Testhouse

C\&S group GmbH
Am Exer 19b
D-38302 Wolfenbuettel
Phone: +49 5331/ 90 555-0
Fax: +495331/90555-110

Final

Test Report

Device Under Test

Object Family	MC9S12ZVL
Manufacturer	Freescale Semiconductor
Type	LIN Transceiver
Sample marking	PC912Z VL32MLF 0N22G
	CTCTKY1412A

P12_0132-1_017_S12ZVL_L22_Report00 Date of Approval: 2014-Aug-06

Customer

Order No.
Name Freescale Semiconductor México
Address Periférico Sur 8110
Col. El Mante,
Tlaquepaque, Jal. 45609
Mexico

Number of Pages

Test Period
Test Method / Test Requirement
Performed Tests and References

Conformance Test Results

1 LIN OSI Layer 1 for Revision 2.2

48

from ww31/2014 until ww32/2014
LIN Conformance Test Specification
1 LIN OSI Layer 1 - Physical Layer
For LIN devices with Rx and Tx access
For the LIN Physical Layer Specification
Revision 2.2 (Dec. 31th, 2010)
LIN OSI Layer1 Physical Layer for LIN Specification 2.2 Version 2.2

The Test Results refer to the delivered device.

For detailed information see chapter Test List at the following pages.
This Test Report shall not be reproduced without written approval of the test house, except in full and unchanged.

Approved by
Test performed by

L. Kukla, Project Manager

J. Eversmeier, Project Engineer

Table of Content

REVISION HISTORY 3
1 DEVICE UNDER TEST (DETAILED) 4
2 SETUP FOR DEVICE UNDER TEST 5
3 TEST EQUIPMENT 7
4 TECHNICAL CORRESPONDENCE 8
5 TEST LIST 9
5.1 DYnamic Tests 9
5.2 Static Tests 17
6 TEST PROTOCOL DYNAMIC TESTS 24
TC 2.1 Operating Voltage Range 24
TC 2.1.1 Voltage Ramp [7.0V...18V], 0.1 V/s [up] 24
TC 2.1.2 Voltage Ramp [18V...7.0V], 0.1 V / s [down] 24
TC 2.2 Threshold Voltages 25
TC 2.2.1 IUT as Receiver: $V_{\text {SUP }} @ V_{\text {BUs_dom }}$ (down) 25
TC 2.2.2 IUT as Receiver: $V_{\text {SUP }} @ V_{\text {BUS_REC }}(u p)$ 27
TC 2.2.3 IUT as Receiver: VSUP @ VBUs 29
TC 2.3 VARIATION OF V SUP_Non_op $\in[-0.3 \mathrm{~V} . . .7 \mathrm{~V}]$, [18V...40V] 30
TC 2.3.3 IUT as Transceiver $1.1 \mathrm{k} \Omega+$ diode to $V_{\text {LIN }}=18 \mathrm{~V}$ 30
TC 2.4 Ibus Under Several Conditions 31
TC 2.4.1 I I 31
TC 2.4.2 $I_{\text {BUS PAS dom: }}$ IUT in Recessive State: $V_{B U S}=0 \mathrm{~V}$ 31
TC 2.4.3 $I_{\text {BUs_PAS_rec }}$: IUT in Recessive State: $V_{S U P}=7 \mathrm{~V}$ with Variation of $V_{B U S} \in[8 \mathrm{~V} . . .18 \mathrm{~V}]$ 32
TC 2.5 SLOPE CoNTROL 33
TC 2.5.1 Measuring the Duty Cycle @ 10.4 kBit/sec - IUT as Transmitter 33
TC 2.5.2 Measuring the Duty Cycle @ 20 kBit/sec - IUT as Transmitter 36
TC 2.6 Propagation Delay 39
TC 2.7 GND/V ${ }_{\text {BAT }}$ SHIFT TEST - DYNAMIC 40
TC 2.8 FAILURE 44
TC 2.8.1 Loss of Battery 44
TC 2.8.2 Loss of GND 45
TC 2.9 VERIFYING INTERNAL CAPACITANCE AND DYNAMIC INTERFERENCE - IUT AS SLAVE 46
TC 2.9.1 Normal power supply 46
TC 2.9.2 IUT loss of GND 47
TC 2.9.3 IUT loss of $V_{\text {SUP }}$ 48

Revision History

Old revision	New revision	Amendment Description	Editor
-	00	Final version	LK

1 Device Under Test (detailed)

General	
Date of Sample Arrival	21.07 .2014
Manufacturer	Freescale Semiconductor
Sample Marking	PC912Z VL32MLF 0N22G CTCTKY1412A
Test performed with DUT no.	$\# 1$ (S/N: AX142705005)

Device Specification	
Name	MC9S12ZVL
Version	LIN Transceiver
Design step	-
HW-Version	-
SW-Version	-

Documentation	
Hardware manual	-
User manual / datasheet	MC9S12ZVL_Rev.01.00.pdf

Device Classification

According to \quad C

Software Specification	
IDE	-
Compiler	-
Device	-

Supplement	
Node Capability File	-
Connection plan	P12_0132-1_008_S12ZVL_L22_Connection_Plan00.pdf

2 Setup for Device Under Test

D4 is bypassed and $R 6$ is removed to support $V_{\text {SUP }}$

3 Test Equipment

The following test equipment and test system have been used.

