Hands on Workshop: Embedded
RTOS Enabled Systems

Bryan Brauchler

Presenter title goes here
Second line title goes here

October 2019 | Session #AMF-AUT-T3883"

SECURE CONNECTIONS

FOR A SMARTER WORLD

Abstract:

Devices are constantly increasing in complexity and functionality by
managing more resources, naturally resulting in a need for more
sophisticated software architectures. One of such is the application of
real time operating systems in embedded applications. This
presentation outlines the basic usage of FreeRTOS for the S32K as
will as the rudimentary concepts of operating system operation,
scheduling, and resource management as it applies in the embedded
environment. User applications can be written inside this environment
to maximize the usage of hardware resources and prioritize operations
based on their importance to the system.

-
L |

COMPANY PUBLIC | 1

‘
Agenda

 Introduction to Embedded RTOS

- Sharing Limited Recourses Using an OS

- Tasks and Task Management
- Task Scheduling

- Using Shared Data

- Deadlock

- Application Hooks

- Timing and Software Timers

\
COMPANY PUBLIC | 2 4 {

1. Introduction to Embedded @
RTOS

RTOS — Real Time Operating System

Purpose: Support a MCU'’s basic

functions and provide a platform for

applications to run on. / \

- Allows tasks and their data to \

be separate from other tasks. ,

- Real Time - Uses a scheduler that is
deterministic to meet real time faes

requirements.

- Help to manage resources during
runtime.

COMPANY PUBLIC | 4 X

RTOS — Real Time Operating System

- Operating System — Software that
manages the system resources and
acts as an interface between the user
and the hardware, allowing the user
to execute programs conveniently
and efficiently.

- Kernel — Core of an operating
System, and is the first program User
loaded into memory, and remains the Application
entire time the OS is running. The
kernel interfaces the OS software to
the hardware and manages
processes, memory, and disks for the
OS.

User
Application

()
bt
®
=
©
=
©
I

COMPANY PUBLIC | 5

Features — FreeRTOS

. Scheduler FreeRTOS

- Tasks with multiple priority lists Project FreeRTOSConfig

+ Dynamic memory (heap) Co-routines Queues

- Pre-emptive or co-operative operation

- Very flexible task priority assignment Event Groups Software Timers
- Message queue

.- Software timer Lists Tasks

+ Semaphore and Mutex Heap Notifications
- Tick hook functions

. Idle hook functions AR e

- Stack overflow checking Systick ISRs

- Tick less idle mode

- Flexible, fast and light weight task notification mechanism
COMPANY PUBLIC 6

~eatures — FreeRTOS

FreeRTOS
Project FreeRTOSConfig

A

Application-specific configuration

Co-routine Queue
Event Groups Software
Timers
Lists Eele L Common FreeRTOS Code
Heap Notification
ARM Port

Systick ISRs ‘ ARM Specific code

FreeRTOS Kernel — Philosophy

- Small Kernel, implemented in C*, compiled and linked with

application
- Kernel configuration with #define in FreeRTOSConfig.h
- Kernel only needs tick interrupt and software interrupt
- Scheduler variables and task stack in dynamic memory (heap)
- Multiple tasks with same priority

- Minimal overhead with large scalabillity

-
L |

COMPANY PUBLIC | 8

2. Sharing Limited Resources

Sharing Limited Resources

- Each process is sharing

- The OS gives the illusion of exclusive CPU access to every task that

IS running

- Done by switching between virtual “CPU” configurations in time

Shared Memory/Peripherals

CPU3 |—->

CPU1 CPU2 CPU3 | CPU1
.—
Time

COMPANY PUBLIC

-
L |

10

Sharing Limited Resources

- Even though resources are limited, the OS is designed to give all
tasks access to the entire CPU

- Tasks have their own current state, Set of processer flags, set of
CPU regqisters, stack, and control block.

“Virtual CPU” J Stack Pointer Waiting Lists
1 tasks data in

memory Stack Limits Priority Level

Locks Held Run Counter

Notify State ASCII Name

COMPANY PUBLIC | 11

Context Switching (ARM)

- On entry to the interrupt handler some processer registers are
stacked

- Scheduler determines a context switch is required

- Remaining CPU registers are stacked onto the processes stack
- Stack pointer is saved to the TCB

- Stack pointer of new task is set

- CPU registers are unstacked for the new process

- Control is given to the new process to run

COMPANY PUBLIC | 12

-

L |

Context Switching (ARM)

CPU

CPU Registers

Stack Pointer

Task 2 Stack

CPU Registers

Task 2 TCB

Stack Pointer

Task 1 Stack

Task 1 TCB

COMPANY PUBLIC | 13

3. Tasks and Task Management

Tasks/Threads

Task 3 Stack

- Created with xTaskCreate()

Task 3 TCB

- Allocates space for Task Control Block

(TCB) and a task stack Task 2 Stack
- This task will be ready to run Task 2 TCB

Immediately and scheduled according

to the scheduling policy Task 1 Stack

Task 1 Task 2 Task3 Task1 Task3 Task 2 Task 1 TCB

—

Time COMPANY PUBLIC | 15

TCB — Task Control Block

Used to keep track of task data
- Stack pointer
- Runtime
- Task Priority
- Resources held by the task
- And more

Internal to FreeRTOS API

Task 3 Stack

Task 3 TCB

Task 2 Stack

Task 2 TCB

Task 1 Stack

Task 1 TCB

COMPANY PUBLIC | 16

Task Management APls

BazeType t xTaskCreate(TaskFunction t pvTaskCode,
con=t char * const pcHame,
config5STACK DEPTH TYPE usS5tackDepth,

vold *pvParameters,

UBaseType t uwxPriority,
TaskHandle t *pxCreatedTaszsk

) ;
vold vTaskDelete(TaskHandle t xTask) :;
vold vTaskDelay(const TickType t xTicksToDelay)

vold vTaskPriorityset(TaskHandle t xTask,
UBaseType t nxNewPriority)

vold vTaskSuspend(TaskHandle t xTaskToSuspend) ;

vold vTaskBesume (TaskHandle T xXTaskToResume) ;

API Documentation: https://freertos.org/a00106.htmi

COMPANY PUBLIC | 17

https://freertos.org/a00106.html

FreeRTOS API Conventions

- APl functions are prefixed with their return type
-U — Unsigned
-L — Long
-S — Short
-C — Char
-P — Pointer
- X — Non-stdint variables or size t
- E — Enumerated variables

- For example: The prefix ul would refer to a function that returns an
unsigned long

COMPANY PUBLIC | 18

-

L |

_ab 1: Multitasking with FreeRTOS

PUrpose:

- Run a simple application to see the OS running and the scheduler.
- View debug information about running tasks.

