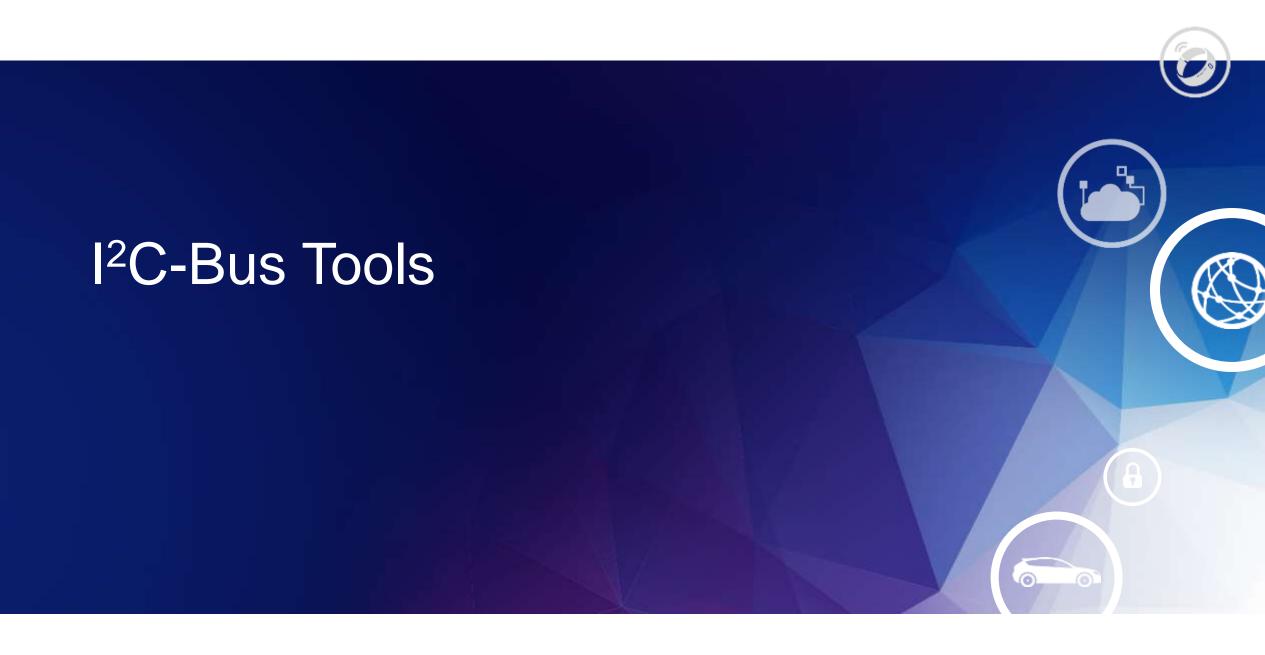
I²C Logic Levels and Thresholds



Comparison of I²C Bus logic levels for different supply voltages



"Three Level" I²C Signals

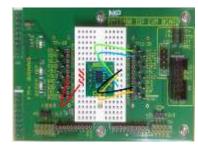

- The I2C Bus has two logical levels (zero and one)
- There are now 3 signal levels, but only 2 logical levels
- This is caused by different strength Drivers, or by Bus Buffer "Offset"

I²C Signals (Oscilloscope Plot)

COMPANY PUBLIC 23

Fm+ I²C-Bus Demonstration System

PC/GUI MASTER **Total Phase Aardvark** USB XXXAGAVE The Boardshop Win-I2CUSB DLL Dongle Wire **USB** adapter OM13260 - Fm+ I2C-BUS DEVELOPMENT BOARD


USB

OM13496 - Fm+ I2C-BUS DONGLE

SLAVE

OM13490 - DIP EVM BOARD

OM13303 - GPIO TARGET

OM13399 – BRIDGE BOARD

OM13488 – 16-bit GPIO **Daughter Card**

DIP ADAPTER BOARD

OM13398 - PCA9617A BUS **BUFFER BASE BOARD**

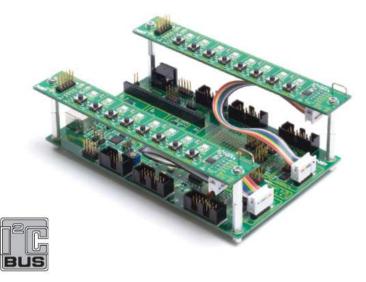
OM13487 – LM75 type TS **Daughter Card**

Fm+ I²C-Bus Development Board Kit (OM13320)

Box Content

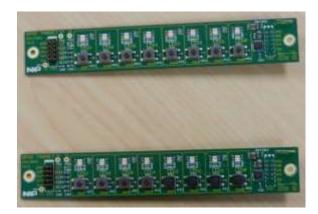
OM number	12 NC Number	Description (50 Chrs max)	Description (35 Chrs max)	NXP Device Cross Reference
OM13260	9352 959 14598	FM+ I2C-bus Development Board (RoHS)	FM+ I2C-bus Dev Brd (RoHS)	PCA9665, PCA9672, PCA9901, PCA9955
OM13303	9352 959 15598	GPIO Target Board (RoHS)	GPIO Target Brd (RoHS)	none
OM13398	9353 020 74598	PCA9617A Bus Buffer Demo Brd (RoHS)	PCA9617A Bus Buffer Brd (RoH	
OM13399	9353 020 75598	Bridge Board (9pin to Fm+) (RoHS)	Bridge Board (9pin to Fm+) (RoH	

