
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

Presenter title goes here
Second line title goes here

Bryan Brauchler

Hands on Workshop: Embedded
RTOS Enabled Systems

October 2019 | Session #AMF-AUT-T3883

COMPANY PUBLIC 1

Abstract:
Devices are constantly increasing in complexity and functionality by
managing more resources, naturally resulting in a need for more
sophisticated software architectures. One of such is the application of
real time operating systems in embedded applications. This
presentation outlines the basic usage of FreeRTOS for the S32K as
will as the rudimentary concepts of operating system operation,
scheduling, and resource management as it applies in the embedded
environment. User applications can be written inside this environment
to maximize the usage of hardware resources and prioritize operations
based on their importance to the system.

COMPANY PUBLIC 2COMPANY PUBLIC 2

• Introduction to Embedded RTOS
• Sharing Limited Recourses Using an OS
• Tasks and Task Management
• Task Scheduling
• Using Shared Data
• Deadlock
• Application Hooks
• Timing and Software Timers

Agenda

COMPANY PUBLIC 3

1. Introduction to Embedded
RTOS

COMPANY PUBLIC 4

RTOS – Real Time Operating System
Purpose: Support a MCU’s basic
functions and provide a platform for
applications to run on.

• Help to manage resources during
runtime.

• Allows tasks and their data to
be separate from other tasks.

• Real Time - Uses a scheduler that is
deterministic to meet real time
requirements.

COMPANY PUBLIC 5

RTOS – Real Time Operating System
• Operating System – Software that

manages the system resources and
acts as an interface between the user
and the hardware, allowing the user
to execute programs conveniently
and efficiently.

• Kernel – Core of an operating
System, and is the first program
loaded into memory, and remains the
entire time the OS is running. The
kernel interfaces the OS software to
the hardware and manages
processes, memory, and disks for the
OS.

User
Application

OS

Ke
rn

el

H
ar

dw
ar

e

User
Application

…

COMPANY PUBLIC 6

Features – FreeRTOS
• Scheduler
• Tasks with multiple priority lists
• Dynamic memory (heap)
• Pre-emptive or co-operative operation
• Very flexible task priority assignment
• Message queue
• Software timer
• Semaphore and Mutex
• Tick hook functions
• Idle hook functions
• Stack overflow checking
• Tick less idle mode
• Flexible, fast and light weight task notification mechanism

FreeRTOS

Project FreeRTOSConfig

Co-routines Queues

Event Groups Software Timers

Lists Tasks

Heap Notifications

ARM Port

Systick ISRs

COMPANY PUBLIC 7

Features – FreeRTOS
FreeRTOS

Project FreeRTOSConfig

Co-routine Queue

Event Groups Software
Timers

Lists Tasks

Heap Notification

ARM Port

Co-routine Co-routine

Application-specific configuration

Common FreeRTOS Code

ARM Specific codeSystick ISRs

COMPANY PUBLIC 8

FreeRTOS Kernel – Philosophy

• Small Kernel, implemented in C*, compiled and linked with
application

• Kernel configuration with #define in FreeRTOSConfig.h

• Kernel only needs tick interrupt and software interrupt

• Scheduler variables and task stack in dynamic memory (heap)

• Multiple tasks with same priority

• Minimal overhead with large scalability

COMPANY PUBLIC 9

2. Sharing Limited Resources

COMPANY PUBLIC 10

Sharing Limited Resources
• Each process is sharing
• The OS gives the illusion of exclusive CPU access to every task that

is running
• Done by switching between virtual “CPU” configurations in time

Shared Memory/Peripherals

“CPU”
1

“CPU”
2

“CPU”
3

CPU1 CPU2 CPU3 CPU1 CPU3

Time

COMPANY PUBLIC 11

Sharing Limited Resources
• Even though resources are limited, the OS is designed to give all

tasks access to the entire CPU

• Tasks have their own current state, Set of processer flags, set of
CPU registers, stack, and control block.

