EIQ Machine Learning Software Application Development based on
OpenCV Neural Network Framework on QorlQ Layerscape Platforms

NXP created elQ machine learning software for QorlQ Layerscape applications processors, a
set of ML tools which allows developing and deploying ML applications on the QorlQ
Layerscape family of devices.

OpenCV is an open-source computer vision library. It offers a unitary solution for both the
neural network inference (DNN module) and the standard machine learning algorithms (ML
module). It includes many computer vision functions, making it easier to build complex
machine learning applications in a short amount of time and without being dependent on other
libraries.

This document describe applications YOLO object detection, Image segmentation, Image
colorization, Image classification, Human pose estimation and Text detection developed
based on OpenCV DNN framework.

1. NXP elQ software introduction

The NXP elQ machine learning software development environment provides a shell script to
install machine learning applications targeted at NXP QorlQ Layerscape processors. The
NXP elQ software is concerned only with neural networks inference and standard machine-
learning algorithms, leaving neural network training to other specialized software tools and
dedicated hardware. The NXP elQ is continuously expanding to include data-acquisition and
curation tools and model conversion for a wide range of NN frameworks and inference
engines, such as TensorFlow Lite, Arm NN, and Arm Compute Library.

The current version of NXP elQ software delivers machine learning enablement by providing
ML support in LSDK for the two QorlQ Layerscape processors LS1046A and LX2160A. The
NXP elQ software contains these main features:

* OpenCV 4.0.1

* Arm Compute Library 20.08

* Arm NN 20.08

» TensorFlow Lite 2.2.0

* Onnxruntime 1.1.2

* PyTorch 1.6.0

elQ software architecture is described as the following.

User Application

elQ Inference Engines

OpenCV/DNN TF-Lite
Am-NN Onnxruntime
Hardware Abstraction Layer
| Arm Compute Library I

’ Cortex-A ‘

Figure 1. NXP elQ machine learing software

2. OpenCV Software Introduction

OpenCV is an open-source computer vision library. One of its modules (called ML) provides
traditional machine learning algorithms. Another important module in the OpenCV is the DNN,
which provides support for neural network algorithms.

OpenCYV offers a unitary solution for both the neural network inference (DNN module) and the
standard machine learning algorithms (ML module). It includes many computer vision
functions, making it easier to build complex machine learning applications in a short amount
of time and without being dependent on other libraries.

OpenCV has wide adoption in the computer vision field and is supported by a strong and
active community. The key algorithms are specifically optimized for various devices and
instructions sets. For QorlQ Layerscape processor, OpenCV uses the Arm NEON
acceleration. The Arm NEON technology is an advanced SIMD (Single Instruction Multiple
Data) architecture extension for the Arm Cortex-A series. The Arm NEON technology is
intended to improve multimedia user experience by accelerating the audio and video
encoding/decoding, user interface, 2D/3D graphics, or gaming. The Arm NEON can also
accelerate the signal-processing algorithms and functions to speed up applications such as
the audio and video processing, voice and facial recognition, computer vision, and deep
learning.

At its core, the OpenCV DNN module implements an inference engine and does not provide
any functionalities for neural network training. For more details about the supported models
and layers, see the official OpenCV DNN wiki page.

On the other hand, the OpenCV ML module contains classes and functions for solving
machine learning problems such as classification, regression, or clustering. It involves
algorithms such as Support Vector Machine (SVM), decision trees, random trees, expectation

maximization, k-nearest neighbors, classic Bayes classifier, logistic regression, and boosted
trees. For more information, see the official reference manual and machine learning overview.
For more details about OpenCV 4.0.1, see the official OpenCV change log web page.

3. Building EIQ OpenCV Components in LSDK

Download LSDK flexbuild tarball from www.nxp.com/Isdk
$ tar xvzf flexbuild_<version>.tgz
$ cd flexbuild_<version>
$ source setup.env

Build EIQ OpenCV components into rootfs filesystem.

[root@fbubuntu flexbuild]$ flex-builder -i mkrfs

[root@fbubuntu flexbuild]$ flex-builder -c opencv -a arm64

Modify OpenCV DNN application source code in
flexbuild_Isdk2004/packages/apps/eig/opencv/samples/dnn, and rebuild opencv again.
[root@fbubuntu flexbuild]$ flex-builder -c opencv -a arm64

[root@fbubuntu flexbuild]$ flex-builder -i merge-component -B eiq

[root@fbubuntu flexbuild]$ flex-builder -i packrfs

Deploy LSDK distro with elQ OpenCV images to SD card:
[root@fbubuntu flexbuild]$ flex-installer -i pf -d /dev/sdx
[root@fbubuntu flexbuild]$ flex-installer -r build/images/rootfs_<version> LS arm64_main.tgz
-d /dev/sdx
elQ components binaries and libraries will be installed in target rootfs folder:
/usr/local/bin
/usr/local/lib

4. OpenCV DNN demo Applications

OpenCV DNN demos are installed in this folder: /usr/local/bin/

However, the input data, model configurations, and model weights are not located in this
folder, because of their size. These files must be downloaded to the device before running the
demos:

Download the opencv_extra.zip package at this link:
github.com/opencv/opencv_extra/tree/4.0.1, unpack the file to the directory <home_dir>.

$ unzip 4.0.1.zip

The input images, model configurations for some OpenCV examples are available at this
folder:

<home_dir>/opencv_extra-4.0.1/testdata/dnn

The models files can be obtained with two options:

* Option 1: Run opencv_extra download script to download all opencv_extra dependencies,

http://www.nxp.com/lsdk

$ python download_models.py

The script downloads the NN models, configuration files, and input images for some OpenCV
examples. This operation may

take a long time.