Fm+ Development Board Kit OM13320


- Run demonstrations of NXP's I2C Fm+ Slaves and Bus Controllers
- Develop I2C Hardware
- Expand this kit with add-on I2C Daughter Cards

BOX CONTENTS: OM13260 Fm+ Development Board

Plus


OM13303 GPIO Target BRD (x2)
 OM13398 PCA9617A Bus Buffer Demo Board

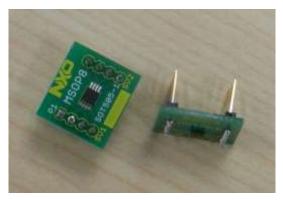
- OM13399 Bridge Board
- Cables and Mounting Hardware

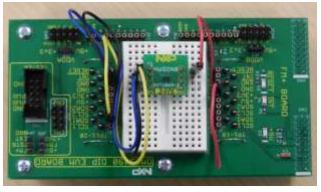

Fm+ I²C-Bus Development Board Kit (OM13320)

GPIO Target Board OM13303 (2x)

Bus Buffer Board OM13398

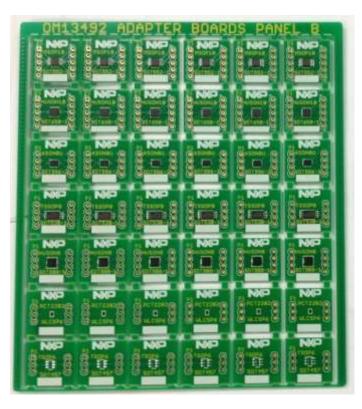
Fm+ Development Board OM13260


Bridge Board OM13399


DIP Adapter Boards

Breakout Board (A through G)

- Prepare any I²C device as a DIP module for the Fm+ I²C Bus EVM Board OM13490
- UM10754 (https://www.nxp.com/docs/en/user-guide/UM10754.pdf)



Example DIP Adapters

Example set up

OM number	12 NC Number	Description (50 Chrs max)	Description (35 Chrs max)	NXP Device Cross Reference	
OM13491		Breakout Board A (RoHS)	Breakout Board A (RoHS)	SO8, VSSOP8, XQFN8, HWSON8, MSOP8	
OM13492		Breakout Board B (RoHS)	Breakout Board B (RoHS)	TSOP6, WLCSP6, HVSON8, TSSOP8, XSON8U, HVSON10, MSOP10	
OM13493		Breakout Board C (RoHS)	Breakout Board C (RoHS)	DQFN14, 16, 20 and 24	
OM13494	M13494 Breakout Board D (RoHS)		Breakout Board D (RoHS)	HVQFN16, 20 and 24	
OM13495		Breakout Board E (RoHS)	Breakout Board E (RoHS)	TSSOP14, 16, 20 and 24	
OM13497		Breakout Board F (RoHS)	Breakout Board F (RoHS)	QSOP16, XFBGA16, XQFN16, TSSOP28	
OM13498		Breakout Board G (RoHS)	Breakout Board G (RoHS)	VFBGA24, XFBGA24, HTSSOP28	

Total Phase Debugging Tools

- Third party, industry leading, diagnostic tools
- Aardvark (I²C Host Adapter)

Beagle (I²C Protocol Analyzer)

- Plugs in to the Fm+ Development Board
- Plugs in to the new Daughter Cards (allows standalone operation)

Aardvark (Master) and Beagle (Monitor)

- Third Party tools for I²C control and data logging
- Bundled software (for Win7/64, MAC, Linux)
- Not supplied by NXP (buy your own tools)

http://www.totalphase.com/products/beagle_ism/

		CONT	ARDVARI PC/S	(P) ACT
	E Andreak DC API Descel Later	TOTAL PHASE	444	altra)
AND AND A DECIMAL AND A DECIMA	the Archest this			AIGA
	I2C Control Note tase Backets off offer for enter the France tablets Moster Witte Backet tase Den (and tare Master Read Hadde tase 1	.7	SPI Control Preve	Table T LA Advantige Constant of the Advantige Constant of the Advantige Constant of the Constant of the Const
			control to the second second second second	
	Terman Hills I ag	1155-151 888888	0 1 00 0 44 41 14 41 14 45 11 14 12 10 00 10 10 10 10 10 10 10 00 10 10 10 10 10 10 10 44 11 14 19 12 10 11 10 10	00 01

https://www.totalphase.com/products/aardvark-i2cspi/

Key NXP Contacts

- Product Marketing Director
 - Giovanni Genna
 - Office: +41 (0)44 454 7767
 - Giovanni.Genna@nxp.com
- Product Marketing Manager
 - Steve Blozis
 - Office: 408-518-5384
 - Stephen.Blozis@nxp.com
- Technical Marketing Manager
 - Emmanuel T. Nana
 - Office: 408-518-5306
 - Emmanuel.Nana@nxp.com
- Regional Marketing Manager
 - Ravi Shah
 - Office: 408-518-5309
 - Ravi.Shah@nxp.com

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.