Task 1 TCB

Task 1 Stack
“Virtual CPU”

1 tasks data in
memory

Task 1 TCB

Stack Pointer Waiting Lists

Stack Limits Priority Level

Locks Held Run Counter

Notify State ASCII Name

COMPANY PUBLIC 12

Context Switching (ARM)
• On entry to the interrupt handler some processer registers are

stacked
• Scheduler determines a context switch is required
• Remaining CPU registers are stacked onto the processes stack
• Stack pointer is saved to the TCB
• Stack pointer of new task is set
• CPU registers are unstacked for the new process
• Control is given to the new process to run

COMPANY PUBLIC 13

Context Switching (ARM)

Task 1 TCB

Task 1 Stack

Task 2 TCB

Task 2 Stack

CPU

CPU RegistersCPU Registers

Stack PointerStack Pointer

CPU Registers

Stack Pointer

COMPANY PUBLIC 14

3. Tasks and Task Management

COMPANY PUBLIC 15

Tasks/Threads

• Created with xTaskCreate()

• Allocates space for Task Control Block
(TCB) and a task stack

• This task will be ready to run
immediately and scheduled according
to the scheduling policy

Free Space

Task1 TCB

Task1 Stack

Free Space

Task1 TCB

Task1 Stack

Task2 TCB

Task2 Stack

Free Space

Task 1 TCB

Task 1 Stack

Task 2 TCB

Task 2 Stack

Task 3 TCB

Task 3 Stack

Task 1 Task 2 Task 3 Task 1 Task 3 Task 2

Time

COMPANY PUBLIC 16

TCB – Task Control Block

Used to keep track of task data
−Stack pointer
−Runtime
−Task Priority
−Resources held by the task
−And more

Internal to FreeRTOS API

Free Space

Task1 TCB

Task1 Stack

Free Space

Task1 TCB

Task1 Stack

Task2 TCB

Task2 Stack

Free Space

Task 1 TCB

Task 1 Stack

Task 2 TCB

Task 2 Stack

Task 3 TCB

Task 3 Stack

COMPANY PUBLIC 17

Task Management APIs

API Documentation: https://freertos.org/a00106.html

https://freertos.org/a00106.html

COMPANY PUBLIC 18

FreeRTOS API Conventions
• API functions are prefixed with their return type
−U – Unsigned
−L – Long
−S – Short
−C – Char
−P – Pointer
−X – Non-stdint variables or size_t
−E – Enumerated variables

• For example: The prefix ul would refer to a function that returns an
unsigned long

COMPANY PUBLIC 19

Lab 1: Multitasking with FreeRTOS
Purpose:
• Run a simple application to see the OS running and the scheduler.
• View debug information about running tasks.
• Watch task states change in different sections of the code.

Tasks can be written to take care of only 1 job all tasks will look as if
they are all running at once.

COMPANY PUBLIC 20

Lab 1: Multitasking with FreeRTOS

• Start with the SDK
FreeRTOS demo

COMPANY PUBLIC 21

Lab 1: Customizing rtos.c
1. Modify includes and definitions at the top of the file.

#include "Cpu.h"
#include "LCD.h"
#include "NXP_logo.h"

#define mainLCD_INT_TASK_PRIORITY(tskIDLE_PRIORITY + 3)
#define mainLCD_TASK_PRIORITY(tskIDLE_PRIORITY + 3)
#define mainAPP_TASK_PRIORITY(tskIDLE_PRIORITY + 1)

//This should be at least 40 times the number of tasks running
#define STATISTICS_PC_BUFFER_LENGTH(256)
#define STATISRICS_TASK_STACK_SIZE(STATISTICS_PC_BUFFER_LENGTH + configMINIMAL_STACK_SIZE)

COMPANY PUBLIC 22

Lab 1: Customizing rtos.c
2. Write hardware configuration code in prvSetupHardware

static void prvSetupHardware(void) {

/* Initialize and configure clocks
* - Setup system clocks, dividers
* - see clock manager component for more details
*/
CLOCK_SYS_Init(g_clockManConfigsArr, CLOCK_MANAGER_CONFIG_CNT,

g_clockManCallbacksArr, CLOCK_MANAGER_CALLBACK_CNT);
CLOCK_SYS_UpdateConfiguration(1U, CLOCK_MANAGER_POLICY_AGREEMENT);

/* Set the run more to HSRUN to get a 112MHz clock going */
POWER_SYS_Init(&powerConfigsArr, POWER_MANAGER_CONFIG_CNT,

&powerStaticCallbacksConfigsArr, POWER_MANAGER_CALLBACK_CNT);
POWER_SYS_SetMode(1U, POWER_MANAGER_POLICY_AGREEMENT);

/* Initialize the pins according to the pin_mux module */
PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);