No.	Component	Manufacturer	Version / Type	ID
C\&S Hardware				
LIN 2.2				
1	LIN-Power switch Board	C\&S	Rev 2.1	CSHW_000037
2	LIN-Stimulation Board	C\&S	Rev 2.2	CSHW_000096
3	LIN-GND-shift Board	C\&S	Rev 1.3	CSHW_000075
4	LIN-IUT Board	C\&S	Rev 2.1	CSHW_000071
5	LIN-Adapter Board	C\&S	Rev 2.2	CSHW_000097
6	LIN-Adapter Board	C\&S	Rev 2.2	CSHW_000073
7	LIN-Adapter Board	C\&S	Rev 1.1	CSHW_000040
8	LIN-Adapter Board	C\&S	Rev 1.1	CSHW_000099
9	LIN Stimuli Board	C\&S	Rev.1.2	CSHW_000010
10	LIN IUT Board	C\&S	Rev 2.1	CSHW_000193
LIN ext.Duty Cycle Test				
11	Duty Cycle Board	C\&S	Rev 1.0	CSHW_000212
Test System Hardware				
12	Power Supply	Hameg	HM 8142	700034
13	Power Supply	Hameg	HM 8142	700044
14	Power Supply	Hameg	HM 8142	700045
15	Power Supply	Hameg	HM 8142	700017
16	Oscilloscope	Agilent	54622D	700035
17	Oscilloscope	Agilent	MSO8104A	700090
18	Function/ Waveform generator	Hewlett Packard	33120A	700007
19	Function/ Waveform generator	Hewlett Packard	33120A	700043
20	Function/ Waveform generator	Agilent	33220A	700068
21	Data Acquisition/Switch Unit	Agilent	34970A	700056
22	Data Acquisition/Switch Unit	Agilent	34970A	700015
23	20-Channel-Multiplexer Module (2/4 Wire)	Agilent	34901A	700091
24	20-Channel-Multiplexer Module (2/4 Wire)	Agilent	34901A	700059
25	20-Channel Actuator Module	Agilent	34903A	500060
Software				
26	LIN_PL_Supervisor	C\&S	1.0.5.0, Build 5	

4 Technical Correspondence

Name	Lothar Kukla
Phone	+49533190555400
Fax	+49533190555110
Email	L.Kukla@cs-group.de

5 Test List

5.1 Dynamic Tests

Following test case numeration relates on the corresponding test specification.

No.	Description			Result	Comment
2.1	Operating Voltage Range				
2.1.1	Voltage Ramp $\mathrm{V}_{\text {SUP }}=[7 \mathrm{~V} \ldots 18 \mathrm{~V}], 0.1 \mathrm{~V} / \mathrm{s}$ [up]			Pass	RX shows the 10 kHz Signal, The maximum deviation is less or equal than 10\%
2.1.2	Voltage Ramp $\mathrm{V}_{\text {SuP }}=[18 \mathrm{~V} \ldots . .7 \mathrm{~V}], 0.1 \mathrm{~V} / \mathrm{s}$ [down]			Pass	RX shows the 10 kHz Signal, The maximum deviation is less or equal 10\%
2.2	Threshold Voltages				
2.2.1	IUT as Receiver: $\mathrm{V}_{\text {SUP }}$ @ $\mathrm{V}_{\text {Bus_dom }}$ (down)				
2.2.1.1	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Signal Range [18V...4.2V]	Expected RX Signal recessive	Pass	$R X$ is recessive.
	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Signal Range [2.8V...-1.05V]	Expected RX Signal dominant	Pass	$R X$ is dominant.
2.2.1.2	$\mathrm{V}_{\text {SUP }}=13 \mathrm{~V}$	Signal Range [18V...7.8V]	Expected RX Signal recessive	Pass	$R X$ is recessive.
	$V_{\text {SUP }}=13 \mathrm{~V}$	Signal Range [5.2V...-2.1V]	Expected RX Signal dominant	Pass	$R X$ is dominant.
2.2.1.3	$V_{\text {SUP }}=18 \mathrm{~V}$	Signal Range [20.7V...10.8V]	Expected RX Signal recessive	Pass	RX is recessive.
	$V_{\text {SUP }}=18 \mathrm{~V}$	Signal Range [7.2V...-2.7V]	Expected RX Signal dominant	Pass	$R X$ is dominant.
2.2.2	IUT as Receiver: $\mathrm{V}_{\text {SUP }}$ @ $\mathrm{V}_{\text {BUS_REC }}$ (up)				
2.2.2.1	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Signal Range [-1.05V...2.8V]	Expected RX Signal dominant	Pass	$R X$ is dominant.
	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Signal Range [4.2V...18V]	Expected RX Signal recessive	Pass	$R X$ is recessive.
2.2.2.2	$V_{\text {SUP }}=13 \mathrm{~V}$	Signal Range [-2.1V...5.2V]	Expected RX Signal dominant	Pass	$R X$ is dominant.
	$V_{\text {SUP }}=13 \mathrm{~V}$	Signal Range [7.8V...18V]	Expected RX Signal recessive	Pass	$R X$ is recessive.