- Watch task states change in different sections of the code.

Tasks can be written to take care of only 1 job all tasks will look as if
they are all running at once.

-
L |

COMPANY PUBLIC | 19

Lab 1: Multitasking with FreeRTOS

ple 0

* workspaceS32DS.ARM.2018.R1_CSEcSecurityWorkshop - C/C++ - csec_boot_protection_Lab_s32k144 | Example
File Edit Source Refactor Navigate Search Project Run Processor Expert Window Hel
0~ E ,,l§3"'§9§;,¢5§=3\|-‘:§$ 2R ASCRACASE |
k144
O B g Deshboard 53 $32DS Project from Example (Alt+B, E) § |
b PE&%&E&M 7 Description: |
Lf:' S32DS Application Project (v2.9.0 Example Projects A | || This demo application demonstrates the usage of the SDK with the
& 532D Library Project Kv2.9.2 Example Projects included FreeRTOS. Uses a software timer to trigger an LED and waits
e v3.0.0 Example Projects for a button interrupt to occur.
v Build/Debua i) The example documentation can be found in the 532 SDK

- documentation at Examples and Demos section.
v (= demo_apps (<SDK_PATH> /doc/Start_Here.html)
= adc_low_power_s32k144
(= ammclib_s32k144

. (=& anfc_s32k144
L] Sta rt WI t h th e S D K (= csec_boot_protection_s32k144
= flexcan_encrypted_s32k144
(= freemaster_s32k144
FreeRTOS demo C e st 8
(& hello_world_s32k144
(= iseled_freemaster_s32k144 IThis demo application demonstrates the usage of the SDK with the included FreeRTOS. Us
(= lin_master_s32k144 [T
(= lin_slave_s32k144

(= scst_s32k144
v (= driver_examples

v (= analog

@ IEmTl . Cancel ‘

COMPANY PUBLIC | 20

Lab 1: Customizing rtos.c

1. Modify includes and definitions at the top of the file.

#include "Cpu.h"
#include "LCD.h"
#include "NXP_logo.h"

#define mainLCD_INT_TASK_PRIORITY(tskIDLE_PRIORITY + 3)
#define mainLCD_TASK_PRIORITY(tskIDLE_PRIORITY + 3)
#define mainAPP_TASK_PRIORITY(tskIDLE_PRIORITY + 1)

//This should be at least 40 times the number of tasks running

#define STATISTICS_PC_BUFFER_LENGTH(256)
#define STATISRICS TASK_STACK SIZE(STATISTICS PC_BUFFER_LENGTH + configMINIMAL_ STACK_SIZE)

COMPANY PUBLIC | 21

Lab 1: Customizing rtos.c

2. Write hardware configuration code in prvSetupHardware

static void prvSetupHardware(void) {

/* Initialize and configure clocks
* - Setup system clocks, dividers
* - see clock manager component for more details
*/
CLOCK_SYS Init(g clockManConfigsArr, CLOCK_MANAGER_CONFIG_CNT,
g clockManCallbacksArr, CLOCK_MANAGER_CALLBACK_CNT);
CLOCK_SYS UpdateConfiguration(1U, CLOCK MANAGER POLICY AGREEMENT);

/* Set the run more to HSRUN to get a 112MHz clock going */

POWER_SYS_Init(&powerConfigsArr, POWER_MANAGER_CONFIG_CNT,
&powerStaticCallbacksConfigsArr, POWER_MANAGER_CALLBACK _CNT);

POWER_SYS_ SetMode(1U, POWER _MANAGER POLICY AGREEMENT);

/* Initialize the pins according to the pin_mux module */
PINS DRV_Init(NUM_OF CONFIGURED_PINS, g pin_mux_InitConfigArr);

COMPANY PUBLIC | 22

Lab 1: Customizing rtos.c

3. Callbacks to display runtime information on the LCD

static void vTimer_callback_display_statistics(TimerHandle_t xTimer) {
/* Validate the timer */
configASSERT(xTimer);

TaskHandle t displayTaskHandle = (TaskHandle t)pvTimerGetTimerID(xTimer);

xTaskNotify(displayTaskHandle, @, eNoAction);

static void task_display_statistics(void *pvParameters) {
uint8 t buff[STATISTICS PC_BUFFER_LENGTH];

for (55) {
xTaskNotifyWait(pdFALSE, pdFALSE, NULL, portMAX_DELAY);

//get runtime stats
vTaskGetRunTimeStats(buff);

//update LCD
LCD_DrawWrappedString(@, 0, buff, WHITE, BLACK, 1);

COMPANY PUBLIC | 23

Lab 1: Customizing rtos.c

4. Create a task that’'s purpose is to initialize the LCD screen

static void task_initalize_screen(void *pvParameters) {
/* init the display */
LCD_InitDisplay();

/* draw NXP logo */
LCD_DrawImage(TFTHEIGHT-200, TFTWIDTH-80, 200, 80, NXP_logo bytes);

/* Start the service task to print out information about the OS on the LCD screen */

TaskHandle_t displayTaskHandle;

TimerHandle_t statsTimerHandle;

xTaskCreate(task display statistics, "LCD Stats", 3*configMINIMAL STACK SIZE, NULL, mainLCD_TASK_ PRIORITY, &displayTaskHandle);

/* Create a timer to periodically signal processing for the display.
* 5 second period.
* Automatically reloaded.
* The associated task handle will be used as the id of the timer. */
statsTimerHandle = xTimerCreate("LCD Timer", pdMS_TO TICKS(1000), pdTRUE, displayTaskHandle,
vTimer_callback display statistics);
xTimerStart(statsTimerHandle, 0);

/* after running code for the display this process exits and

* deletes itself from all running queues. */
vTaskDelete(NULL);

COMPANY PUBLIC | 24 4\

Lab 1: Customizing rtos.c

5. Blink the red and the blue LEDs independently in different tasks
written just like normal C functions.

static void task_blink_red_led(void *pvParameters) {

for (55) {
/* wait approximently one second
* The ticks can be delayed slightly by interrupts and higher priority
* tasks so this is not a good method to wait a specific amount of time*/

vTaskDelay(pdMS_TO_TICKS(1000));