}

COMPANY PUBLIC 23

Lab 1: Customizing rtos.c
3. Callbacks to display runtime information on the LCD
static void vTimer_callback_display_statistics(TimerHandle_t xTimer) {

/* Validate the timer */
configASSERT(xTimer);

TaskHandle_t displayTaskHandle = (TaskHandle_t)pvTimerGetTimerID(xTimer);

xTaskNotify(displayTaskHandle, 0, eNoAction);
}

/*--*/

static void task_display_statistics(void *pvParameters) {
uint8_t buff[STATISTICS_PC_BUFFER_LENGTH];
for (;;) {

xTaskNotifyWait(pdFALSE, pdFALSE, NULL, portMAX_DELAY);

//get runtime stats
vTaskGetRunTimeStats(buff);

//update LCD
LCD_DrawWrappedString(0, 0, buff, WHITE, BLACK, 1);

}
}

COMPANY PUBLIC 24

Lab 1: Customizing rtos.c
4. Create a task that’s purpose is to initialize the LCD screen
static void task_initalize_screen(void *pvParameters) {

/* init the display */
LCD_InitDisplay();

/* draw NXP logo */
LCD_DrawImage(TFTHEIGHT-200, TFTWIDTH-80, 200, 80, NXP_logo_bytes);

/* Start the service task to print out information about the OS on the LCD screen */
TaskHandle_t displayTaskHandle;
TimerHandle_t statsTimerHandle;
xTaskCreate(task_display_statistics, "LCD Stats", 3*configMINIMAL_STACK_SIZE, NULL, mainLCD_TASK_PRIORITY, &displayTaskHandle);

/* Create a timer to periodically signal processing for the display.
* 5 second period.
* Automatically reloaded.
* The associated task handle will be used as the id of the timer. */
statsTimerHandle = xTimerCreate("LCD Timer", pdMS_TO_TICKS(1000), pdTRUE, displayTaskHandle,

vTimer_callback_display_statistics);
xTimerStart(statsTimerHandle, 0);

/* after running code for the display this process exits and
* deletes itself from all running queues. */
vTaskDelete(NULL);

}

COMPANY PUBLIC 25

Lab 1: Customizing rtos.c
5. Blink the red and the blue LEDs independently in different tasks
written just like normal C functions.
static void task_blink_red_led(void *pvParameters) {

for (;;) {
/* wait approximently one second
* The ticks can be delayed slightly by interrupts and higher priority
* tasks so this is not a good method to wait a specific amount of time*/

vTaskDelay(pdMS_TO_TICKS(1000));

/* Toggle the red led */
PINS_DRV_TogglePins(LED_RED_PORT, 1 << LED_RED_PIN);

}
}

/*--*/

static void task_blink_blue_led(void *pvParameters) {
/* move the two blinking lights slightly out of sync */
vTaskDelay(pdMS_TO_TICKS(500));
for (;;) {

/* wait approximently one second
* The ticks can be delayed slightly by interrupts and higher priority
* tasks so this is not a good method to wait a specific amount of time*/

vTaskDelay(pdMS_TO_TICKS(1000));

/* Toggle the blue led */
PINS_DRV_TogglePins(LED_BLUE_PORT, 1 << LED_BLUE_PIN);

}
}

COMPANY PUBLIC 26

Lab 1: Customizing rtos.c
6. Write the rtos_start function that will be called by main to start the
scheduler.
void rtos_start(void) {

/* Configure the NVIC, LED outputs and button inputs. */
prvSetupHardware();

/* Start the two tasks as described in the comments at the top of this
file. */

xTaskCreate(task_initalize_screen, "LCD Init", configMINIMAL_STACK_SIZE, NULL, mainLCD_INT_TASK_PRIORITY, NULL);

/* create tasks to toggle the different LEDs. */
// xTaskCreate(task_blink_red_led, "RED LED Task", configMINIMAL_STACK_SIZE, NULL, 1, NULL);
// xTaskCreate(task_blink_blue_led, "BLUE LED Task", configMINIMAL_STACK_SIZE, NULL, 1, NULL);

/* Start the tasks and timer running. */
vTaskStartScheduler();

/* If all is well, the scheduler will now be running, and the following line
will never be reached. If the following line does execute, then there was
insufficient FreeRTOS heap memory available for the idle and/or timer tasks
to be created. See the memory management section on the FreeRTOS web site
for more details. */
for(;;);