No.	Description	Result	Comment
2.2.2.3	$\mathrm{V}_{\text {SUP }}=18 \mathrm{~V}$ Signal Range [-2.7V...7.2V] Expected RX Signal dominant	Pass	$R X$ is dominant.
	$\mathrm{V}_{\text {SUP }}=18 \mathrm{~V}$ Signal Range [10.8V...20.7V] Expected RX Signal recessive	Pass	$R X$ is recessive.
2.2.3	IUT as Receiver: $\mathrm{V}_{\text {SUP }} @ \mathrm{~V}_{\text {BUS }}$		
2.2.3.1	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$ Signal Range [-1.05V...8.05V] up [8.05V...-1.05V] down	Pass	$\mathrm{V}_{\text {BUS_CNT }}$ is in range of [0.475...0.525]*V $V_{\text {SUP }}$, $\mathrm{V}_{\mathrm{HYS}}$ is less than $0.175^{*} \mathrm{~V}_{\text {SUP }}$.
2.2.3.2	$\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}$ Signal Range [-2.1V...16.1V] up [16.1V...-2.1V] down	Pass	$V_{\text {BUS_CNT }}$ is in range of [0.475...0.525]* $V_{\text {SUP }}$, $\mathrm{V}_{\text {HYS }}$ is less than $0.175^{*} \mathrm{~V}_{\text {Sup }}$.
2.2.3.3	$\mathrm{V}_{\text {SUP }}=18 \mathrm{~V}$ Signal Range [-2.7V...20.7V] up [20.7V...-2.7V] down	Pass	$\mathrm{V}_{\text {BUS_CNT }}$ is in range of [0.475...0.525]*V $V_{\text {SUP }}$, $\mathrm{V}_{\mathrm{HYS}}$ is less than $0.175^{*} \mathrm{~V}_{\text {SUP }}$.
2.3	Variation of $\mathrm{V}_{\text {SUP_Non_OP }} \in[-0.3 \mathrm{~V}$... 7.0 V$]$]; [18V ... 40V]		
2.3.1	Master ECU $\mathrm{V}_{\text {BAT }}=[-0.3 \mathrm{~V} \ldots 8 \mathrm{~V}],[18 \mathrm{~V} \ldots . .40 \mathrm{~V}] 60 \mathrm{k} \Omega+$ diode to $\mathrm{V}_{\text {LIN }}=18 \mathrm{~V}$	Not applicable	IUT as Transceiver
2.3.2	Slave ECU $\mathrm{V}_{\text {BAT }}=[-0.3 \mathrm{~V} \ldots 8 \mathrm{~V}],[18 \mathrm{~V} \ldots 40 \mathrm{~V}] 1.1 \mathrm{k} \Omega+$ diode to $\mathrm{V}_{\text {LIN }}=18 \mathrm{~V}$	Not applicable	IUT as Transceiver
2.3.3	Transceiver $\quad \mathrm{V}_{\text {SUP }}=[-0.3 \mathrm{~V} \ldots 7 \mathrm{~V}],[18 \mathrm{~V} \ldots 40 \mathrm{~V}] 1.1 \mathrm{k} \Omega+$ diode to $\mathrm{V}_{\text {LIN }}=18 \mathrm{~V}$	Pass	No dominant state occurs, the IUT is not destroyed, the recessive voltage afterwards is less or equal +/-5\%
2.4	Imus Under Several Conditions		
2.4.1	İBUS_LIM @ Dominant State (Driver On) ; V IUT $=18 \mathrm{~V}$	Pass	LIN shows the rectangular signal, the dominant state bus level is lower than th_dom=4.518V for Transceiver
2.4.2	Itic_pAS_dom : IUT in Recessive State : $\mathrm{V}_{\text {IUT }}=12 \mathrm{~V} ; \mathrm{V}_{\text {BUS }}=0 \mathrm{~V}$	Pass	The maximum voltage drop is higher than -500 mV .
2.4.3	$I_{\text {BUS_PAS_rec }}$: IUT in Recessive State : $\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$ with Variation of $\mathrm{V}_{\text {BUS }} \in[8 \mathrm{~V} \ldots 18 \mathrm{~V}]$	Pass	The maximum voltage drop is less or equal than 20 mV .

No.	Description			Result	Comment
2.5	Slope Control				
2.5.1	Measuring the Duty Cycle @ 10.4 kBit/sec - IUT as Transmitter				
2.5.1.1.1	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=6.0 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417 .
2.5.1.1.2	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {PS2 }}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417.
2.5.1.2.1	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=6.0 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417.
2.5.1.2.2	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\text {PS } 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417.
2.5.1.3.1	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=6.0 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417.
2.5.1.3.2	$\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\text {PS2 }}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417 .
2.5.1.4.1	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.4.2	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=7.2 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.5.1	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590 .
2.5.1.5.2	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=7.2 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.

No.	Description			Result	Comment
2.5.1.6.1	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.6.2	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=7.2 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.7.1	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.0 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417 , the measured duty cycle D4 is less or equal than 0.590.
2.5.1.7.2	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.8.1	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.0 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.8.2	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.9.1	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.0 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.
2.5.1.9.2	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.6 \mathrm{~V}$	Pass	The measured duty cycle D3 is greater or equal than 0.417, the measured duty cycle D4 is less or equal than 0.590.

No.	Description			Result	Comment
2.5.2	Measuring the Duty Cycle @ $20.0 \mathrm{kBit} / \mathrm{sec}$ - IUT as Transmitter				
2.5.2.1.1	$\mathrm{V}_{\text {Sup }}=7 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.0 \mathrm{~V}$	Pass	The measured duty cycle D1 is greater or equal than 0.396 .
2.5.2.1.2	$V_{\text {sup }}=7 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D1 is greater or equal than 0.396 .
2.5.2.2.1	$\mathrm{V}_{\text {Sup }}=7 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.0 \mathrm{~V}$	Pass	The measured duty cycle D1 is greater or equal than 0.396 .
2.5.2.2.2	$\mathrm{V}_{\text {Sup }}=7 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D1 is greater or equal than 0.396 .
2.5.2.3.1	$\mathrm{V}_{\text {Sup }}=7 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.0 \mathrm{~V}$	Pass	The measured duty cycle D1 is greater or equal than 0.396 .
2.5.2.3.2	$\mathrm{V}_{\text {Sup }}=7 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D1 is greater or equal than 0.396 .
2.5.2.4.1	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396 , the measured duty cycle D2 is less or equal 0.581 .
2.5.2.4.2	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {PS2 } 2}=7.2 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
2.5.2.5.1	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\text {PS2 } 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581.
2.5.2.5.2	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=7.2 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581 .

No.	Description			Result	Comment
2.5.2.6.1	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=6.6 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581 .
2.5.2.6.2	$\mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=7.2 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396 , the measured duty cycle D2 is less or equal 0.581.
2.5.2.7.1	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.0 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396 , the measured duty cycle D2 is less or equal 0.581.
2.5.2.7.2	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=1 \mathrm{nF}, 1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.6 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581 .
2.5.2.8.1	$\mathrm{V}_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.0 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396 , the measured duty cycle D2 is less or equal 0.581.
2.5.2.8.2	$\mathrm{V}_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=6.8 \mathrm{nF}, 660 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.6 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581 .
2.5.2.9.1	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.0 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581 .
2.5.2.9.2	$V_{\text {SUP }}=18 \mathrm{~V}$	Bus Load $=10 \mathrm{nF}, 500 \Omega$	$\mathrm{V}_{\mathrm{PS} 2}=17.6 \mathrm{~V}$	Pass	The measured duty cycle D1 must be greater or equal than 0.396, the measured duty cycle D2 is less or equal 0.581 .