* Option 2: Direct download required models using wget command

For example, download caffe model of SqueezeNet,

$ wget https://raw.githubusercontent.com/DeepScale/SqueezeNet/
b5c3f1a23713c8b3fd7b801d229f6b04c64374a5/SqueezeNet_vl.1/squeezenet vl.l.caffemo
del

4.1 YOLO object detection Application
This demo performs the object detection using the You Only Look Once (YOLO) detector
(arxiv.org/abs/1612.08242). It detects objects in an image.

Demo dependencies (taken from the “opencv_extra” package):
» dog416.png

* yolov3.weights

* yolov3.cfg

Other demo dependencies:

* models.yml

* object_detection_classes_yolov3.txt from /usr/local/OpenCV/.

Running the C++ example with the image input from the default location:

example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392
--input=dog416.png --rgb --zoo=/ust/local/OpenCV/models.ymi
--classes=/usr/local/OpenCV/data/dnn/object_detection_classes_yolov3.txt yolo

4.2 Image segmentation Application

The image segmentation means dividing the image into groups of pixels based on some
criteria. You can do this grouping based on color, texture, or some other criteria that you
choose.

Demo dependencies (taken from the “opencv_extra” package):

» dog416.png

« fcn8s-heavy-pascal.caffemodel

« fcn8s-heavy-pascal.prototxt

Other demo dependencies:
* models.yml

Running the C++ example with the image input from the default location:
example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png -

(x=67, y=9) — R:8 G:9 B:5

4.3 Image colorization Application

This example demonstrates the recoloring of grayscale images using DNN. The demo
supports input images only.

Demo dependencies (taken from the “opencv_extra” package):

* colorization_release_v2.caffemodel

« colorization_deploy_v2.prototxt

Other demo dependencies from /usr/local/OpenCV/data/.
* basketball1.png

Running the C++ example with the image input from the default location:
example_dnn_colorization --model=colorization_release_v2.caffemodel --
proto=colorization_deploy_v2.prototxt --image=/ust/local/OpenCV/data/basketballl.png

o 4t $E@EPLPLHY

4.4 Image classification Application
This demo performs image classification using a pre-trained SqueezeNet network.

Demo dependencies (taken from <home_dir>/opencv_extra-4.0.1/testdata/dnn):

» dog416.png

* squeezenet_v1.1.prototxt

* squeezenet_v1.1.caffemodel

$ wget
https://raw.githubusercontent.com/DeepScale/SqueezeNet/b5¢3f1a23713c8b3fd7b801d229f6
b04c64374a5/SqueezeNet_v1.1l/squeezenet_vl.l.caffemodel

Other demo dependencies:

« classification_classes ILSVRC2012.txt from /usr/local/OpenCV/data/dnn/

» models.yml from /usr/local/OpenCV/

Running the C++ example with the image input from the default location:

$ example_dnn_classification --input=./opencv_extra-4.0.1/testdata/dnn/

dog416.png --zoo=/usr/local/OpenCV/models.yml
--classes=/usr/local/OpenCV/data/dnn/classification_classes_ILSVRC2012.txt squeezenet

W Deep learning image classification in... — Ol X

4.5 Human pose estimation Application
This application demonstrates the human or hand pose detection with a pretrained OpenPose
DNN. The demo supports only input images, not the live camera input.

Demo dependencies (taken from <home_dir>/opencv_extra-4.0.1/testdata/dnn):

* grace_hopper_227.png

* Openpose_pose_Ccoco.prototxt

* openpose_pose_coco.caffemodel

$ wget

http://posefsl.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose iter 440000.caffem
odel -O openpose _pose_coco.caffemodel

Running the C++ example with the image input from the default location:

$ example_dnn_openpose --model=openpose_pose_coco.caffemodel
--proto=./opencv_extra-4.0.1/testdata/dnn/openpose_pose_coco.prototxt
--image=./opencv_extra-4.0.1/testdata/dnn/grace_hopper_227.png --width=227
--height=227

http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel%20-O%20openpose_pose_coco.caffemodel
http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel%20-O%20openpose_pose_coco.caffemodel

- T s

a

4.6 Text detection Application

This demo is used for text detection in the image using the EAST algorithm.

Demo dependencies (using wget as option):

* frozen_east_text_detection.pb

Download and unpack the model file,

$ wget https://www.dropbox.com/s/r2ingdOI3zt8hxs/frozen_east_text_detection.tar.gz?dI=1 -
O frozen_east_text_detection.tar.gz

$ tar xvf frozen_east_text_detection.tar.gz

Other demo dependencies(taken from /usr/local/OpenCV/data/):

* imageTextN.png

Running the C++ example with the image input from the default location:
$ example_dnn_text_detection --model=frozen_east_text_detection.pb --
input=/usr/local/OpenCV/data/imageTextN.png

technicdl details are t66 complex to dover irl the book atself.

In teaching ouf courses) we havé fdund if usefil fdr the Studenis 1o affempt a'number of
smalllimplementation frojects, Which often build on one another. Jin order to gel them used to
working/with real-world images and the challenges that thése present) The students aré then
asked to choose dn ipdividualltopic for bach of their small-group/ final projects. | {Sometimes
these projects even turn into donference papers!) | The éxercises at the end of each ghapter
contain Aumeroussuggestions for| smaller mid-term projects, s well §s more fjpen-ended
problems whose dolutions are still active research fopics. | Wherever possible, |lencourage
§tudents to try their Mlgorithms on their own personal[photographs, since this(bettermotivates
them, [often|Jeads ip treative Vanants on 'the problems) and better [dcquaints! {hem|with the
variety and complexity of real-world ifhagery

In formulating 'and solving cdmputer yisior problems) [l have ofter| found it useful to draw

inspiration from three high-level[approaches:

