Freescale Semiconductor

Trimming the SO8P MCU

by: David Diaz Marin

1 Introduction

Contents

In case of SO8P MCU family, the newest family
from the 8-bit MCU'’s, it is recommended to trim
the internal oscillator. 1 INtrodUCHION ...oeoveeeeeeeceececeeeeee e 1
All MCU devices are factory programmed with a 2 DeviCe OVEIVIEWcccceeveenieeiieiieeieeeen 1
trim value in a reserved memory location. This 3 SO08P Clock management...................... 2
trim value can be copied to the SCTRIM register 3.1 Internal clock source (ICS)............ 2
during reset initialization. The factory trim value o
includes the FTRIM bit. For finer precision, the 3.1.1 Clock distribution..................... 2
user can trim the internal oscillator in the 3.1.2 Functional description 3
application to take in account small differences 3.1.3 ReEQISIErS ...ovevieeeeeecee e 3
between the factory test setup and actual _
application conditions. 4 Demonstrationccccccceveveervieenieenieeenns 4

Using CodeWalrTiorccccceeveereneneneens 7

The purpose of this document is to demonstrate
the importance about trimming a 6 COoNClUSIONccvvevvericvieecreceee e, 9
microcontroller unit (MCU) showing the

differences between an untrimmed and a

trimmed device.

2 Device overview

The 8-bit SO8P MCU family gives your designs more durability and reliability in both harsh industrial and
user interface environments.

For more information please visit the 8-bit SO8P MCU web site at:

http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=S08P

-,

=" freescale 1

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=S08P

Freescale Semiconductor

3 S08P Clock management
3.1 Internal clock source (ICS)

The internal clock source (ICS) module provides clock source options for the MCU. The module contains a
frequency-locked loop (FLL) as a clock source that is controllable by an internal or external reference clock.
The module can provide this FLL clock or the internal reference clock as a source for the MCU system
clock, ICSCLK.

Whichever clock source is chosen, ICSCLK is the output from a bus clock divider, which allows a lower clock
frequency to be derived.

One of the key features of the ICS Module is that the Frequency-locked loop (FLL) is trimmable for
accuracy.

For more detailed information about the ICS, please refer to the Application Note AN3499:

http://www.freescale.com/files/microcontrollers/doc/app note/AN3499.pdf

3.1.1 Clock distribution

The following figure shows a simplified clock connection diagram.

1-kHz | LPOCLK

LPO
XTAL ~=—] osc |l-oschur
- TCLKO TCLKA TCLK2
EXTAL ICSIRCLK l l l
k. F+ Yy A
FTMO FTM1
WDOG RTC ADC ACMP wrinvo || v FTM2 CRC TSI
Y) t) t ? A) [}
ICSFFOLK [.)\
19
Ics ICSCLK](-8 MHz affer reset) N - -
r N P P L

SCI0 SPI0
CPU RAM FLASH BDC DBG IPC 5CH nc KBIO
SPIH KB
sci2
ICSLCLK T
r— - == = a

Figure 1. System Clock distribution diagram

\)

Z“freescale

http://www.freescale.com/files/microcontrollers/doc/app_note/AN3499.pdf

Freescale Semiconductor

3.1.2 Functional description

The ICS block diagram is shown in Figure 2.

- - — e = = = |
r—- | _Int;rn; C_Im; S_DuEe_BIoEH _______________ I
| — = I
| IREFSTEN BDIV |
I I
I Internal * jon I
| Reference * ' —I-l ICSOUT
Clock n=0-7
| |
. tr _tr 11! =-=]-—-—-- I
lsceraMscTRIM Ir FLL | CLKS |
| Yy I |
| DCOOYT CsLC
| jan . Filter | DCO [——% Sl |
| n=0-7 | I |ICSBDCCLK
| A 1 |
I 3 CLKSW
[. R
IREFS
| | IREFS | *BUSCLK
| RDIV i
| = [CSFFCLK
|

| IREFST | ciksT | LouE | ows | Lock | cMmE |

Figure 2. Internal clock source (ICS)

3.1.3 Registers

The bits involved in the trimming process are the SCTRIM and SCFTRIM from the ICS Control Registers,
ICS_C3 and ICS_C4. At POR, the SCTRIM and SCFTRIM settings are reset to 0x80 and 0 respectively.