}

COMPANY PUBLIC 27

Lab 1: Customizing FreeRTOS Settings
• S32 Design studio allows you to modify all OS settings using

Processor Expert

COMPANY PUBLIC 28

Lab 1: Customizing FreeRTOS Settings
• Enable generation of run time debug information

COMPANY PUBLIC 29

Lab 1: Customizing FreeRTOS Settings
• Under the “User settings” tab, add another debug macro

#define configRECORD_STACK_HIGH_ADDRESS 1

COMPANY PUBLIC 30

Lab 1: Multitasking with FreeRTOS
Running the task shows both the LEDs blinking and the LCD
displaying information about the different tasks. Using the FreeRTOS
aware features in S32 Design Studio, one can peek into the different
elements of the Operating System.

COMPANY PUBLIC 31

Lab 1: Multitasking with FreeRTOS

Some observations we can see from the above
• The Idle task runs the majority of the time.
• The stacks of “LCD Init” and “LCD Stats” are very full, and may

overflow if more is stacked during their runtime.
• There is very little overhead to run the LEDs.

COMPANY PUBLIC 32

4. Task Scheduling

COMPANY PUBLIC 33

Task States and Transitions

Suspended

Not Running (Super State)

Task
Creation Running

Blocked
(Waiting)

Ready

COMPANY PUBLIC 34

Task state that indicates the task is ready to run.
This task is one of the possible choices for the scheduler when

picking which task to run.

Run state of a task that has purposely given up control in order to
wait for some event (Timing, I/O, Other tasks).
Not available for the scheduler to pick to run.

Similar to Blocked, except that the task is disabled indefinitely.
The only way for a suspended task to re-enter the ready queue is

explicitly resuming the suspended task

Given to tasks when they are actively executing their code.
The task that has active control over the processer.Running

Blocked
(Waiting)

Ready

Suspended

Task State

COMPANY PUBLIC 35

State Transitions

• A task can be in different states
during its lifetime

• Only one task can be running on a
core at a time

• OS function calls, OS Events, and
Hardware Interrupts can cause a
state task state transition

COMPANY PUBLIC 36

Scheduler Policies
Non-Preemptive
• Tasks run to completion then return

control to the kernel

Pros:
• Allows more predictable task

lengths
• Less scheduler overhead

Cons:
• May block a higher priority event
• Longer tasks may hog the CPU

Similar to using a rental car.
When the done, control
returns to the rental company
(scheduler) and is given to a
new user (task)

COMPANY PUBLIC 37

Scheduler Policies Task 1
Priority: High

Waiting on I/O

Task 4
Priority: Low

Running

Task 2
Priority: Medium
Waiting on I/O

Task 3
Priority: Low

Ready

Task 2
Priority: Medium

Ready

Task 4
Priority: Low

Done

Task 2
Priority: Medium

Running

Scheduler

Even though task 2
becomes ready and
is higher priority, task
4 will continue to run.

When Task 4 is
finished, the
scheduler can pick a
new task.

Scheduler picks
highest available
priority task.

Non-Preemptive

COMPANY PUBLIC 38

Non-Preemptive Scheduling

SuspendedSuspended

SuspendedRunning

Running

Task 1

Task 2

Lower
Priority

Task Completes

Ready

Task Completes

Latency time

Scheduler running

Task Unblocked

timeT1 T2 T3T0

Higher
Priority

COMPANY PUBLIC 39

Scheduler Policies
Preemptive
• The kernel can forcibly take control away

from a task to allow another higher
priority task to run

Pros:
• High priority tasks run immediately.
• Makes tasks feel more responsive

Cons:
• Tasks are able to be interrupted and

stopped.
• More overhead due to more task

switching

When your kids all want to use
the Xbox and you, the parentm
must make decisions who gets to
play at a given time.