/* Toggle the red led */
PINS_DRV_TogglePins(LED_RED_PORT, 1 << LED_RED_PIN);

static void task_blink_blue_led(void *pvParameters) {
/* move the two blinking lights slightly out of sync */
vTaskDelay(pdMS_TO_TICKS(500));
for (5;3) {
/* wait approximently one second
* The ticks can be delayed slightly by interrupts and higher priority
* tasks so this is not a good method to wait a specific amount of time*/

vTaskDelay(pdMS_TO_TICKS(1000));

/* Toggle the blue led */
PINS_DRV_TogglePins(LED_BLUE_PORT, 1 << LED_BLUE_PIN);

’ COMPANY PUBLIC | 25

Lab 1: Customizing rtos.c

6. Write the rtos_start function that will be called by main to start the
scheduler.

void rtos_start(void) {
/* Configure the NVIC, LED outputs and button inputs. */
prvSetupHardware();

/* Start the two tasks as described in the comments at the top of this
file. */

xTaskCreate(task_initalize screen, "LCD Init", configMINIMAL STACK SIZE, NULL, mainLCD INT TASK PRIORITY, NULL);

/* create tasks to toggle the different LEDs. */
// xTaskCreate(task_blink red led, "RED LED Task", configMINIMAL_ STACK_ SIZE, NULL, 1, NULL);
// xTaskCreate(task_blink_blue led, "BLUE LED Task", configMINIMAL_ STACK SIZE, NULL, 1, NULL);

/* Start the tasks and timer running. */
vTaskStartScheduler();

/* If all is well, the scheduler will now be running, and the following line
will never be reached. If the following line does execute, then there was
insufficient FreeRTOS heap memory available for the idle and/or timer tasks
to be created. See the memory management section on the FreeRTOS web site
for more details. */

for(;5);

COMPANY PUBLIC | 26

Lab 1: Customizing FreeRTOS Settings

- S32 Design studio allows you to modify all OS settings using
Processor Expert

{5 Project Explorer 3 g ¥
(5 freertos_s32k144_vanilla: Debug_FLASH
v % Lab1_FreeRTOS_Basic_Multitasking: Debug
#;;P Binaries
[l Includes

(2 Generated_Code
(2 Project_Settings
2 SDK
v 8 Sources
ic| application.c

le] LCD.c
l€| main.c
2 include ‘%5. Components - Lab1_FreeRTOS_Basic_Multitasking &3 | g3 Dashboan
(= Debug -
'*—/ Documentation (= Generator_Configurations
% Proces ~ v B OSs
G5 Lab2_Freef oW -
gr eveTTee v 08 FreeRTC~~ =7~
=5 Lab3_Freef Open & Co-s Inspector [}
> Lab4_Freef Open VR., = Ever Inspector - Pinned
(G 1 al& Craatl .
> Que Code Generation
= Sem

COMPANY PUBLIC | 27

L |

Lab 1: Customizing FreeRTOS Settings

- Enable generation of run time debug information

Eomponent name

FreeRTOS version "v10.0.1"
Component version 532K144_SDKO1

General | Memory Hook function | Run time and task st . Co-routine | S

Collect runtime statistics
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() 1 line(s)
portGET_RUN_TIME_COUNTER_VALUE() 1 line(s)

Visualization and tracing
Statistic formatting functions

COMPANY PUBLIC | 28

Lab 1: Customizing FreeRTOS Settings

- Under the “User settings” tab, add another debug macro

* String list editor

Definitions 2 line(s)

/* Additional settings can be defined in the property Settings > User settings >
Defmltlons of the FreeRTOS component */
' igRECORD_STACK_HIGH_ADDRESS 1

#define configRECORD STACK HIGH ADDRESS 1

COMPANY PUBLIC | 29

Lab 1: Multitasking with FreeRTOS

Running the task shows both the LEDs blinking and the LCD
displaying information about the different tasks. Using the FreeRTOS
aware features in S32 Design Studio, one can peek into the different
elements of the Operating System.

TCB# Task Name Task Handle Task State Priority Stack Usage Event Ob.. Runtime
LCD Init 20000 B oxda 1%
2 IDLE 0x20000408 P Running 0 (0) 72B/3928 Oxel4 (70.1°-
3 Tmr Svc 0x20000770 Blocked 3(3) 264B/504 B Unknown .. | 0x17f (7.5%)
RED LED Tas 0x20000970 Blocked 1(1) 9% B/392B 0x0 (0.0%)
5 BLUELED Ta 0x20000bf0 - Blocked 1(1) 9B /3928 0x0 (0.0%)
' D Stats 2000111C Suspe 3 B 0xad (133%)

COMPANY PUBLIC | 30 4

Lab 1: Multitasking with FreeRTOS

TCB# Task Name Task Handle Task State Priority Stack Usage Event Ob.. Runtime
1 ICD Ix20000208 Suspendec 33 B oxad3©i1%)
2 DLE 0x20000408 P Running 0(0 72B/3928 Oxel4 (70.15:
3 Tmr Svec 0x20000770 I Blocked 3(3) 264B /5048 Unknown .. [} 0x17f 7.5%)
RED LED Tas 0x200009f0 1 Blocked 1(1) 968 /3928 0x0 (0.0%)
5 BLUE LED Ta 0x20000bf0 1 Blocked 1(1) 968 /3928 0x0 (0.0%)
' D Stat 0x20001110 Suspende 3 Bl 0x2ad (133%)

Some observations we can see from the above
- The Ildle task runs the majority of the time.

- The stacks of “LCD Init” and “LCD Stats” are very full, and may
overflow if more is stacked during their runtime.

- There is very little overhead to run the LEDs.

COMPANY PUBLIC | 31

4. Task Scheduling

Task States and Transitions

/Not Running (Super State)

/>

COMPANY PUBLIC | 33

Task State

Blocked
(Waiting)

Suspended

Given to tasks when they are actively executing their code.
The task that has active control over the processer.

Task state that indicates the task is ready to run.
This task is one of the possible choices for the scheduler when
picking which task to run.

Run state of a task that has purposely given up control in order to
wait for some event (Timing, 1/0, Other tasks).
Not available for the scheduler to pick to run.