Please find more information about the ICS Registers at SO8P Reference Manual, Chapter 8, from the
following link:

http://www.freescale.com/files/microcontrollers/doc/ref manual/MC9S08PT60RM.pdf

=" freescale 3

http://www.freescale.com/files/microcontrollers/doc/ref_manual/MC9S08PT60RM.pdf

Freescale Semiconductor

4 Demonstration

It is quite important to add the following code lines in order to set the system clock initialization:

//These code lines copy the trim value to the registers mentioned above:

if (*(unsigned char*)OxFF6F != OxFF) { /* Test if the device trim value is stored on
the specified address */

ICS_C3 = *(unsigned char*)OxFF6F; /* Initialize ICSTRM register from a non
volatile memory */

ICS_C4 = (unsigned char)((*(unsigned char*)0xFF6E) & (unsigned char)exe1l); /*
Initialize ICSSC register from a non volatile memory */

}

//After that, the clock source is initialized with the following configuration:

/* Initialization of the ICS control register 1 */

ICS_C1 = 0x06; /* Output of FLL is selected, RDIV=1 */
/* Initialization of the ICS control register 2 */
ICS_C2 = 0x20; /* Divides selected clock by 2.*/

/* ICS_C4: LOLIE=0,CME=0 */

ICS_C4 = 0x00;

To demonstrate, a PWM signal is generated at 1 KHz, using the bus clock as a source clock.

// FTM Initialization
FTM2_SC = 0x48; // Timer Overflow Interrupt Enable, Bus Clock/2
FTM2_MOD = 4000; // PWM frequency is about 1 KHz

// Configure FTM2 Channel ©
FTM2_COSC = 0x28; //Edge-aligned PWM (high-true pulses)
FTM2_COV = 2000; // channel 0 set to 50%

-

Z“freescale

Freescale Semiconductor

TimeBase T/Div

Qutput
A (Wour] | cna [cne |
Meter B | Cursor X Auto Set

Figure 3. PWM signal at 1 KHz

If we do not use following code lines, the internal reference frequency will not be copied to the ICS
registers, and therefore, the output PWM signal will be as the following image shows:

// if (*(unsigned char*)OxFF6F != OxFF) { /* Test if the device trim value is stored
on the specified address */

// ICS_C3 = *(unsigned char*)@xFF6F; /* Initialize ICSTRM register from a non
volatile memory */

// ICS C4 = (unsigned char)((*(unsigned char*)0xFF6E) & (unsigned char)exel); /*
Initialize ICSSC register from a non volatile memory */

// by

Note:
In order to change the internal reference frequency, please refer to Chapter 5.

freescale >

Freescale Semiconductor

Please note that The FLL loop locks the frequency to the 512 times the internal reference frequency.

If we add the code mentioned and the Factory trim value, 32768 Hz, is used as an internal reference
frequency, we have the following results:

Reference Frequency)(512 32768)(512
(Reference Frequency)($12) | (2760G12) _ 7,

16.77 MHz

5 = 8.38 MHz = Bus Clock

With the Bus clock running at 8.38 MHz and using the FTM code lines, the output PWM signal will be as
the following image shows:

8.38 MHz
(4000)(2)

= 1048.576 Hz

PWM output signal with the factory trim value as Internal Reference clock.

freescale

Freescale Semiconductor

It is possible to change the internal reference clock in order to a finer PWM output signal.

PWM output signal with 31250 Hz as Internal Reference clock.

PWM output signal with 39062 Hz as Internal Reference clock.

