

Freescale Semiconductor

1

Trimming the S08P MCU
by: David Diaz Marin

1 Introduction

In case of S08P MCU family, the newest family

from the 8-bit MCU’s, it is recommended to trim

the internal oscillator.

All MCU devices are factory programmed with a

trim value in a reserved memory location. This

trim value can be copied to the SCTRIM register

during reset initialization. The factory trim value

includes the FTRIM bit. For finer precision, the

user can trim the internal oscillator in the

application to take in account small differences

between the factory test setup and actual

application conditions.

The purpose of this document is to demonstrate

the importance about trimming a

microcontroller unit (MCU) showing the

differences between an untrimmed and a

trimmed device.

Contents

1 Introduction .. 1

2 Device overview 1

3 S08P Clock management 2

3.1 Internal clock source (ICS) 2

3.1.1 Clock distribution 2

3.1.2 Functional description 3

3.1.3 Registers 3

4 Demonstration ... 4

5 Using CodeWarrior 7

6 Conclusion ... 9

2 Device overview

The 8-bit S08P MCU family gives your designs more durability and reliability in both harsh industrial and

user interface environments.

For more information please visit the 8-bit S08P MCU web site at:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=S08P

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=S08P

Freescale Semiconductor

2

3 S08P Clock management

3.1 Internal clock source (ICS)

The internal clock source (ICS) module provides clock source options for the MCU. The module contains a

frequency-locked loop (FLL) as a clock source that is controllable by an internal or external reference clock.

The module can provide this FLL clock or the internal reference clock as a source for the MCU system

clock, ICSCLK.

Whichever clock source is chosen, ICSCLK is the output from a bus clock divider, which allows a lower clock

frequency to be derived.

One of the key features of the ICS Module is that the Frequency-locked loop (FLL) is trimmable for

accuracy.

For more detailed information about the ICS, please refer to the Application Note AN3499:

http://www.freescale.com/files/microcontrollers/doc/app_note/AN3499.pdf

3.1.1 Clock distribution

The following figure shows a simplified clock connection diagram.

 Figure 1. System Clock distribution diagram

http://www.freescale.com/files/microcontrollers/doc/app_note/AN3499.pdf

Freescale Semiconductor

3

3.1.2 Functional description

The ICS block diagram is shown in Figure 2.

3.1.3 Registers

The bits involved in the trimming process are the SCTRIM and SCFTRIM from the ICS Control Registers,

ICS_C3 and ICS_C4. At POR, the SCTRIM and SCFTRIM settings are reset to 0x80 and 0 respectively.

Please find more information about the ICS Registers at S08P Reference Manual, Chapter 8, from the

following link:

http://www.freescale.com/files/microcontrollers/doc/ref_manual/MC9S08PT60RM.pdf

dasd

Figure 2. Internal clock source (ICS)

http://www.freescale.com/files/microcontrollers/doc/ref_manual/MC9S08PT60RM.pdf

Freescale Semiconductor

4

4 Demonstration

It is quite important to add the following code lines in order to set the system clock initialization:

//These code lines copy the trim value to the registers mentioned above:

if (*(unsigned char*)0xFF6F != 0xFF) { /* Test if the device trim value is stored on
the specified address */
 ICS_C3 = *(unsigned char*)0xFF6F; /* Initialize ICSTRM register from a non
volatile memory */
 ICS_C4 = (unsigned char)((*(unsigned char*)0xFF6E) & (unsigned char)0x01); /*
Initialize ICSSC register from a non volatile memory */
 }

//After that, the clock source is initialized with the following configuration:

/* Initialization of the ICS control register 1 */
 ICS_C1 = 0x06; /* Output of FLL is selected, RDIV=1 */
 /* Initialization of the ICS control register 2 */
 ICS_C2 = 0x20; /* Divides selected clock by 2.*/

/* ICS_C4: LOLIE=0,CME=0 */

 ICS_C4 = 0x00;

To demonstrate, a PWM signal is generated at 1 KHz, using the bus clock as a source clock.

// FTM Initialization
 FTM2_SC = 0x48; // Timer Overflow Interrupt Enable, Bus Clock/2
 FTM2_MOD = 4000; // PWM frequency is about 1 KHz

 // Configure FTM2 Channel 0
 FTM2_C0SC = 0x28; //Edge-aligned PWM (high-true pulses)
 FTM2_C0V = 2000; // channel 0 set to 50%

Freescale Semiconductor

5

If we do not use following code lines, the internal reference frequency will not be copied to the ICS

registers, and therefore, the output PWM signal will be as the following image shows:

// if (*(unsigned char*)0xFF6F != 0xFF) { /* Test if the device trim value is stored
on the specified address */
// ICS_C3 = *(unsigned char*)0xFF6F; /* Initialize ICSTRM register from a non
volatile memory */
// ICS_C4 = (unsigned char)((*(unsigned char*)0xFF6E) & (unsigned char)0x01); /*
Initialize ICSSC register from a non volatile memory */
// }

Note:

In order to change the internal reference frequency, please refer to Chapter 5.

Figure 3. PWM signal at 1 KHz

Freescale Semiconductor

6

Please note that The FLL loop locks the frequency to the 512 times the internal reference frequency.

If we add the code mentioned and the Factory trim value, 32768 Hz, is used as an internal reference

frequency, we have the following results:

(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)(512)

𝑅𝐷𝐼𝑉
=

(32768)(512)

1
= 16.77 𝑀𝐻𝑧

16.77 𝑀𝐻𝑧

2
= 8.38 𝑀𝐻𝑧 = 𝐵𝑢𝑠 𝐶𝑙𝑜𝑐𝑘

With the Bus clock running at 8.38 MHz and using the FTM code lines, the output PWM signal will be as

the following image shows:

8.38 𝑀𝐻𝑧

(4000)(2)
= 1048.576 𝐻𝑧

PWM output signal with the factory trim value as Internal Reference clock.

Freescale Semiconductor

7

It is possible to change the internal reference clock in order to a finer PWM output signal.

PWM output signal with 31250 Hz as Internal Reference clock.

PWM output signal with 39062 Hz as Internal Reference clock.

5 Using CodeWarrior

Once you have your project in CodeWarrior, it is possible to change the internal reference frequency.

Please follow the next steps:

1. Click Debug Configurations from the Run tool.

Freescale Semiconductor

8

2. Click Edit in Target Settings.

3. Click Advanced Programming Options.

Freescale Semiconductor

9

4. Make sure you select “Use custom trim reference frequency” in order to customize the trim

frequency.

6 Conclusion

As it is mentioned, it is important to add the code lines which copy the internal reference frequency to

the ICS registers.

The following table shows the results with different internal reference frequency values:

Reference
Frequency

Bus Clock
PWM output

(ideal)
PWM output

(real)
% Error

32768 Hz * 8.38 MHz * 1.047 KHz * 1.051 KHz 0.38

31250 Hz 8 MHz 1 KHz 1.001 KHz 0.1

32768 Hz 8.38 MHz 1.047 KHz 1.045 KHz 0.19

39062 Hz 9.99 MHz 1.249 KHz 1.246 KHz 0.24

* Typical value if the code lines mentioned are not included.

