
TCP Retransmission Time Out (RTO) and Round-Trip Time (RTT) in MQX RTCS

If you have noticed many TCP Retransmission, Out Of Order or Duplicate Acknowledge packets while

running a TCP/IP application based on MQX RTCS then you may be interested in this article. After some

investigation it comes to be that the default value of global variable _TCP_rto_min may cause this

congestion depending on the application. Finally, this problem was solved by setting a new value to this

variable after calling function RTCS_create() as shown in the snippet below. This article explains what is

behind this behavior and how _TCP_rto_min affects the performance in an application using RTCS.

/* Initialize RTCS */

 error = RTCS_create();

 if (error != RTCS_OK)

 {

 fputs("Fatal Error: RTCS initialization failed.", stderr);

 _task_block();

 }

 _TCP_rto_min = 250;

Network congestion occurs when a network node is carrying more data than it can handle. This can

cause queuing delay, packet loss or the blocking of new connections. Network protocols that use

aggressive retransmissions to compensate for packet loss due to congestion can increase congestion,

even if the initial load has been reduced to a level that would not normally have induced network

congestion.

Connection-oriented protocols such as TCP, watch for packet errors, losses, or delays to adjust the

transmit speed; this is done using the Round-Trip Time (RTT) also called round-trip delay. RTT is the time

required for a signal pulse to travel from a specific source to a specific destination and back again. In this

context it is the time it takes for an outgoing TCP client packet to be acknowledged by the server.

The round trip time is an important factor when determining application performance because on each

transmission the packets have to travel back and forth adding some delay. Initial RTT is the round trip

time that is determined by looking at the TCP Three Way Handshake. Next you can see an example

captured with WireShark sniffer.

As you can see in the capture above device

‘B’ (with IP 192.168.1.202), this is where RTT timer begins

‘A’, this is where RTT timer ends. Finally device

is established.

Below you can see the detailed information about

you can find Initial RTT. In WireShark

packet you want to analyze.

TCP protocol provides a mechanism for ensuring that packets are received,

Retransmission Timeout (RTO) that has an initial value of three seconds.

of the Round-Trip Time for a stream socket packet.

receive an acknowledgment in this time.

three times. This means that if the sender does

will retransmit the packet, this time

and if it still does not receive the acknowledgement, it will retransmit the packet for a third time and

wait for 12 seconds. If sender does not receive acknowledgement at this time it

RTO is defined in tcp_prv.h.

#define TCP_INITIAL_RTO_DEFAULT 3000

However this value can be also modified

OPT_RETRANSMISSION_TIMEOUT option

As you can see in the capture above device ‘A’ (with IP 192.168.1.17) sends a TCP SYN packet to

his is where RTT timer begins. Then device ‘B’ sends a TCP S

. Finally device ‘A’ sends a TCP ACK packet and at this point

detailed information about the last ACK packet shown in the above figure; here

WireShark captures you can see the packet details by double clicking on the

TCP protocol provides a mechanism for ensuring that packets are received, it uses

that has an initial value of three seconds. This value is

Trip Time for a stream socket packet. RTCS attempts to resend the packet, if it does not

receive an acknowledgment in this time. After each retransmission the value of the RTO is doubled up to

three times. This means that if the sender does not receive the acknowledgement after three secon

his time the sender will wait for six seconds to get the acknowledgement,

the acknowledgement, it will retransmit the packet for a third time and

wait for 12 seconds. If sender does not receive acknowledgement at this time it will give up.

TCP_INITIAL_RTO_DEFAULT 3000 /* Retransmission timeout when opening

 a connection, default 3 seconds

 as per RFC1122 */

owever this value can be also modified in the application using function setsockopt()

option instead of rebuilding RTCS library.

sends a TCP SYN packet to device

sends a TCP SYN-ACK back to

and at this point connection

the above figure; here

s you can see the packet details by double clicking on the

uses a timer called

This value is a first, best guess

RTCS attempts to resend the packet, if it does not

e of the RTO is doubled up to

after three seconds it

nds to get the acknowledgement,

the acknowledgement, it will retransmit the packet for a third time and will

will give up. In RTCS the

/* Retransmission timeout when opening

a connection, default 3 seconds

setsockopt() with

But this is not the only logic in TCP, in many cases, mainly when devices are close to each other, waiting

3 second for a packet retransmission may be too long and the application performance can be impacted.

In these cases retransmission logic should be quicker; this is where RTT starts impacting RTO.

When a TCP connection is established, there is one RTT value, and the RTO will be adjusted based on the

Smoothed RTT (SRTT) calculation. This calculation makes accurate estimates of Round-Trip Time, once it

is calculated it’s used to modify RTO value by determining how long the host should wait before

retransmitting the segment. E.g. let’s say your connection is fast enough to reduce the RTO to 500ms, in

this case each packet loss won’t need to wait 3 seconds (default value) to retransmit and the

application’s performance is impacted in a positive way. This strategy is known as Karn’s Algorithm and

is considered to be extremely effective, especially in networks with high packet loss and latency. In RTCS

these calculations are performed in function TCP_Process_RTT_measure().

TCP provides a lock to avoid that RTO keeps decreasing more than the OS timing specs allows. The

lowest RTO will depend on the operating system or TCP implementation; in Windows it is 300ms, and in

Linux it is 200ms. In RTCS the lowest value is 3 times the tick length (5ms), so TCP_RTO_MIN value is

15ms. This is defined in tcp_prv.h.

#define TCP_RTO_MIN (TICK_LENGTH*3) /* Wait at least two ticks before

 retransmitting a packet; imposed

 by granularity of timer hardware

 (if we waited only one tick, the

 tick might expire right away...) */

Once RTCS_create() is called in your application the global variable _TCP_rto_min gets TCP_RTO_MIN as

its initial value. This assignment is done in tcp.c. However, this value can be modified in the user

application.

/*

 ** Global used for TCP_RTO_MIN because we may want to let our

 ** users adjust this.

 */

 _TCP_rto_min = TCP_RTO_MIN;

To modify _TCP_rto_min it is only necessary to overwrite its value AFTER calling RTCS_create(). The

new value may depend on your application’s requirements, in this case a value of 250ms was used.

 /* Initialize RTCS */

 error = RTCS_create();

 if (error != RTCS_OK)

 {

 fputs("Fatal Error: RTCS initialization failed.", stderr);

 _task_block();

 }

 _TCP_rto_min = 250;

In the same way there is a min RTO there is also a max RTO. Its default value is 4 minutes; this is 2 times

the Maximum Segment Lifetime which is also defined in tcp_prv.h. This value can also be modified using

function setsockopt() with option OPT_MAXRTO

#define TCP_MSL 120000L /* Maximum Segment Lifetime; the

 longest time that a packet can

 travel in the Internet (2 min) */

#define TCP_WAITTIMEOUT (2 * TCP_MSL) /* timeout for TIME_WAIT state, defined

 as 2 * MSL (4 min) */

Since each connection is distinct, we must maintain SRTT calculations about each connection separately,

so one connection does not impact the other. TCP uses a special data structure for this purpose, called a

Transmission Control Block (TCB).

Summary:

The Smoothed RTT retransmission logic exists to ensure that users do not experience long latency when

there is congestion in a low latency connection. If it wasn’t for the application of these accurate

predictions then you would experience even more latency on your network.

