
EIQ Machine Learning Software Application Development based on

OpenCV Neural Network Framework on QorIQ Layerscape Platforms

NXP created eIQ machine learning software for QorIQ Layerscape applications processors, a

set of ML tools which allows developing and deploying ML applications on the QorIQ

Layerscape family of devices.

OpenCV is an open-source computer vision library. It offers a unitary solution for both the

neural network inference (DNN module) and the standard machine learning algorithms (ML

module). It includes many computer vision functions, making it easier to build complex

machine learning applications in a short amount of time and without being dependent on other

libraries.

This document describe applications YOLO object detection, Image segmentation, Image

colorization, Image classification, Human pose estimation and Text detection developed

based on OpenCV DNN framework.

1. NXP eIQ software introduction

The NXP eIQ machine learning software development environment provides a shell script to

install machine learning applications targeted at NXP QorIQ Layerscape processors. The

NXP eIQ software is concerned only with neural networks inference and standard machine-

learning algorithms, leaving neural network training to other specialized software tools and

dedicated hardware. The NXP eIQ is continuously expanding to include data-acquisition and

curation tools and model conversion for a wide range of NN frameworks and inference

engines, such as TensorFlow Lite, Arm NN, and Arm Compute Library.

The current version of NXP eIQ software delivers machine learning enablement by providing

ML support in LSDK for the two QorIQ Layerscape processors LS1046A and LX2160A. The

NXP eIQ software contains these main features:

• OpenCV 4.0.1

• Arm Compute Library 20.08

• Arm NN 20.08

• TensorFlow Lite 2.2.0

• Onnxruntime 1.1.2

• PyTorch 1.6.0

eIQ software architecture is described as the following.

2. OpenCV Software Introduction

OpenCV is an open-source computer vision library. One of its modules (called ML) provides

traditional machine learning algorithms. Another important module in the OpenCV is the DNN,

which provides support for neural network algorithms.

OpenCV offers a unitary solution for both the neural network inference (DNN module) and the

standard machine learning algorithms (ML module). It includes many computer vision

functions, making it easier to build complex machine learning applications in a short amount

of time and without being dependent on other libraries.

OpenCV has wide adoption in the computer vision field and is supported by a strong and

active community. The key algorithms are specifically optimized for various devices and

instructions sets. For QorIQ Layerscape processor, OpenCV uses the Arm NEON

acceleration. The Arm NEON technology is an advanced SIMD (Single Instruction Multiple

Data) architecture extension for the Arm Cortex-A series. The Arm NEON technology is

intended to improve multimedia user experience by accelerating the audio and video

encoding/decoding, user interface, 2D/3D graphics, or gaming. The Arm NEON can also

accelerate the signal-processing algorithms and functions to speed up applications such as

the audio and video processing, voice and facial recognition, computer vision, and deep

learning.

At its core, the OpenCV DNN module implements an inference engine and does not provide

any functionalities for neural network training. For more details about the supported models

and layers, see the official OpenCV DNN wiki page.

On the other hand, the OpenCV ML module contains classes and functions for solving

machine learning problems such as classification, regression, or clustering. It involves

algorithms such as Support Vector Machine (SVM), decision trees, random trees, expectation

maximization, k-nearest neighbors, classic Bayes classifier, logistic regression, and boosted

trees. For more information, see the official reference manual and machine learning overview.

For more details about OpenCV 4.0.1, see the official OpenCV change log web page.

3. Building EIQ OpenCV Components in LSDK

Download LSDK flexbuild tarball from www.nxp.com/lsdk

$ tar xvzf flexbuild_<version>.tgz

$ cd flexbuild_<version>

$ source setup.env

Build EIQ OpenCV components into rootfs filesystem.

[root@fbubuntu flexbuild]$ flex-builder -i mkrfs

[root@fbubuntu flexbuild]$ flex-builder -c opencv -a arm64

Modify OpenCV DNN application source code in

flexbuild_lsdk2004/packages/apps/eiq/opencv/samples/dnn, and rebuild opencv again.

[root@fbubuntu flexbuild]$ flex-builder -c opencv -a arm64

[root@fbubuntu flexbuild]$ flex-builder -i merge-component -B eiq

[root@fbubuntu flexbuild]$ flex-builder -i packrfs

Deploy LSDK distro with eIQ OpenCV images to SD card:

[root@fbubuntu flexbuild]$ flex-installer -i pf -d /dev/sdx

[root@fbubuntu flexbuild]$ flex-installer -r build/images/rootfs_<version>_LS_arm64_main.tgz

-d /dev/sdx

eIQ components binaries and libraries will be installed in target rootfs folder:

/usr/local/bin

/usr/local/lib

4. OpenCV DNN demo Applications

OpenCV DNN demos are installed in this folder: /usr/local/bin/

However, the input data, model configurations, and model weights are not located in this

folder, because of their size. These files must be downloaded to the device before running the

demos:

Download the opencv_extra.zip package at this link:

github.com/opencv/opencv_extra/tree/4.0.1, unpack the file to the directory <home_dir>.