Similar to Blocked, except that the task is disabled indefinitely.
The only way for a suspended task to re-enter the ready queue is
explicitly resuming the suspended task

COMPANY PUBLIC | 34

State Transitions

(uporsits)
.'/ \1 . .
Suspended %—_| - A task can be in different states
G0 N during its lifetime
vTaskSuspend() vTaskSuspend
called vTaskResurrl'nleE e
- Only one task can be running on a
core at a time
o B - OS function calls, OS Events, and
\/ L Hardware Interrupts can cause a
Sl state task state transition
\ ~

COMPANY PUBLIC | 35

Scheduler Policies

Non-Preemptive

- Tasks run to completion then return
control to the kernel

Pros:

- Allows more predictable task
lengths

- Less scheduler overhead

Cons:
- May block a higher priority event
- Longer tasks may hog the CPU

Similar to using a rental car.
When the done, control
returns to the rental company
(scheduler) and is given to a
new user (task)

-
L |

COMPANY PUBLIC | 36

Scheduler Policies

Task 1
i Priority: High
Non-Preemptive Waiting on 1/0
Even though task 2
becomes ready and
is higher priority, task

4 will continue to run. ka5

Priority: Medium
Running

Scheduler picks Task 3

Scheduler highest available Priority: Low
priority task. Ready

Task 4
Priority: Low
Done

When Task 4 is
finished, the
scheduler can pick a
new task.

COMPANY PUBLIC | 37

Non-Preemptive Scheduling

Higher i
Priority E
? Task 2 :
Suspended | Ready | Running Suspended
Task 1 :
Running | Suspended
i\ Scheduler running
Lower . i . R
Priority 1, T T2 T3 i

COMPANY PUBLIC | 38

Scheduler Policies

Preemptive

- The kernel can forcibly take control away
from a task to allow another higher
priority task to run

Pros:

- High priority tasks run immediately.
- Makes tasks feel more responsive

Cons:

- Tasks are able to be interrupted and
stopped.

- More overhead due to more task
switching

When your kids all want to use
the Xbox and you, the parentm
must make decisions who gets to
play at a given time.

COMPANY PUBLIC | 39

-

L |

Scheduler Policies Task 1
Priority: High

Non-Preemptive Waiting on 1/0

When a new task
becomes ready,
the scheduler will

what task to run Task 2

Priority: Medium
Running

Task 3

Scheduler Priority: Low
Ready

Task 4
Priority: Low
Ready

Control is taken
away from 4 even
if it has not
completed

COMPANY PUBLIC | 40

Preemptive Scheduling

Higher
Priority

‘F Task 2

Task Completes

Suspended

Running

Suspended

Task Unblocked

Task 1

Task Preempted

Task Completes

Running

Ready

Running | Suspended

Lower 4

Priority 1,

4

—
N
—
w

COMPANY PUBLIC

time

41

Tick Interrupt

- Configurable periodic
iInterrupt that allows the
Kernel to run

- Used for timing and
scheduling in preemptive
scheduling algorithm

- User code can be inserted
in a hook if there are other
things that should happen
every tick in their design

Kernel runs in tick
interrupt to select

next task
Tick
interrupt Newly selected task runs when
occurs | the tick interrupt completes
Kernel
Task 1
Task 2

1 2 3 >

COMPANY PUBLIC | 42

-
L |

Example

Two tasks are running at the same priority, with a preemptive
scheduling algorithm with time sharing enabled

Attime t1, Task 1 At time 12 Task 2 enters the Running
enters the Running state and executes until time 13 - at

state and executes which point Task1 re-enters the
until time {2 Running state

\ s
| /
\ /
4 ‘_,a'r

Task 1 e p—
/
Task 2 AN B e

1 t2 t3 Time

COMPANY PUBLIC | 43

Task Priorities

- Higher Number = Higher Priority

- Assigned on creation of the task

- Can be changed by API calls

- Lower priority tasks gets preempted by higher priority tasks.

- “vTaskPrioritySet()” API function can be used to change the priority

of any task after the scheduler has been started.

-
L |

COMPANY PUBLIC | 44

Task Priorities — Caution

What happens when a high priority task is constantly doing work"?
- Task Starvation — Lower priority tasks will not get a chance to run

- High priority tasks must have time they are blocked or that they yield to allow
lower priority tasks to run

-
L |

COMPANY PUBLIC | 45

Lab 2: Scheduler Policies — Non-Preemptive

- A running task must yield to allow any other tasks

Idle should yield

Use preemption scheduler D_I to run

Thread Local Storage Pointers | O

Portoptimised task sclection - Only the Red LED because the Red LED task
Enable time slicing does not yield to let other tasks run unless it is
Enable newlib reentrant [] "

Enable backward compatibility mOdIfled

static void task_blink_red_led(void *pvParameters) {
for (5;) {
J* wait approximently one second
* The ticks can be delayed slightly by interrupts and higher priority
* tasks so this is not a good method to wait a specific amount of time*/
J/vTaskDelay(pdMS_TO TICKS(1008));

/* delay that does not use the operating system but rather hogs the processor */
Delay(5000008) ;

/* Toggle the red led */

PINS_DRV TogglePins(LED RED PORT, 1 << LED RED PIN):
portYIELD();

COMPANY PUBLIC | 46

Lab 2: Scheduler Policies — Non-Preemptive

Idle should yield
| Use preemption scheduler

- A running task must yield to allow any
other tasks to run

- Only the Red LED because the Red LED
task does not yield to let other tasks run
unless it is modified

Thread Local Storage Pointers

Port optimised task selection [V
Enable task notifications
Enable time slicing
Enable newlib reentrant []
Enable backward compatibility

static void task_blink_red_led(void *pvParameters) {
for (;;) {
/* wait approximently one second
* The ticks can be delayed slightly by interrupts and higher priority
* tasks so this is not a good method to wait a specific amount of time*/
JivTaskDelay (pdMS _TO TICKS(100@));

TO a”OW anOther taSk Of /* delay that does not use the operating system but rather hogs the processor */
the same priority to run, Delay (5000000);

. /* Toggle the red led */
taSk_bIInk_red_Ied \ PINS_%?U_TogglePins(LED_RED_PDRT, 1 << LED_RED_PIN});
must give up control [PoreYIEDO;
(yield) }

COMPANY PUBLIC 4/

_ab 2: Scheduler Policies — Non-Time Slicing

Idle should yield

Use preemption scheduler

- Preemptive scheduler without time slicing
- Only the Red LED will blink because the it

Thread Local Storage Pointers

Port optimised task selection
Enable task notifications

Enable time slicing

Enable newlib reentrant
Enable backward compatibility

KICORIR] o)&

Is at the same priority as the Blue LED
task and will not yield

static void task_blink_red_led(void *pvParameters) {
for (;;) {
/* wait approximently one second
* The ticks can be delayed slightly by interrupts and higher priority
* tasks so this is not a good method to wait a specific amount of time*/
JivTaskDelay (pdMS _TO TICKS(100@));

TO a”OW anOther taSk Of /* delay that does not use the operating system but rather hogs the processor */
the same priority to run, Delay (5000000);

. /* Toggle the red led */
taSk_bIInk_red_Ied \ PINS_%?U_TogglePins(LED_RED_PDRT, 1 << LED_RED_PIN});
must give up control [PoreYIEDO;
(yield) }

COMPANY PUBLIC 48

Lab 2: Scheduler Policies — Non-Time Slicing

Idle should yield
Use preemption scheduler

Thread Local Storage Pointers

Port optimised task selection
Enable task notifications
Enable time slicing

Enable newlib reentrant
Enable backward compatibility [+

NOORR[e |’

- A task must yield for tasks of the same priority to run
- Otherwise, same-priority tasks will be starved

TCB#? Task Name Task Handle Task State Priority Stack Usage vent Ob.. Runtime
> 1 LCD Init 0x20000208 O Suspended 33) x 188B/268B Ox1e8 (0.5%)
y 2 IDLE 0x20000408 Ready 0 (0) &, 0B /3008 0x78 (0.1%)
> 3 Tmr Svc 0x20000770 00 Blocked 303) & 140B /388 B Unknown .. BN 0x1d4f (8.3%)
Imas 0x20000970 T Ready T) 0B/ 30885 | .
2 3 BLUFIED T3 (:200000f0 B Running 10 & 0B/2928B m
> 6 LCD Stats 0x20001110 [Suspended 33) & 568B/660B | Wlox3d6a (17.3%)

COMPANY PUBLIC | 49 X

Tick Interrupt

- Short periodic interrupt when the
kernel is able to run and
schedule a new task if Tiek
neCessa ry gg:&rr";pt Newly selected task runs whenﬁ

the tick interrupt completes
- Not free: the kernel will run fora kernel ’
short time

Kernel runs in tick
interrupt to select

next task

Task 1

. Tick rate is a trade off between Task 2
amount of overhead and t1 2 3 >
responsiveness of the system

COMPANY PUBLIC | 50 4\

High Kernel Overhead
- Extreme Case: Tick Rate = 170000 Hz

TCBT*? Task Mame Task Handle Task State Priority Stack Usage Event Ob.. Runtime
1 LCD Init Ox20000398 U Suspended 3(3 & 2168 /668 B Ox8bab (0.2%)
2 IDLE 0x20000598 < < Ready) 0 (0 & OB/300B %2974 (1.0%)
3 Tmr Svc (20000900 P Running 303 & 52B /2928 A (49.6%)
4 RED LED Tas 0x20000b80 1(1) & 12B /2848 0x5 (0.0%)
5 BLUE LED Ta 0x20000d80 U Ready 1(1) & 4B/2848B Ox6 (0.0%)
6 LCD Stats 0x20001430 Ready 3(3) & 444B /8288) (49.2%)

Tasks get starved because too much time is spent in the kernel for
tasks to complete.

COMPANY PUBLIC | 51 4

FreeRTOS IDLE Task

- An |dle task is automatically created by the scheduler
-Has the lowest priority i.e. O

- Does clean up for the kernel, meaning the task must not be starved

. |dle task Hook

-1t is possible to add application specific functionality directly into the idle task through
the use of an idle hook (or idle callback) function.

-
L |

COMPANY PUBLIC | 52

5. Shared Data

Main Memory

Global Data is a Wonderful Thing?

Shared Data

COMPANY PUBLIC | 54

Main Memory

What's the Problem??

Shared Data

COMPANY PUBLIC | 55

Protection of Shared Data

- Example: Global data
updated in interrupt
handler. Then
accessed by the task.

- g _data1l and g _data2
are initialized to the
same value

- Can you spot an
Issue here?

static void sw_interrupt_handler(void) {
PINS DRV _ClearPortIntFlagCmd(PORTC);

//manipulate global memory so their sum remains the same
g datal++;
g data2 = g datal;

//very crude de-bounce
Delay(2000) ;
portYIELD FROM_ISR(pdFALSE):

static void task_global_memory_access(void *pvParameters) {
for (;;) 1
if (g _datal != g data2) {
//sound the alarm, one of the datas was wrong if we got
for (uint8 t i =0; 1 < 6; i++) {
PINS_DRV TogglePins(LED RED PORT, 1 << LED RED PIN):
vTaskDelay(pdMS_TO TICKS(100));

h

COMPANY PUBLIC | 56

Protection of Shared Data

- Context Switches can happen between any two lines of machine

code

LW I

PEREIE

= ¥ =AW rEl i — = Lio L o 'l

//sound the alarm, one
for (uint8 t i =8; i
PINS_DRV _TogglePin
vTaskDelay(pdMs_TO
¥

¥ 0PP01206:
OO 1208:
Q000120a:
Pe0e120c:
PO0e120e:
0eee1216:

1dr
1ldr
1dr
1dr
cmp
beg.n

r3, [pc, #52] ; (Bx123¢c <task _global memory access+84>)

r2, [r3, #0]
r3, [pc, #52£ 201240 _<tock clobal memory Sccecsi88>))
r3, [r3, #0]

rz, ra
Bx1206 <task global memory access+30>

-Load g_data1 from memory

- Interrupt occurs, values of g_dat1 and g _data2 are updated
-Load g_data2 from memory

- Compare....
- Result is invalid

COMPANY PUBLIC

What if the
interrupt occurs
at either of
these two
places?

Protection of Shared Data

- Tricky to debug — This type of error can be intermittent and random

- Can happen:
- Between ISRs
- Between ISR and Tasks
- Between Tasks using preemption

- How can this be prevented?

-
L |

COMPANY PUBLIC | 58

Lab 3 — Shared Data Problem

- Try it yourself
- Alarm goes off sometimes, but not all the time

- See if you can make a change to prevent this from happening

- Hint: You should not need to modify code outside of sw_interrupt_handler() and
task_global_memory_access()

COMPANY PUBLIC | 59

-

L |

Protection of Shared Data

- How can this be prevented?

static void task_global_memory_access(void *pvParameters)} {

for (;:) {
portDISABLE INTERRUPTS();|// Masks all 0S managed Interrupts (inter
if (g _datal != g data2) {
portENABLE _INTERRUPTS():
//sound the alarm, one of the datas was wrong if we got here
for (uint8 t 1 =0; 1 < 6; 1++) {

PINS_DRV TogglePins(LED RED PORT, 1 << LED RED PIN):

vTaskDelay(pdMS_TO TICKS(188));

h
continue;
J
portENABLE_TINTERRUPTS();
h
h
Critical section — Only one task can be executing code from this section at once to prevent shared data

issues

COMPANY PUBLIC | 60

Protection of Shared Data

FreeRTOS provides some API definitions for these sections

- Macros will disable all interrupts managed by the OS (all interrupts that are a
lower priority than the kernel are masked)

portENTER_CRITICAL()
portEXIT CRITICAL()

Critical sections also lock the scheduler so another task cannot be
switched in even if the scheduler were to run

-
L |

COMPANY PUBLIC | 61

Protection of Shared Data

- Hardware Is also essentially global data, so it must also be protected
- Hardware and data can have multiple tasks competing to use them
- Only 1 task must access shared hardware/data at once

- OS has features to help us do this!
- Locking and unlocking resources using OS API function calls

-
L |

COMPANY PUBLIC | 62

Protection of Shared Data

- Disabling interrupts is problematic for longer sections
-Increases maximum potential latency
- Makes response time more variable

- FreeRTOS provides objects for locking resources with minimal time
where interrupts are disabled.

COMPANY PUBLIC | 63 4

(

Mutex Locks

- Mutex — Mutual Exclusion

- Designed to restrict access to a resource to one task at a time
FreeRTOS API:

semaphoreHandle t xSemaphoreCreateMntex(void)

xsemaphoreTake (SemaphoreHandle t xSemaphore,
TickType t xTicksToWait) :;
xSemaphoreGive (Semaphnreﬂandla_ﬁ X5Semaphore) ;

xSemaphoreGiveFromISR

{

semaphoreHandle t xSemaphore,

signed BaseType t *pxHigherPriorityTaskWoken
)

*AUTOSAR OS calls this Resource Locks

COMPANY PUBLIC | 64

Mutex Locks

- Analogous to a key that must be held to access data/hardware
- A task must hold the mutex lock to access the hardware

Shared Task 1 Gives up the mutex

Resource
Task 2 Takes the mutex

‘+’
@ *

COMPANY PUBLIC | 65 i

Mutex Lock — Example

Acquire the lock for
m_spl_lock = xSemaphoreCreateMutex(); SPI hardware

void LCD_SendBytes(uint8 t * bytes, uint32 t length) {

/* Acquire the lock on the spl interface to transmit */
xSemaphoreTake(m_spi lock, portMAX DELAY);

/* transmit data */
LPSPI_DRV MasterTransfter(LPSPICOM1, bytes, NULL, length};
xEventGroupWaitBits(eg LCD, //LCD event group
eg LCD_EVENT _XFER_COMPLETE | eg LCD EVENT_XFER_ERROR, //look for transfer flags
pdTRUE, //clear the flag on return
pdFALSE, //do not wait for all flags
portMAX _DELAY); //max delay

/* release lock on the spi */
xSemaphoreGive(m_spi_lock);

Resource Access

Release the lock allowing
another task to take it

COMPANY PUBLIC | 66

. - Task 3 holds the lock.
Priority Inversion asf o TIOTES e 108

Task 1 requests the lock.
| want the

mutex Currently the priority levels are inverted

because the lower priority task has
exclusive access to that resource.

COMPANY PUBLIC | 67

Priority Inversion with a Mutex Lock — FreeRTOS

| want the
mutex

If a lower priority task holds the
lock, that tasks priority gets raised
to the task that is requesting the

lock.

COMPANY PUBLIC | 68

Priority Inversion with a Resource Lock — Autosar

Ceiling Priority

| want the

Resource

e

Owning a resource elevates a
tasks priority

| want the
Resource

COMPANY PUBLIC | 69

Semaphores

- Contains a counter that can safely be
incremented and decremented. PARKING SPACES

o1 ¢ [EVEISH

- Taken and Given similarly to mutex =+ LEVEL 2
B ¢ LEVEL 3

- Do NOT invert priorities like earlier =g

with a mutex lock Semaphores are similar to parking
garages, if there are spots
available you can take one but if
there is zero you must wait until
there is a resource available

COMPANY PUBLIC | 70 4

Semaphore Railway Analogy

LN

N

g :
%& Value

This is a demonstration/example credited Dr. Prof. John Kubiatowicz (Berkeley)

COMPANY PUBLIC | 71

Event Flags

- Flags to signal different events to tasks
- Possible to wait on an event allowing tasks to block
- Task safe way to look for global flags

- FreeRTOS uses a flag groups or bitfields that may contain one or
more flags

COMPANY PUBLIC | 72

-

L |

Example Event Flags

Set Hardware

Set Timer
Expired
Flag

Set
Application
Specific

Flag

Event Flag Group

Waiting Task is
unblocked by
flag

Addition data
processing in
task

COMPANY PUBLIC | 73

Event Flag APIs with FreeRTOS

EventGroupHandle t xEventGroupCreate(woid):

EventBits t xEventGroupWaitBits(
const EventGroupHandle t xEventGroup,
const EventBits t nxBitsToWaitFor,
const BaseType t xClearOnExit,
const BaszeType t xWaitForAllBits,
TickType t xTicksToWait):

EventBits t xEventGroupSetBits(EventGroupHandle t xEventGroup,
const EventBits t uxBitsToS5et)

EventBits t xEventGroupClearBits(
EventGroupHandle t xEventGroup,

const EventBit=s t nxBitsToClear):

EventBits t xEventGroupGetBits(EventGroupHandle t xEventGroup)

All bit manipulation routines have ISR safe versions for use in an ISR

COMPANY PUBLIC | 74

Other Task Communication Methods

- Message Queues — allows messages to be sent to a queue for
another task which can be sent and waited on by OS functions

- Stream Buffers — message buffer optimized for a single reader and
single writer situation

- Direct Task Notifications — allows for interacting with a specific task
without creating an external object

-
L |

COMPANY PUBLIC | 75

6. Deadlock

COMPANY PUBLIC | 76

A Caution Using Locks

SemaphoreHandle t ResourceA lock, ResourceB lock; . See anything that could be
static void taskl(void *pvParameters) { prob|ematic?
xSemaphoreTake(ResourcelA lock, portMAX _DELAY);
xSemaphoreTake(ResourceB lock, portMAX DELAY);
J//do something
xSemaphoreGive(ResourceA lock);
xSemaphoreGive(ResourceB lock);

¥

static void task2(void *pvParameters) {
xSemaphoreTake(ResourceB lock, portMAX _DELAY);
xSemaphoreTake(ResourceA lock, portMAX DELAY);
J//do something
xSemaphoreGive(Resourcel lock);
xSemaphoreGive(ResourceB lock);

COMPANY PUBLIC | 77 4

A Caution Using Locks

Preemptive scheduling means that statements
in two separate tasks can execute in any order!

SemaphoreHandle t ResourceA lock, ResourceB lock;

static void taskl(void *pvParameters) {
xSemaphoreTake(ResourceA lock, portMAX DELAY);
xSemaphoreTake(ResourceB_lock, portMAX _DELAY);
//do something
xSemaphoreGive (ResourceA lock);
xSemaphoreGive (ResourceB lock);

¥

static void task2(void *pvParameters) {
xSemaphoreTake(ResourceB lock, portMAX DELAY);
xSemaphoreTake(ResourceA lock, portMAX DELAY);
//do something
xSemaphoreGive (ResourceA lock);
xSemaphoreGive (ResourceB _lock);

This is called deadlock!

COMPANY PUBLIC | 78

Deadlock

- A set of processes is deadlocked if each process in the set is waiting
for an event that only another process in the set can cause

Resource

Wait 1 Owned
For By
Owned Wait
By Resource For

2

COMPANY PUBLIC | 79 4\

Necessary Conditions for Deadlock

1. Mutual Exclusion Condition
- Resources are either locked by a process or available

2. Hold and Wait Condition

- Process can request additional resources while holding a resource

3. No Resource Preemption Condition
- Resources that are locked cannot be forcibly taken away

4. Circular Wait Condition

- A circular chain of 2 or more processes are waiting on resources held by another
member in the chain

COMPANY PUBLIC | 80

Dealing With Deadlock

- Just ignore it (unsafe) — Done by most operating systems (UNIX and
Windows)

- Deadlock Avoidance — Monitor free resources and refuse to allocate
a resource if it could potentially cause a deadlock

- Deadlock Prevention — Attack one of the 4 necessary conditions for
deadlock
-No Hold and Wait Condition, No Deadlock
- No Circular waiting, No Deadlock

-
L |

COMPANY PUBLIC | 81

Deadlock Avoidance

- Keep the system in a safe state

- Monitor maximum resources for each
task

- All Deadlocks are unsafe states, but
not all unsafe states result in
deadlock

- For more reading, see Banker's
Algorithm

Deadlock

Safe State

COMPANY PUBLIC | 82

-

L |

https://en.wikipedia.org/wiki/Banker's_algorithm

Deadlock Prevention — Attacking No Preemption

- Resources whose state can be easily restored can be preempted
- CPU registers are saved when a task stops running and restored later

- Not always a viable option
- Consider UART or SPI hardware

- Halfway through sending a message
- The hardware is now given to another process to send a different message

COMPANY PUBLIC | 83

L |

Deadlock Prevention — Attacking Circular Waiting

- Locks must have a global order in which they are acquired in to
prevent deadlock

TASK 1 -~

.

bt

A

\ e ——— e e

"_..-"' "*-‘ - "'-‘ - "1‘
S1T —»y S2 [—y S3 =—) S4 [—» S5 [—1 S6
T~ e = v P
\ T Tom—— it = -
i — —_—
ka ———> Configured order
. TASK 2 =7 T Allowed effective order

~ T Disallowed effective order

COMPANY PUBLIC | 84

Deadlock Prevention — Attacking Hold and Wait

- FreeRTOS APIs allows you to specify a timeout for blocking functions
- Return error if the timeout expires.
- Approach: release any held resources and try again

xSemaphoreTake(m_ResourceB lock, portMAX DELAY);

Timeout in ticks which
can be specified based
on the application

-
L |

COMPANY PUBLIC | 85

Lab 4: Task Synchronization and Deadlock

- Event Flags are used to communicate between an ISR and the task
that processes those events

- 2 Running tasks are trying to both lock the same two resources
resulting in deadlock

-

COMPANY PUBLIC | 86

L |

/. Application Hooks

Application Hooks

- User defined functions that are called during particular operating
system events

- FreeRTOS contains 4 operating system:
-ldle Hook: Called when the system is idle in the idle task
- Tick Hook: Called during the system time tick
- Malloc Failed Hook: Called in the event of a failed allocation
- Stack Overflow Hook: Called in the event of a stack overflow detection

COMPANY PUBLIC | 88

FreeRTOS IDLE Hook

- May be a good place to enter low power mode

1| void vApplicationldleHook (void) {

2| /x Called whenever the RIOS is idle (from the IDLE task
) *x/

3 CPU_EnterLowPowerMode () ; /* wait for interrupt =/

/x here an interrupt woke us up */

I

5|

- FreeRTOS also has an more advanced feature that can turn off the
tick interrupt while the idle task is running allowing long periods of
sleep without periodic interrupts

COMPANY PUBLIC | 89 4

Malloc Failed Hooks

- Example: Stop if allocating memory fails

1|void vApplicationMallocFailedHook (void) {

2| /x Called if a call to pvPortMalloc() fails because
there is insufficient free memory available in the
FreeRTOS heap. pvPortMalloc() is called internally
by FreeRTOS API functions that create tasks,
queues, software timers, and semaphores. The size
of the FreeRTOS heap is set by the

configTOTAL _HEAP_SIZE configuration constant in
FreeRTOSConfig.h. =/

3| taskDISABLE INTERRUPTS() ;

for(;;) {} /« stop for debugging =/

I

5/}

COMPANY PUBLIC | 90

8. Timing and Software Timers

COMPANY PUBLIC | 91

Timing Based on System Tick

/* pdMS TO TICKS() takes a time in milliseconds as its only parameter, and evaluates
to the equivalent time in tick periocds. This example shows XTimeInTicks being set to
the number of tick periods that are equivalent to 200 milliseconds. */

TickType t xTimeInTicks = pdMS TO TICRKS(200);

- configTICK_RATE_HZ to set the system tick

rate

- Timing can now be done using software

based on system ticks.