No.	Description	Result	Comment
2.6	Propagation Delay		
2.6.1	Propagation Delay of the Receiver		
2.6.1.1	$V_{\text {Sup }}=7 \mathrm{~V} \quad$ RX Load $=20 \mathrm{pF}$	Pass	$\mathrm{t}_{\mathrm{rxpd}}$ is less than $6 \mu \mathrm{~s}$, $\mathrm{t}_{\text {rx_sym }}$ is in range $+/-2 \mu \mathrm{~s}$.
2.6.1.2	$V_{\text {Sup }}=14 \mathrm{~V} \quad$ RX Load $=20 \mathrm{pF}$	Pass	$\mathrm{t}_{\mathrm{r} \times \text { pd }}$ is less than $6 \mu \mathrm{~s}$, $\mathrm{t}_{\mathrm{x} \times \text { sym }}$ is in range $+/-2 \mu \mathrm{~s}$.
2.6.1.3	$V_{\text {Sup }}=18 \mathrm{~V} \quad$ RX Load $=20 \mathrm{pF}$	Pass	$\mathrm{t}_{\mathrm{r} \times \text { _pd }}$ is less than $6 \mu \mathrm{~s}$, $\mathrm{t}_{\text {rx_sym }}$ is in range $+/-2 \mu \mathrm{~s}$.
2.7	GND / VBAT Shift Test - Dynamic		
2.7.1	GND Shift Test - Dynamic - IUT as Transceiver (Master)	Pass	The duty cycle of $R X$ is in range $\mathrm{D} 1-2 \mu \mathrm{~s} . . \mathrm{D} 2+2 \mu \mathrm{~s} .$
2.7.2	GND Shift Test - Dynamic - IUT as Transceiver (Slave)	Pass	The duty cycle of RX is in range $\mathrm{D} 1-2 \mu \mathrm{~s} . . \mathrm{D} 2+2 \mu \mathrm{~s} .$
2.7.3	VBAT Shift Test - Dynamic - IUT as Transceiver (Master)	Pass	The duty cycle of RX is in range D1-2 s ... D2 $+2 \mu \mathrm{~s}$.
2.7.4	VBAT Shift Test - Dynamic - IUT as Transceiver (Slave)	Pass	The duty cycle of $R X$ is in range $\mathrm{D} 1-2 \mu \mathrm{~s} . . \mathrm{D} 2+2 \mu \mathrm{~s}$.
2.8	Failure		
2.8.1	Loss of Battery	Pass	No parasitic current path is formed between the bus line and the DUT.
2.8.2	Loss of GND	Pass	No parasitic current path is formed between the bus line and the DUT.
2.9	Verifying internal capacitance and dynamic interference - IUT as Slave		
2.9.1	Normal power supply	Pass	Cslave is less or equal than 250 pF : $\mathrm{T}_{\mathrm{int}} \leq \mathrm{T}_{\text {ref }}$ The IUT does not interfere with the dynamic stimulus

No.	Description	Result	Comment
2.9.2	IUT loss of GND	Pass	Cslave is less or equal than 250 pF : $\mathrm{T}_{\text {int }} \leq \mathrm{T}_{\text {ref }}$ The IUT does not interfere with the dynamic stimulus
2.9.2	IUT loss of $\mathrm{V}_{\text {sup }}$	Pass	Cslave is less or equal than 250 pF : $\mathrm{T}_{\text {int }} \leq \mathrm{T}_{\text {ref }}$ The IUT does not interfere with the dynamic stimulus

5.2 Static Tests

The motivation of static test cases is to check the availability and the boundaries in the data sheet of the IUT. For all integrated circuits every related parameter in Table 3 must be part of the data sheet and fulfil the specified boundaries in terms of physical worst case condition. Data sheet parameter names may deviate from the names in Table 3, but in this case a cross-reference list (data sheet versus Table 3) shall be provided for this test. Parameter conditions may deviate from the conditions in Table 3, if the data sheet conditions are according to the physical worst case context in Table 3 at least. If one parameter does not pass this test, the result of the whole conformance test is failed.
Reference LIN Physical Layer Spec Revision 2.2 December 31, 2010, section Line Driver/Receiver, 6.5.4 ELECTRICAL DC PA-RAMETERS, table 6.6 to 6.11

Notes to the following table:

Data sheet used:

MC9S12ZVL_Rev.01.00.pdf

No.	reference	parameter	min	max	unit	comment 1 condition	valid for...	cross reference and data sheet values				ref.	Result
1.	Param 9	$V_{\text {bat }}$	8.0	18.0	V	ECU operating voltage	all devices with integrated reverse polarity diode	$\mathrm{V}_{\text {BAT }}=$	-	MIN	MAX	-	n/a no diode
2.	Param 10	$\mathrm{V}_{\text {SuP }}$	7.0	18.0	V	Supply voltage range	all devices without integrated reverse polarity diode	$\mathrm{V}_{\text {SUP }}=$	$V_{\text {LINSUP }}$	MIN 5 V	MAX	$\begin{gathered} \text { Table } \\ \text { A-26.1 } \end{gathered}$	Pass
3.	Param 11	$\underset{\mathrm{P}}{\text { VSUP_NON_O }}$	-0.3	40.0	V	voltage range within which the device is not destroyed	all devices	$\mathrm{V}_{\text {SUP_NON_OP }}=$	$\mathrm{V}_{\text {SUP }}$	MIN	MAX	$\begin{aligned} & \text { Table } \\ & \text { A-3.1 } \end{aligned}$	Pass
4.	Param 12	$I_{\text {BUS_LIM }}$	40	200	mA	Current Limitation for Driver dominant state driver on $\mathrm{V}_{\mathrm{BUS}}=\mathrm{V}_{\text {BAT_max }}$	all devices with integrated LIN transmitter	$I_{\text {BUS_LIM }}=$ $V_{\text {BUS }}=$	ILIn_um	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-26.2 } \end{gathered}$	Pass

No.	reference	parameter	min	max	unit	comment 1 condition	valid for...	cross reference and data sheet values				ref.	result
5.	Param 13	IBUS_PAS_dom	-1		mA	Input Leakage Current at the Receiver incl. Slave Pull-Up Resistor as specified in Table 6.7 driver off $\begin{aligned} & V_{\text {BUS }}=0 \mathrm{~V} \\ & V_{\mathrm{BAT}}=12 \mathrm{~V} \end{aligned}$	all devices with integrated slave pull-up resistor	$\mathrm{I}_{\text {BUS_PAS_dom }}=$	ILIN_PAS_dom	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-26.3 } \end{gathered}$	Pass
										-1mA	-		
								Conditions					
								driver state:		er off			
								$\mathrm{V}_{\text {BUS }}=$		$=0 \mathrm{~V}$			
								$V_{\text {BAT }}=$		= 12 V			
6.	Param 14	IBUS_PAS_rec		20	$\mu \mathrm{A}$	driver off$\begin{aligned} & 8 \mathrm{~V}<\mathrm{V}_{\text {BAT }}<18 \mathrm{~V} \\ & 8 \mathrm{~V}<\mathrm{V}_{\text {BUS }}<18 \mathrm{~V} \\ & \mathrm{~V}_{\text {BUS }}>\mathrm{V}_{\text {BAT }} \end{aligned}$	all devices	$\mathrm{I}_{\text {BUS_PAS_rec }}=$	ILIn_PAS_rec	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-26.4 } \end{gathered}$	Pass
										-	$20 \mu \mathrm{~A}$		
								Conditions					
								driver state:	driver off				
								$8 \mathrm{~V}<\mathrm{V}_{\text {BAT }}<18 \mathrm{~V}$	V < $\mathrm{V}_{\text {LINsup }}<18 \mathrm{~V}$				
								$8 \mathrm{~V}<\mathrm{V}_{\text {Bus }}<18 \mathrm{~V}$	$5 \mathrm{~V}<\mathrm{V}_{\text {LIN }}<18 \mathrm{~V}$				
								$V_{\text {BUS }}>\mathrm{V}_{\text {BAT }}$	$\mathrm{V}_{\text {LIN }}>\mathrm{V}_{\text {LINSUP }}$				
7.	Param 15	Ibus_No_GND	-1	1	mA	Control unit disconnected from ground $\mathrm{GND}_{\text {Device }}=\mathrm{V}_{\text {SUP }}$ $\begin{aligned} & 0 \mathrm{~V}<\mathrm{V}_{\text {BUS }}<18 \mathrm{~V} \\ & \mathrm{~V}_{\text {BAT }}=12 \mathrm{~V} \end{aligned}$ Loss of local ground must not affect communication in the residual network.	all devices	$\mathrm{I}_{\text {BUS_NO_GND }}=$	ILin_No_gnd	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-26.5 } \end{gathered}$	Pass
										-1mA	1 mA		
								Conditions					
								$\mathrm{GND}_{\text {device }}=\mathrm{V}_{\text {Sup }}$	GND	${ }_{\text {e }}=\mathrm{V}_{\text {LINS }}$			
								$V_{\text {BuS }}$		LIN<18V			
								$V_{\text {BAT }}$		$=12 \mathrm{~V}$			

No.	reference	parameter	\min	max	unit	comment 1 condition	valid for...	cross reference and data sheet values			ref.	result
13.	Param 27	D1	0.396			$\begin{aligned} & \mathrm{T}_{\text {HRec }(\text { max })}=0.744 \times \mathrm{V}_{\text {SUP }} ; \\ & \mathrm{T}_{\text {HDom(max) }}=0.581 \times \mathrm{V}_{\text {SUP }} ; \\ & \mathrm{V}_{\text {SUP }}=7.0 \mathrm{~V} \ldots 18 \mathrm{~V} ; \mathrm{t}_{\text {Bit }}=50 \mu \mathrm{~s} ; \\ & \mathrm{D} 1=\mathrm{t}_{\text {Bus_rec(min) }} /\left(2 \times \mathrm{t}_{\mathrm{Bit}}\right) \end{aligned}$	all devices with integrated LIN transmitter D1 valid for 20kBaud	D1=	D1	MAX	$\begin{gathered} \text { Table } \\ \text { A-27.7 } \end{gathered}$	Pass
										-		
								Conditions				
								$\mathrm{T}_{\text {HRec (max })}=$	$\mathrm{T}_{\text {HRec(max) }}=0.744 \times \mathrm{V}_{\text {LINSUP }}$			
								$\mathrm{T}_{\text {HDom(max) }}=$	$\mathrm{T}_{\text {HDom(max) }}=0.581 \times \mathrm{V}_{\text {LINSUP }}$			
								$\mathrm{V}_{\text {SUP }}=$	$\mathrm{V}_{\text {LINSUP }}=7.0 \mathrm{~V}$... 18 V			
								$\mathrm{t}_{\text {Bit }}=$	$\mathrm{t}_{\text {Bit }}=50 \mathrm{us}$			
								$\begin{aligned} & \mathrm{D} 1= \\ & \mathrm{t}_{\text {Bus_rec(min) }} /(2 \\ & \left.\mathrm{x} \mathrm{t}_{\text {Bit }}\right) \end{aligned}$	D1 $=t_{\text {Bus_rec(min) }} /\left(2 \times t_{\text {Bit }}\right)$			
14.	Param 28	D2		0.581		$\begin{aligned} & \mathrm{T}_{\text {HRec(min) }}=0.422 \times \mathrm{V}_{\text {SUP }} ; \\ & \mathrm{T}_{\mathrm{HDom}(\text { min) }}=0.284 \times \mathrm{V}_{\mathrm{SUP}} ; \\ & \mathrm{V}_{\mathrm{SUP}}=7.6 \mathrm{~V} \ldots . .18 \mathrm{~V} ; \mathrm{t}_{\mathrm{Bit}}=50 \mu \mathrm{~s} ; \\ & \mathrm{D} 2=\mathrm{t}_{\text {Bus_rec(max) })} /\left(2 \times \mathrm{t}_{\text {Bit }}\right) \end{aligned}$	all devices with integrated LIN transmitter D2 valid for 20kBaud	D2=	D2	MAX	Table A-27.8	Pass
										0.581		
								Conditions				
								$\mathrm{T}_{\text {HRec(min) }}=$	$\mathrm{T}_{\text {HRec(min) }}=0.422 \times \mathrm{V}_{\text {LINSUP }}$			
								$\mathrm{T}_{\mathrm{HDom} \text { (min) }}=$	$\mathrm{T}_{\text {HDom(min) }}=0.284 \times \mathrm{V}_{\text {LINSUP }}$			
								$\mathrm{V}_{\text {SUP }}=$	$\mathrm{V}_{\text {LINSUP }}=7.6 \mathrm{~V} . . .18 \mathrm{~V}$			
								$\mathrm{t}_{\text {Bit }}=$	$\mathrm{t}_{\text {Bit }}=50 \mathrm{us}$			
								$\begin{aligned} & \mathrm{D} 2= \\ & \mathrm{t}_{\text {Bus_rec(max) }} /(2 \\ & \left.\times \mathrm{t}_{\text {Bit }}\right) \end{aligned}$	$\mathrm{D} 2=\mathrm{t}_{\text {Bus_rec(max) }} /\left(2 \times \mathrm{t}_{\text {Bit }}\right)$			

No.	reference	parameter	min	max	unit	comment I condition	valid for...	cross reference and data sheet values				ref.	result
15.	Param 29	D3	0.417			$\begin{aligned} & \mathrm{T}_{\text {HRec(max) }}=0.778 \times \mathrm{V}_{\text {SUP }} ; \\ & \mathrm{T}_{\text {HDom(max })}=0.616 \times \mathrm{V}_{\text {SUP }} ; \\ & \mathrm{V}_{\text {SUP }}=7.0 \mathrm{~V} \ldots 18 \mathrm{~V} ; \mathrm{t}_{\text {Bit }}=96 \mu \mathrm{~s} ; \\ & \mathrm{D} 3=\mathrm{t}_{\text {Bus_rec(min) }} /\left(2 \times \mathrm{t}_{\text {Bit }}\right) \end{aligned}$	all devices with integrated LIN transmitter D3 valid for 10.4 kBaud	D3=	D3	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-27.11 } \end{gathered}$	Pass
										0.417	-		
								Conditions					
								$\mathrm{T}_{\text {HRec(max) }}=$	$\mathrm{T}_{\text {HRec(max) }}=0.778 \times \mathrm{V}_{\text {LINSUP }}$				
								$\mathrm{T}_{\text {HDom(max })}=$	$\mathrm{T}_{\text {HDom(max) }}=0.616 \times \mathrm{V}_{\text {LINSUP }}$				
								$\mathrm{V}_{\text {SUP }}=$	$\mathrm{V}_{\text {LINSUP }}=7.0 \mathrm{~V} . . .18 \mathrm{~V}$				
								$\mathrm{t}_{\text {Bit }}=$	$\mathrm{t}_{\text {Bit }}=96 \mathrm{us}$				
								$\begin{aligned} & \text { D3 }= \\ & \mathrm{t}_{\text {Bus rec(min) }} /(2 \\ & \left.\times \mathrm{t}_{\text {Bit }}\right) \end{aligned}$	$\mathrm{D} 3=\mathrm{t}_{\text {Bus_rec(min) }} /\left(2 \times t_{\text {Bit }}\right)$				
16.	Param 30	D4		0.590		$\begin{aligned} & \mathrm{T}_{\text {HRec(min) }}=0.389 \times \mathrm{V}_{\text {SUP }} ; \\ & \mathrm{T}_{\mathrm{HDom}(\text { min) }}=0.251 \times \mathrm{V}_{\text {SUP }} ; \\ & \mathrm{V}_{\text {SUP }}=7.6 \mathrm{~V} \ldots . .18 \mathrm{~V} ; \mathrm{t}_{\mathrm{Bit}}=96 \mu \mathrm{~s} ; \\ & \mathrm{D} 4=\mathrm{t}_{\text {Bus_rec(max })} /\left(2 \times \mathrm{t}_{\mathrm{Bit}}\right) \end{aligned}$	all devices with integrated LIN transmitter D4 valid for 10.4 kBaud	D4=	D4	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-27.12 } \end{gathered}$	Pass
										-	0.590		
								Conditions					
								$\mathrm{T}_{\text {HRec(min) }}=$	$\mathrm{T}_{\text {HRec(min) }}=0.389 \times \mathrm{V}_{\text {LINSUP }}$				
								$\mathrm{T}_{\text {HDom(min) }}=$	$\mathrm{T}_{\text {HDom(min) }}=0.251 \times \mathrm{V}_{\text {LINSUP }}$				
								$\mathrm{V}_{\text {SUP }}=$	$\mathrm{V}_{\text {Linsup }}=7.6 \mathrm{~V} \ldots 18 \mathrm{~V}$				
								$\mathrm{t}_{\text {Bit }}=$	$\mathrm{t}_{\text {Bit }}=96 \mathrm{us}$				
								$\begin{aligned} & \mathrm{D} 4= \\ & \mathrm{t}_{\text {Bus_rec(max) }} /(2 \\ & \left.\times \mathrm{t}_{\text {Bit }}\right) \end{aligned}$	$\mathrm{D} 4=\mathrm{t}_{\text {Bus_rec(max) }} /\left(2 \times \mathrm{t}_{\text {Bit }}\right)$				
17.	Param 31	$t_{\text {r } _ \text {¢ }}$		6	$\mu \mathrm{s}$	propagation delay of receiver	all devices with integrated LIN receiver	$t_{\text {rx_pd }}=$	$t_{\text {r__ }}$ d d	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-27.3 } \end{gathered}$	Pass
										-	$6 \mu \mathrm{~s}$		
18.	Param 32	$t_{\text {r__ sym }}$	-2	2	$\mu \mathrm{s}$	symmetry of receiver propagation delay rising edge w.r.t. falling edge	all devices with integrated LIN receiver	$\mathrm{t}_{\mathrm{r} \times \text { _sym }}=$	$t_{\text {rx_sym }}$	MIN	MAX	$\begin{gathered} \text { Table } \\ \text { A-27.4 } \end{gathered}$	Pass
										$-2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$		

No.	reference	parameter	min	max	unit	comment 1 condition	valid for...	cross reference and data sheet values				ref.	result
19.	Param 26	$\mathrm{R}_{\text {slave }}$	20	60	k Ω		all devices with integrated slave pull-up resistor	$\mathrm{R}_{\text {slave }}=$	$\mathrm{R}_{\text {slave }}$	$\frac{\mathrm{MIN}}{27 \mathrm{k} \Omega}$	MAX $40 \mathrm{k} \Omega$	$\begin{gathered} \text { Table } \\ \text { A-26.13 } \end{gathered}$	Pass
20.	Param 25	$\mathrm{R}_{\text {MAStER }}$	900	1100	Ω	The serial diode is mandatory. Only for valid for Transceiver with integrated Master pull up resistor	all devices with integrated master pull-up resistor	$\mathrm{R}_{\text {MAStER }}=$	-			-	n/a No Master Device
21.	Param 37	Cslave		250	pF	Capacitance of slave node	all LIN slave devices	$\mathrm{C}_{\text {slave }}=$	$\mathrm{C}_{\text {slave }}$			$\begin{gathered} \text { Table } \\ \text { A-26.11 } \end{gathered}$	Pass
22.	LIN 2.2 Specification Chapter 6.5.7	LIN device states changes	-	-	-	All LIN device state changes on conditional events (e.g. temperature shut-down) shall be specified in the LIN device data sheet.	all devices	Automatic transmitter shutdown in case of an over-current or TxD-dominant timeout				Chapter 1.4.8	Pass
23.		LIN transceiver input capacitance	-	-	-	A maximum LIN transceiver input capacitance shall be specified in the LIN device data sheet. Please consider the data sheet limits (e.g. voltage, temperature). The value should be as low as possible.	all devices			$\begin{gathered} \mathrm{C}_{\text {LIN }} \\ \operatorname{Max} 45 \mathrm{pF} \end{gathered}$		$\begin{gathered} \text { Table } \\ \text { A-26.12 } \end{gathered}$	Pass

6 Test Protocol Dynamic Tests

Following test case numeration and cross references relates on the corresponding test specification.

TC 2.1 Operating Voltage Range

This test shall ensure the correct operation in the valid supply voltage ranges, by correct reception of dominant bits. The IUT is therefore supplied with an increasing / decreasing voltage ramp.

TC 2.1.1 Voltage Ramp [7.0V...18V], 0.1V/s [up]

Comment	Test Result
The RX pin of the IUT shows the 10 kHz signal with a maximum deviation of 10% (time, voltage) is allowed.	Pass

TC 2.1.2 Voltage Ramp [18V...7.0V], 0.1V/s [down]

Comment	Test Result
The RX pin of the IUT shows the 10 kHz signal with a maximum deviation of 10% (time, voltage) is allowed.	Pass

TC 2.2 Threshold Voltages

This group of tests checks whether the receiver threshold voltage of the IUT are implemented correctly within the entire specified operating supply voltage range. The LIN Bus voltage is driven with a voltage ramp checking the entire dominant and recessive signal area with respect to the applied supply voltage. In TC 2.2.1 and 2.2.2 the signal has to stay continuously on recessive or dominant level depending on the test case. In TC 2.2.3 the RX output transition is detected.

TC 2.2.1 IUT as Receiver: $\mathrm{V}_{\text {Sup }}$ @ $\mathrm{V}_{\text {Bus_dom }}$ (down)
TC 2.2.1.1 $\quad V_{\text {SUP }}=7 V \quad$ Signal Range [18V...4.2V], Expected RX Signal recessive
$\mathrm{V}_{\text {Sup }}=7 \mathrm{~V} \quad$ Signal Range [2.8V...-1.05V], Expected RX Signal dominant

TC 2.2.1.2 $\quad \mathrm{V}_{\text {SUP }}=13 \mathrm{~V}$, Signal Range [18V...7.8V], Expected RX Signal recessive $\mathrm{V}_{\text {SUP }}=13 \mathrm{~V}$, Signal Range [5.2 V...-2.1V], Expected RX Signal dominant

TC 2.2.1.3 $\quad V_{\text {SUP }}=18 \mathrm{~V}$, Signal Range [20.7 V...10.8V], Expected RX Signal recessive $\mathrm{V}_{\text {SUP }}=18 \mathrm{~V}$, Signal Range [7.2 V...-2.7V], Expected RX Signal dominant

\# test	$\mathrm{V}_{\text {SUP }}$	Signal Range	Expected RX Signal	Measured RX Signal
		$[18 \mathrm{~V} \ldots 4.2 \mathrm{~V}]$	recessive	recessive
	$[2.8 \mathrm{~V} \ldots-1.05 \mathrm{~V}]$	dominant	dominant	
2.2 .1 .2	13 V	$[18 \mathrm{~V} \ldots . .7 .8 \mathrm{~V}]$	recessive	recessive
		$[5.2 \ldots-2.1 \mathrm{~V}]$	dominant	dominant
2.2 .1 .3	18 V	$[20.7 \mathrm{~V} \ldots 10.8 \mathrm{~V}]$	recessive	recessive
		$[7.2 \mathrm{~V} \ldots-2.7 \mathrm{~V}]$	dominant	dominant

Comment	Test Result
The IUT must generate a dominant or recessive value on RX as defined.	Pass

TC 2.2.2 IUT as Receiver: Vsup @ VBus_rec (up)

TC 2.2.2.1 $\quad V_{\text {SuP }}=7 \mathrm{~V}$, Signal Range [-1.05V...2.8V], Expected RX Signal dominant $\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$, Signal Range [4.2V...18V], Expected RX Signal recessive

TC 2.2.2.2 $\quad \mathrm{V}_{\text {SUP }}=13 \mathrm{~V}$, Signal Range [-2.1V..5.2V], Expected $R X$ Signal dominant $V_{\text {SUP }}=13 \mathrm{~V}$, Signal Range [7.8V...18V], Expected RX Signal recessive

TC 2.2.2.3 $\quad V_{\text {SUP }}=18 \mathrm{~V}$, Signal Range [-2.7V...7.2V], Expected RX Signal dominant $V_{\text {SUP }}=18 \mathrm{~V}$, Signal Range [10.8V...20.7V], Expected RX Signal recessive

\# test	$\mathrm{V}_{\text {SUP }}$	Signal Range	Expected RX Signal	Measured RX Signal
		$[-1.05 \mathrm{~V} \ldots 2.8 \mathrm{~V}]$	dominant	dominant
		$[4.2 \mathrm{~V} \ldots 18 \mathrm{~V}]$	recessive	recessive
2.2 .2 .2	13 V	$[-2.1 \mathrm{~V} \ldots 5.2 \mathrm{~V}]$	dominant	dominant
		$[7.8 \ldots 18 \mathrm{~V}]$	recessive	recessive
2.2 .2 .3	18 V	$[-2.7 \mathrm{~V} \ldots 7.2 \mathrm{~V}]$	dominant	dominant
		$[10.8 \mathrm{~V} \ldots 20.7 \mathrm{~V}]$	recessive	recessive

Comment	Test Result
The IUT must generate a dominant or recessive value on RX as defined.	Pass

TC 2.2.3 IUT as Receiver: VSUP @ $\mathrm{V}_{\text {Bus }}$

This test shall verify the symmetry of the receiver thresholds. For this purpose a voltage ramp on $\mathrm{V}_{\text {BUS }}$ shows the required threshold values.