COMPANY PUBLIC 40

Scheduler Policies Task 1
Priority: High

Waiting on I/O

Task 4
Priority: Low

Running

Task 2
Priority: Medium
Waiting on I/O

Task 3
Priority: Low

Ready

Task 2
Priority: Medium

Ready

Task 4
Priority: Low

Ready

Task 2
Priority: Medium

Running

Scheduler

When a new task
becomes ready,
the scheduler will
what task to run

Control is taken
away from 4 even
if it has not
completed

Non-Preemptive

COMPANY PUBLIC 41

RunningReady

Preemptive Scheduling

SuspendedSuspended

SuspendedRunning

Running

Task 1

Task 2

Lower
Priority

Task CompletesTask Unblocked

timeT1 T2 T3T0

Higher
Priority

Task Completes

Task Preempted

COMPANY PUBLIC 42

Tick Interrupt
• Configurable periodic

interrupt that allows the
Kernel to run

• Used for timing and
scheduling in preemptive
scheduling algorithm

• User code can be inserted
in a hook if there are other
things that should happen
every tick in their design

COMPANY PUBLIC 43

Example
Two tasks are running at the same priority, with a preemptive
scheduling algorithm with time sharing enabled

COMPANY PUBLIC 44

Task Priorities

• Higher Number = Higher Priority

• Assigned on creation of the task

• Can be changed by API calls

• Lower priority tasks gets preempted by higher priority tasks.

• “vTaskPrioritySet()” API function can be used to change the priority

of any task after the scheduler has been started.

COMPANY PUBLIC 45

Task Priorities – Caution
What happens when a high priority task is constantly doing work?
• Task Starvation – Lower priority tasks will not get a chance to run
• High priority tasks must have time they are blocked or that they yield to allow

lower priority tasks to run

COMPANY PUBLIC 46

Lab 2: Scheduler Policies – Non-Preemptive
• A running task must yield to allow any other tasks

to run
• Only the Red LED because the Red LED task

does not yield to let other tasks run unless it is
modified

COMPANY PUBLIC 47

Lab 2: Scheduler Policies – Non-Preemptive

• A running task must yield to allow any
other tasks to run

• Only the Red LED because the Red LED
task does not yield to let other tasks run
unless it is modified

To allow another task of
the same priority to run,
task_blink_red_led
must give up control
(yield)

COMPANY PUBLIC 48

Lab 2: Scheduler Policies – Non-Time Slicing

• Preemptive scheduler without time slicing
• Only the Red LED will blink because the it

is at the same priority as the Blue LED
task and will not yield

To allow another task of
the same priority to run,
task_blink_red_led
must give up control
(yield)

COMPANY PUBLIC 49

Lab 2: Scheduler Policies – Non-Time Slicing

• A task must yield for tasks of the same priority to run
• Otherwise, same-priority tasks will be starved

COMPANY PUBLIC 50

Tick Interrupt
• Short periodic interrupt when the

kernel is able to run and
schedule a new task if
necessary.

• Not free: the kernel will run for a
short time

• Tick rate is a trade off between
amount of overhead and
responsiveness of the system

COMPANY PUBLIC 51

High Kernel Overhead
• Extreme Case: Tick Rate = 170000 Hz

• Tasks get starved because too much time is spent in the kernel for
tasks to complete.

COMPANY PUBLIC 52

FreeRTOS IDLE Task
• An Idle task is automatically created by the scheduler
−Has the lowest priority i.e. 0

• Does clean up for the kernel, meaning the task must not be starved

• Idle task Hook
− It is possible to add application specific functionality directly into the idle task through

the use of an idle hook (or idle callback) function.

COMPANY PUBLIC 53

5. Shared Data

COMPANY PUBLIC 54

Global Data is a Wonderful Thing?

Shared Data

Main Memory

Data
Accessor

Data
Accessor Data

Accessor

COMPANY PUBLIC 55

What’s the Problem?

Shared Data

Main Memory

Data
Accessor

Data
Accessor Data

Accessor

COMPANY PUBLIC 56

Protection of Shared Data
• Example: Global data

updated in interrupt
handler. Then
accessed by the task.

• g_data1 and g_data2
are initialized to the
same value

• Can you spot an
issue here?

COMPANY PUBLIC 57

Protection of Shared Data
• Context Switches can happen between any two lines of machine

code

−Load g_data1 from memory
− Interrupt occurs, values of g_dat1 and g_data2 are updated
−Load g_data2 from memory
−Compare….
−Result is invalid

What if the
interrupt occurs
at either of
these two
places?

COMPANY PUBLIC 58

Protection of Shared Data
• Tricky to debug – This type of error can be intermittent and random

• Can happen:
−Between ISRs
−Between ISR and Tasks
−Between Tasks using preemption

• How can this be prevented?

COMPANY PUBLIC 59

Lab 3 – Shared Data Problem
• Try it yourself
• Alarm goes off sometimes, but not all the time
• See if you can make a change to prevent this from happening
−Hint: You should not need to modify code outside of sw_interrupt_handler() and

task_global_memory_access()

COMPANY PUBLIC 60

Protection of Shared Data
• How can this be prevented?