Kernel runs in tick
interrupt to select

next task
Tick /
interrupt /| Newly selected task runs when
occurs the tick interrupt completes
Kernel
Task 1
Task 2

o2 t3

COMPANY PUBLIC | 92 4

Software Timers

- Used to execute a function sometime in the future based on system
ticks

- Can be configured to run once (one-shot) or periodically
- Run outside of an interrupt context

- In FreeRTOS, managed by a timer daemon that is started with the
scheduler

*AUTOSAR has alarms which function similarly

-
L |

COMPANY PUBLIC | 93

Software Timer States

A software timer can be in one of the following two states:

- Dormant: A Software timer that is not running and will not call its callback function. The timer must be started before it is

used

- Running: A Running software timer will execute its associated callback once the timer expires and either reload or

transition to the dormant state once the counter has expired.

lemerCreate{}
/VLDormant }4* called

xTimerStop()
called

lemerST.artl::l_.
xTimerReset() or
\‘. xTimerChangePeriod()
called
Timer expired / /

Execure Callhack

Auto-reload software timer states and transitions

xTimerCreate()

Dormant called

xTimerStop()

Timer expired / called

Execure Callhack

xTimerStart(),
xTimerReset{) or
xTimerChangePeriod()
called
Running

One-short software timer states and transitions

COMPANY PUBLIC | 94

Software Timer Configuration with FreeRTOS

- Can be configured using Processer Expert
- Alternatively done by using FreeRTOSConfig.h

nsole %y Components Library %y Component Inspector - FreeRTOS 2 &g Progre

/* Softtware timer related definitions. */

_ [] Use software timers #defi fieUSE TIMERS 1
_ o erine COnNTlg _
Timer task ity #define configTIMER TASK_PRIORITY (3)
Timer queue length #define configTIMER_QUEUE_LENGTH 1@
Timer task stack depth #define configTIMER_TASK_STACK_DEPTH 128

COMPANY PUBLIC | 95

Timer Creation

TimerHandle_t xTimerCreate (

void xconst pvTimerlD,

O g & W=

const char xconst pcTimerName,
const TickType t xTimerPeriodInTicks ,
const UBaseType t uxAutoReload,

TimerCallbackFunction_t pxCallbackFunction) ;

statsTimerHandle = xTimerCreate(

"LCD Timer", /* Human Readable Name of the timer (for debug) */
1000/portTICK_PERIOD MS, /* Timeout length in ticks (1008 ms) */

pdTRUE, /* Enable/Disable auto reload of the timer (Enabled)®/
displayTaskHandle, /* Identifier for the timer (Using the task it is associated
viimer callback display statistics) /* timer expiration callback function */;

L |

COMPANY PUBLIC | 96 4

Timer Creation

- Once a timer has been created it needs to be started and managed
by the timer APIs

BaseType t xTimerStart(TimerHandle_t xTimer,
TickType_t xTicksToWait) ;

BaseType t xTimerStop(TimerHandle_t xTimer,
TickType_t xTicksToWait) ;

BaseType t xTimerReset(TimerHandle_t xTimer,
TickType_t xTicksToWait) ;

BaseType t xTimerDelete (TimerHandle_t xTimer,
TickType_t xTicksToWait) ;

o~ o g P WM =

COMPANY PUBLIC | 97 4

Lab 5 — Using Timers

- The lab 5 demo contains a simple clock based on software timers.

- 4 timers to track time
- AM/PM
-Hours
- Minutes
- Seconds

- Software timers are useful tools when scheduling time based events

COMPANY PUBLIC | 98 i

Lab 5 — Using Timers

- Accuracy is based off of the system clock because ticks happen
based on systick.

COMPANY PUBLIC | 99

-

L |

Summary — FreeRTOS Workshop

- Demonstrated Setup of FreeRTOS and debug tools built into S32K
Design Studio

- How to change the scheduling policy and the explored the different
behaviors of each policy

- Learned about the dangers of using global memory in an operating
system context, and safe ways to work around this

- Learned about strategies to avoid deadlock
- Used software timers to defer processing of a task

-
L |

COMPANY PUBLIC | 100

SECURE CONNECTIONS
FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

	Hands on Workshop: Embedded RTOS Enabled Systems
	Abstract:
	Agenda
	1. Introduction to Embedded RTOS
	RTOS – Real Time Operating System
	RTOS – Real Time Operating System
	Features – FreeRTOS
	Features – FreeRTOS
	FreeRTOS Kernel – Philosophy �
	2. Sharing Limited Resources
	Sharing Limited Resources
	Sharing Limited Resources
	Context Switching (ARM)
	Context Switching (ARM)
	3. Tasks and Task Management
	Tasks/Threads
	TCB – Task Control Block
	Task Management APIs
	FreeRTOS API Conventions
	Lab 1: Multitasking with FreeRTOS
	Lab 1: Multitasking with FreeRTOS
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing FreeRTOS Settings
	Lab 1: Customizing FreeRTOS Settings
	Lab 1: Customizing FreeRTOS Settings
	Lab 1: Multitasking with FreeRTOS
	Lab 1: Multitasking with FreeRTOS
	4. Task Scheduling
	Task States and Transitions�
	Task State�
	State Transitions
	Scheduler Policies
	Scheduler Policies
	Non-Preemptive Scheduling
	Scheduler Policies
	Scheduler Policies
	Preemptive Scheduling
	Tick Interrupt
	Example�
	Task Priorities�
	Task Priorities – Caution �
	Lab 2: Scheduler Policies – Non-Preemptive
	Lab 2: Scheduler Policies – Non-Preemptive�
	Lab 2: Scheduler Policies – Non-Time Slicing
	Lab 2: Scheduler Policies – Non-Time Slicing�
	Tick Interrupt
	High Kernel Overhead
	FreeRTOS IDLE Task �
	5. Shared Data
	Global Data is a Wonderful Thing?
	What’s the Problem?
	Protection of Shared Data
	Protection of Shared Data
	Protection of Shared Data
	Lab 3 – Shared Data Problem
	Protection of Shared Data
	Protection of Shared Data
	Protection of Shared Data
	Protection of Shared Data
	Mutex Locks
	Mutex Locks
	Mutex Lock – Example
	Priority Inversion
	Priority Inversion with a Mutex Lock – FreeRTOS
	Priority Inversion with a Resource Lock – Autosar
	Semaphores
	Semaphore Railway Analogy
	Event Flags
	Example Event Flags
	Event Flag APIs with FreeRTOS
	Other Task Communication Methods
	6. Deadlock
	A Caution Using Locks
	A Caution Using Locks
	Deadlock
	Necessary Conditions for Deadlock
	Dealing With Deadlock
	Deadlock Avoidance
	Deadlock Prevention – Attacking No Preemption
	Deadlock Prevention – Attacking Circular Waiting
	Deadlock Prevention – Attacking Hold and Wait
	Lab 4: Task Synchronization and Deadlock
	7. Application Hooks
	Application Hooks
	FreeRTOS IDLE Hook�
	Malloc Failed Hooks
	8. Timing and Software Timers
	Timing Based on System Tick
	Software Timers
	Software Timer States
	Software Timer Configuration with FreeRTOS
	Timer Creation
	Timer Creation
	Lab 5 – Using Timers
	Lab 5 – Using Timers
	Summary – FreeRTOS Workshop
	Slide Number 102