$ unzip 4.0.1.zip

The input images, model configurations for some OpenCV examples are available at this

folder:

<home_dir>/opencv_extra-4.0.1/testdata/dnn

The models files can be obtained with two options:

• Option 1: Run opencv_extra download script to download all opencv_extra dependencies,

http://www.nxp.com/lsdk

$ python download_models.py

The script downloads the NN models, configuration files, and input images for some OpenCV

examples. This operation may

take a long time.

• Option 2: Direct download required models using wget command

For example, download caffe model of SqueezeNet,

$ wget https://raw.githubusercontent.com/DeepScale/SqueezeNet/

b5c3f1a23713c8b3fd7b801d229f6b04c64374a5/SqueezeNet_v1.1/squeezenet_v1.1.caffemo

del

4.1 YOLO object detection Application

This demo performs the object detection using the You Only Look Once (YOLO) detector

(arxiv.org/abs/1612.08242). It detects objects in an image.

Demo dependencies (taken from the “opencv_extra” package):

• dog416.png

• yolov3.weights

• yolov3.cfg

Other demo dependencies:

• models.yml

• object_detection_classes_yolov3.txt from /usr/local/OpenCV/.

Running the C++ example with the image input from the default location:

example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392

--input=dog416.png --rgb --zoo=/usr/local/OpenCV/models.yml

--classes=/usr/local/OpenCV/data/dnn/object_detection_classes_yolov3.txt yolo

4.2 Image segmentation Application

The image segmentation means dividing the image into groups of pixels based on some

criteria. You can do this grouping based on color, texture, or some other criteria that you

choose.

Demo dependencies (taken from the “opencv_extra” package):

• dog416.png

• fcn8s-heavy-pascal.caffemodel

• fcn8s-heavy-pascal.prototxt

Other demo dependencies:

• models.yml

Running the C++ example with the image input from the default location:

example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png -

-zoo=/usr/local/OpenCV/models.yml fcn8s

4.3 Image colorization Application

This example demonstrates the recoloring of grayscale images using DNN. The demo

supports input images only.

Demo dependencies (taken from the “opencv_extra” package):

• colorization_release_v2.caffemodel

• colorization_deploy_v2.prototxt

Other demo dependencies from /usr/local/OpenCV/data/.

• basketball1.png

Running the C++ example with the image input from the default location:

example_dnn_colorization --model=colorization_release_v2.caffemodel --

proto=colorization_deploy_v2.prototxt --image=/usr/local/OpenCV/data/basketball1.png

4.4 Image classification Application

This demo performs image classification using a pre-trained SqueezeNet network.

Demo dependencies (taken from <home_dir>/opencv_extra-4.0.1/testdata/dnn):

• dog416.png

• squeezenet_v1.1.prototxt

• squeezenet_v1.1.caffemodel

$ wget

https://raw.githubusercontent.com/DeepScale/SqueezeNet/b5c3f1a23713c8b3fd7b801d229f6

b04c64374a5/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel

Other demo dependencies:

• classification_classes_ILSVRC2012.txt from /usr/local/OpenCV/data/dnn/

• models.yml from /usr/local/OpenCV/

Running the C++ example with the image input from the default location:

$ example_dnn_classification --input=./opencv_extra-4.0.1/testdata/dnn/

dog416.png --zoo=/usr/local/OpenCV/models.yml

--classes=/usr/local/OpenCV/data/dnn/classification_classes_ILSVRC2012.txt squeezenet

4.5 Human pose estimation Application

This application demonstrates the human or hand pose detection with a pretrained OpenPose

DNN. The demo supports only input images, not the live camera input.

Demo dependencies (taken from <home_dir>/opencv_extra-4.0.1/testdata/dnn):

• grace_hopper_227.png

• openpose_pose_coco.prototxt

• openpose_pose_coco.caffemodel

$ wget

http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffem

odel -O openpose_pose_coco.caffemodel

Running the C++ example with the image input from the default location:

$ example_dnn_openpose --model=openpose_pose_coco.caffemodel

--proto=./opencv_extra-4.0.1/testdata/dnn/openpose_pose_coco.prototxt

--image=./opencv_extra-4.0.1/testdata/dnn/grace_hopper_227.png --width=227

--height=227

http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel%20-O%20openpose_pose_coco.caffemodel
http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel%20-O%20openpose_pose_coco.caffemodel

4.6 Text detection Application

This demo is used for text detection in the image using the EAST algorithm.

Demo dependencies (using wget as option):

• frozen_east_text_detection.pb

Download and unpack the model file,

$ wget https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1 -

O frozen_east_text_detection.tar.gz

$ tar xvf frozen_east_text_detection.tar.gz

Other demo dependencies(taken from /usr/local/OpenCV/data/):

• imageTextN.png

Running the C++ example with the image input from the default location:

$ example_dnn_text_detection --model=frozen_east_text_detection.pb --

input=/usr/local/OpenCV/data/imageTextN.png