Critical section – Only one task can be executing code from this section at once to prevent shared data
issues

COMPANY PUBLIC 61

Protection of Shared Data
FreeRTOS provides some API definitions for these sections
• Macros will disable all interrupts managed by the OS (all interrupts that are a

lower priority than the kernel are masked)

portENTER_CRITICAL()
portEXIT_CRITICAL()

Critical sections also lock the scheduler so another task cannot be
switched in even if the scheduler were to run

COMPANY PUBLIC 62

Protection of Shared Data
• Hardware is also essentially global data, so it must also be protected
• Hardware and data can have multiple tasks competing to use them
• Only 1 task must access shared hardware/data at once

• OS has features to help us do this!
−Locking and unlocking resources using OS API function calls

COMPANY PUBLIC 63

Protection of Shared Data
• Disabling interrupts is problematic for longer sections
− Increases maximum potential latency
−Makes response time more variable

• FreeRTOS provides objects for locking resources with minimal time
where interrupts are disabled.

COMPANY PUBLIC 64

Mutex Locks
• Mutex – Mutual Exclusion

• Designed to restrict access to a resource to one task at a time
FreeRTOS API:

*AUTOSAR OS calls this Resource Locks

COMPANY PUBLIC 65

Mutex Locks
• Analogous to a key that must be held to access data/hardware
• A task must hold the mutex lock to access the hardware

Task 1

Task 2

Shared
Resource

Task 1 Gives up the mutex

Task 2 Takes the mutex

COMPANY PUBLIC 66

Mutex Lock – Example
Acquire the lock for

SPI hardware

Resource Access
Release the lock allowing

another task to take it

COMPANY PUBLIC 67

Priority Inversion

Task 1

Task 2

Task 3

Priority

I want the
mutex

Task 3 holds the lock.

Task 1 requests the lock.

Currently the priority levels are inverted
because the lower priority task has
exclusive access to that resource.

COMPANY PUBLIC 68

Priority Inversion with a Mutex Lock – FreeRTOS

Task 1

Task 2

Task 3

Priority

I want the
mutex

If a lower priority task holds the
lock, that tasks priority gets raised
to the task that is requesting the
lock.

COMPANY PUBLIC 69

Priority Inversion with a Resource Lock – Autosar
Ceiling Priority

Task 1

Task 2

Priority

I want the
Resource

Owning a resource elevates a
tasks priority

I want the
Resource

Task 3

COMPANY PUBLIC 70

Semaphores
• Contains a counter that can safely be

incremented and decremented.

• Taken and Given similarly to mutex

• Do NOT invert priorities like earlier
with a mutex lock Semaphores are similar to parking

garages, if there are spots
available you can take one but if
there is zero you must wait until
there is a resource available

COMPANY PUBLIC 71

Value=0Value=1Value=2

Semaphore Railway Analogy

This is a demonstration/example credited Dr. Prof. John Kubiatowicz (Berkeley)

COMPANY PUBLIC 72

Event Flags
• Flags to signal different events to tasks
• Possible to wait on an event allowing tasks to block
• Task safe way to look for global flags

• FreeRTOS uses a flag groups or bitfields that may contain one or
more flags

COMPANY PUBLIC 73

Example Event Flags

Task 1

Hardware
ISR

Event Flag Group
Set Hardware
Flag Waiting Task is

unblocked by
flag

Addition data
processing in
task

Software
Timer

Some Other
Task

Set Timer
Expired
Flag

Set
Application
Specific
Flag

COMPANY PUBLIC 74

Event Flag APIs with FreeRTOS

All bit manipulation routines have ISR safe versions for use in an ISR

COMPANY PUBLIC 75

Other Task Communication Methods
• Message Queues – allows messages to be sent to a queue for

another task which can be sent and waited on by OS functions

• Stream Buffers – message buffer optimized for a single reader and
single writer situation

• Direct Task Notifications – allows for interacting with a specific task
without creating an external object

COMPANY PUBLIC 76

6. Deadlock

COMPANY PUBLIC 77

A Caution Using Locks
• See anything that could be

problematic?

COMPANY PUBLIC 78

A Caution Using Locks

ResourceA_lock

ResourceB_lock

Task 2

Task 1

Waiting

Waiting

This is called deadlock!

Preemptive scheduling means that statements
in two separate tasks can execute in any order!

COMPANY PUBLIC 79

Deadlock
• A set of processes is deadlocked if each process in the set is waiting

for an event that only another process in the set can cause

Task A

Resource
2

Task B

Resource
1Wait

For

Wait
For

Owned
By

Owned
By

COMPANY PUBLIC 80

Necessary Conditions for Deadlock
1. Mutual Exclusion Condition

• Resources are either locked by a process or available

2. Hold and Wait Condition
• Process can request additional resources while holding a resource

3. No Resource Preemption Condition
• Resources that are locked cannot be forcibly taken away

4. Circular Wait Condition
• A circular chain of 2 or more processes are waiting on resources held by another

member in the chain

COMPANY PUBLIC 81

Dealing With Deadlock
• Just ignore it (unsafe) – Done by most operating systems (UNIX and

Windows)

• Deadlock Avoidance – Monitor free resources and refuse to allocate
a resource if it could potentially cause a deadlock

• Deadlock Prevention – Attack one of the 4 necessary conditions for
deadlock
−No Hold and Wait Condition, No Deadlock
−No Circular waiting, No Deadlock

COMPANY PUBLIC 82

Deadlock Avoidance
• Keep the system in a safe state
• Monitor maximum resources for each

task

• All Deadlocks are unsafe states, but
not all unsafe states result in
deadlock

• For more reading, see Banker’s
Algorithm

Safe State

Unsafe
State

Deadlock

https://en.wikipedia.org/wiki/Banker's_algorithm

COMPANY PUBLIC 83

Deadlock Prevention – Attacking No Preemption
• Resources whose state can be easily restored can be preempted
−CPU registers are saved when a task stops running and restored later

• Not always a viable option
• Consider UART or SPI hardware
−Halfway through sending a message
−The hardware is now given to another process to send a different message

COMPANY PUBLIC 84

Deadlock Prevention – Attacking Circular Waiting
• Locks must have a global order in which they are acquired in to

prevent deadlock

COMPANY PUBLIC 85

Deadlock Prevention – Attacking Hold and Wait
• FreeRTOS APIs allows you to specify a timeout for blocking functions
• Return error if the timeout expires.
• Approach: release any held resources and try again

xSemaphoreTake(m_ResourceB_lock, portMAX_DELAY);

Timeout in ticks which
can be specified based
on the application

COMPANY PUBLIC 86

Lab 4: Task Synchronization and Deadlock
• Event Flags are used to communicate between an ISR and the task

that processes those events
• 2 Running tasks are trying to both lock the same two resources

resulting in deadlock

COMPANY PUBLIC 87

7. Application Hooks

COMPANY PUBLIC 88

Application Hooks
• User defined functions that are called during particular operating

system events

• FreeRTOS contains 4 operating system:
− Idle Hook: Called when the system is idle in the idle task
−Tick Hook: Called during the system time tick
−Malloc Failed Hook: Called in the event of a failed allocation
−Stack Overflow Hook: Called in the event of a stack overflow detection

COMPANY PUBLIC 89

FreeRTOS IDLE Hook
• May be a good place to enter low power mode

• FreeRTOS also has an more advanced feature that can turn off the
tick interrupt while the idle task is running allowing long periods of
sleep without periodic interrupts

COMPANY PUBLIC 90

Malloc Failed Hooks
• Example: Stop if allocating memory fails

COMPANY PUBLIC 91

8. Timing and Software Timers

COMPANY PUBLIC 92

Timing Based on System Tick

• configTICK_RATE_HZ to set the system tick

rate

• Timing can now be done using software

based on system ticks.

COMPANY PUBLIC 93

Software Timers
• Used to execute a function sometime in the future based on system

ticks
• Can be configured to run once (one-shot) or periodically
• Run outside of an interrupt context
• In FreeRTOS, managed by a timer daemon that is started with the

scheduler

*AUTOSAR has alarms which function similarly

COMPANY PUBLIC 94

Software Timer States
• A software timer can be in one of the following two states:

− Dormant: A Software timer that is not running and will not call its callback function. The timer must be started before it is

used

− Running: A Running software timer will execute its associated callback once the timer expires and either reload or

transition to the dormant state once the counter has expired.

Auto-reload software timer states and transitions One-short software timer states and transitions

COMPANY PUBLIC 95

Software Timer Configuration with FreeRTOS
• Can be configured using Processer Expert
• Alternatively done by using FreeRTOSConfig.h

COMPANY PUBLIC 96

Timer Creation

COMPANY PUBLIC 97

Timer Creation
• Once a timer has been created it needs to be started and managed

by the timer APIs

COMPANY PUBLIC 98

Lab 5 – Using Timers
• The lab 5 demo contains a simple clock based on software timers.
• 4 timers to track time
−AM/PM
−Hours
−Minutes
−Seconds

• Software timers are useful tools when scheduling time based events

COMPANY PUBLIC 99

Lab 5 – Using Timers
• Accuracy is based off of the system clock because ticks happen

based on systick.

COMPANY PUBLIC 100

Summary – FreeRTOS Workshop
• Demonstrated Setup of FreeRTOS and debug tools built into S32K

Design Studio
• How to change the scheduling policy and the explored the different

behaviors of each policy
• Learned about the dangers of using global memory in an operating

system context, and safe ways to work around this
• Learned about strategies to avoid deadlock
• Used software timers to defer processing of a task

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

	Hands on Workshop: Embedded RTOS Enabled Systems
	Abstract:
	Agenda
	1. Introduction to Embedded RTOS
	RTOS – Real Time Operating System
	RTOS – Real Time Operating System
	Features – FreeRTOS
	Features – FreeRTOS
	FreeRTOS Kernel – Philosophy �
	2. Sharing Limited Resources
	Sharing Limited Resources
	Sharing Limited Resources
	Context Switching (ARM)
	Context Switching (ARM)
	3. Tasks and Task Management
	Tasks/Threads
	TCB – Task Control Block
	Task Management APIs
	FreeRTOS API Conventions
	Lab 1: Multitasking with FreeRTOS
	Lab 1: Multitasking with FreeRTOS
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing rtos.c
	Lab 1: Customizing FreeRTOS Settings
	Lab 1: Customizing FreeRTOS Settings
	Lab 1: Customizing FreeRTOS Settings
	Lab 1: Multitasking with FreeRTOS
	Lab 1: Multitasking with FreeRTOS
	4. Task Scheduling
	Task States and Transitions�
	Task State�
	State Transitions
	Scheduler Policies
	Scheduler Policies
	Non-Preemptive Scheduling
	Scheduler Policies
	Scheduler Policies
	Preemptive Scheduling
	Tick Interrupt
	Example�
	Task Priorities�
	Task Priorities – Caution �
	Lab 2: Scheduler Policies – Non-Preemptive
	Lab 2: Scheduler Policies – Non-Preemptive�
	Lab 2: Scheduler Policies – Non-Time Slicing
	Lab 2: Scheduler Policies – Non-Time Slicing�
	Tick Interrupt
	High Kernel Overhead
	FreeRTOS IDLE Task �
	5. Shared Data
	Global Data is a Wonderful Thing?
	What’s the Problem?
	Protection of Shared Data
	Protection of Shared Data
	Protection of Shared Data
	Lab 3 – Shared Data Problem
	Protection of Shared Data
	Protection of Shared Data
	Protection of Shared Data
	Protection of Shared Data
	Mutex Locks
	Mutex Locks
	Mutex Lock – Example
	Priority Inversion
	Priority Inversion with a Mutex Lock – FreeRTOS
	Priority Inversion with a Resource Lock – Autosar
	Semaphores
	Semaphore Railway Analogy
	Event Flags
	Example Event Flags
	Event Flag APIs with FreeRTOS
	Other Task Communication Methods
	6. Deadlock
	A Caution Using Locks
	A Caution Using Locks
	Deadlock
	Necessary Conditions for Deadlock
	Dealing With Deadlock
	Deadlock Avoidance
	Deadlock Prevention – Attacking No Preemption
	Deadlock Prevention – Attacking Circular Waiting
	Deadlock Prevention – Attacking Hold and Wait
	Lab 4: Task Synchronization and Deadlock
	7. Application Hooks
	Application Hooks
	FreeRTOS IDLE Hook�
	Malloc Failed Hooks
	8. Timing and Software Timers
	Timing Based on System Tick
	Software Timers
	Software Timer States
	Software Timer Configuration with FreeRTOS
	Timer Creation
	Timer Creation
	Lab 5 – Using Timers
	Lab 5 – Using Timers
	Summary – FreeRTOS Workshop
	Slide Number 102