5 Using CodeWarrior

Once you have your project in CodeWarrior, it is possible to change the internal reference frequency.
Please follow the next steps:

1. Click Debug Configurations from the Run tool.

¥ C/C++ - PT_60 PWM_sample/Sources/main.c - CodeWarrior Development Studio
File Edit Source Refactor Search Project MQX Tools ProcessorExpertWindow Help

imifhd | & + [[iactive ~| & @, Run Ctrl+F11 l e
%, Debug Fi1
g CodeWarrior Projects 52 = B8 l.g] main.c] m l
. Run History L3N §
. = & = #include "de Lon
l £ o = Run As 3
File Name - . .
~ . . Run Cenfigurations...
LT keaznB_pe wvoid main(vg
C PT_60 PWM_sample : FLASH Debug Hist L4
‘= B o F EnableIntert S
. %%, Binaries | 7* includd Debug As 5
. = FLASH
. Z Lib /* WboG_Cil Debug Configurations...
- [Project Headers = 1§"_3:'°GE _fT_I=_ ® Toggle Breakpoint Ctrl+ShiftsB 12"
- [= Project_Settings /* WDOG_CN)]]
J =| @ ToggleLine Breakpoint nl
PT_60 PWM_sample_FLASH_OSBDM.trac| WDOG_CNT 22 el bl
SafnalysispointsManager.apcenfig /* WDOG TOV @ Toggle Method Breakpoint
4 [= Sources I\IDDG_TDGAL Toggle Watchpoint

freescale

Freescale Semiconductor

2. Click Edit in Target Settings.

Mame: PT_60 PWM_sarmple FLASH_OSBDM

Main .)= Arguments} e Debugger} |2 ’Source\l B Environmenq =l Commen g‘" Trace and Profile}

Debug session type

Choose a predefined debug session type or custom type for maximum flexibility
@ Download () Connect

() Attach () Custom

* C/C++ application

Project: PT_60 PWM_sample Browse...

[¥] Application: FLASH/PT_G0PWM_sample.abs Sealchiject...” B ” Variabl]

} Build (if required) before launching

« Target settings

Connection: - PT_60 PWM_sample_FLASH_OSEDM [it J[New. |

[V/] Execute reset SefquEnce
[7] Execute initialization script(s)

3. Click Advanced Programming Options.

Connection | Advanced

Connection port and Interface Type

Interface: [USB Multilink, USB Multilink FX, Embedded OSBDM/OSITAG - USE vl ’ Refresh

Compatible Hardware
Port: |USEL : Embedded 508 OSBDM/OSITAG Device (SEROL) v

[[]SpecifyIP | 127.0.01 [Specify Network Card IP | 127001 | lAdl.ranced Programming Dptions]

l Socket Programming Options]

Enable logging

-

Z“freescale

Freescale Semiconductor

4. Make sure you select “Use custom trim reference frequency” in order to customize the trim

frequency.

Advanced Options

Prompt on Flash Program?

Always Erase and Program flash without asking.

["]Enable Flash Programming Dialog.

Flash Algerithm Selection

Use the Following Flash Algerithm when Programming Flash Data:
(WARNMIMG: Changing the algorithm will clear all preserved ranges)

(Default)

Alternative Algorithm not Selected

Sync to PLL Change

by
h
iy

Use Alternative Algorithm

Automatically synchronize to the target frequency after each step

/| Calculate Trim and Program the Mon-Volatile Trim Register

==

MNen-Volatile Memery Preservation

Data that resides in a preserved range
of memory will be maintained through
erase/program cycles. Values will be
masked te match the row size of the
memory.

Preserve this Range (Memory Range 1)
1040 107F

Preserve this Range (Memory Range 2)
1040 107F

Preserve this Range (Memory Range 3)

1040 107F

Default trim reference frequency is:

/| Use custom trim reference frequency:

32768.0
32768.0 Hz

Hz. (Valid Range:

31250.0 to 390625 Hz)

Revert

| | Done | | Cancel

6 Conclusion

As it is mentioned, it is important to add the code lines which copy the internal reference frequency to

the ICS registers.

The following table shows the results with different internal reference frequency values:

Reference Bus Clock PWM output PWM output % Error
Frequency (ideal) (real)

32768 Hz * 8.38 MHz * 1.047 KHz * 1.051 KHz 0.38

31250 Hz 8 MHz 1 KHz 1.001 KHz 0.1

32768 Hz 8.38 MHz 1.047 KHz 1.045 KHz 0.19

39062 Hz 9.99 MHz 1.249 KHz 1.246 KHz 0.24

* Typical value if the code lines mentioned are not included.

-,

Z“freescale