TC 2.2.3.1 $\quad \mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$, Signal Range $[-1.05 \mathrm{~V} \ldots 8.05 \mathrm{~V}]$ up [8.05V $\left.\ldots-1.05 \mathrm{~V}\right]$ down

Vsup	7 V
V_th_dom	3.250 V
V_th_rec	3.687 V
V_hys	0.438 V
V_bus_cnt	3.468 V

Comment	Test Result
The RX output transition must meet the following conditions:	
VBUS_CNT = (Vth_dom+Vth_rec)/2 in range of [0.475...0.525]*VSUP	Pass
VHYS = Vth_rec - Vth_dom must be less than 0.175^{*} VSUP	

TC 2.2.3.2 $\mathrm{V}_{\text {SUP }}=14 \mathrm{~V}$, Signal Range [-2.1V...16.1V] up [16.1V..-2.1V] down

Vsup	14 V
V_th_dom	6.505 V
V_th_rec	7.318 V
V_hys	0.813 V
V_bus_cnt	6.911 V

Comment	Test Result
The RX output transition must meet the following conditions:	
VBUS_CNT = (Vth_dom+Vth_rec)/2 in range of [0.475...0.525]*VSUP	Pass
VHYS = Vth_rec - Vth_dom must be less than 0.175^{*} VSUP	

TC 2.2.3.3 $V_{\text {SUP }}=18 \mathrm{~V}$, Signal Range [-2.7V...20.7V] up [20.7V...-2.7V] down

Vsup	18 V
V_th_dom	8.375 V
V_th_rec	9.438 V
V_hys	1.063 V
V_bus_cnt	8.906 V

Comment	Test Result
The RX output transition must meet the following conditions:	
VBUS_CNT = $($ Vth_dom+Vth_rec $) / 2$ in range of [0.475...0.525]*VSUP	Pass
VHYS = Vth_rec - Vth_dom must be less than 0.175^{*} VSUP	

TC 2.3 Variation of $V_{\text {SUP_NON_op }} \in[-0.3 \mathrm{~V} . . .7 \mathrm{~V}],[18 \mathrm{~V} . . .40 \mathrm{~V}]$

Within this test it should be checked, whether the IUT influences the bus during under and over voltage conditions.

TC 2.3.3 IUT as Transceiver $1.1 \mathrm{k} \Omega$ + diode to $\mathrm{V}_{\mathrm{LIN}}=18 \mathrm{~V}$

Comment	Test Result
No dominant state on LIN shall occur. The IUT must not be destroyed during the test. The afterwards recessive voltage shall have a maximum deviation of $+/-5 \%$ from the before recessive voltage.	Pass

TC 2.4 I I

TC 2.4.1 $\quad I_{\text {Bus_LIm } @ ~ D o m i n a n t ~ S t a t e ~(D r i v e r ~ O n) ~}^{\text {O }}$

This test checks the drive capability of the output stage. A LIN driver has to pull the LIN bus below a certain voltage according to the LIN standard. The current limitation is measured indirectly.

Comment	Test Result
LIN has to show the rectangular signal. The dominant state bus level has to be lower than th_dom $=4.518 \mathrm{~V}$ for transceiver.	Pass

TC 2.4.2 Ibus_PAs_dom: IUT in Recessive State: $\mathrm{V}_{\text {bus }}=0 \mathrm{~V}$

This test case is intended to test the input leakage current $I_{\text {BUS_PAS_dom }}$ into a node during dominant state of the LIN bus.

measured Voltage	-157 mV

Comment	Test Result
The maximum value of voltage drop shall be higher than -500 mV.	Pass

TC 2.4.3 $\quad I_{\text {BUS_PAS_rec }}$: IUT in Recessive State: $\mathrm{V}_{\text {SUP }}=7 \mathrm{~V}$ with Variation of $\mathrm{V}_{\text {BUS }}$ $\in[8 \mathrm{~V} . . .18 \mathrm{~V}]$

This test case is checking, whether there is a diode implementation within the termination path of the IUT. The reverse currents should be limited to $\mathrm{I}_{\text {BUS_PAS_rec }}$ (Max) from the LIN wire into the IUT even if $\mathrm{V}_{\text {BUS }}$ is higher than the IUT's supply voltage $\mathrm{V}_{\text {IUT }}$.

Comment	Test Result
The maximum value of voltage drop shall be less or equal 20 mV.	Pass

TC 2.5 Slope Control

Sense of this test is checking the slope control function of the driver stage.
TC 2.5.1 Measuring the Duty Cycle @ 10.4 kBit/sec - IUT as Transmitter

Test case \#	$\begin{aligned} & V_{\text {SUP }} / V_{\text {BAT }} \\ & (\text { PS 1) } \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{PS} 2} \\ \text { (PS 2) } \end{gathered}$	Bus loads(C; R)	Duty cycle		Result
				D3 \pm **	D4 \pm **	
2.5.1.1.1	7.0V / 8.0V	6.0 V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.497 ± 0.005	-	Pass
2.5.1.1.2	7.0V / 8.0V	6.6 V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.502 ± 0.003	-	Pass
2.5.1.2.1	7.0V / 8.0V	6.0 V	$\begin{gathered} 6.8 \mathrm{nF}(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.464 ± 0.017	-	Pass
2.5.1.2.2	7.0V / 8.0V	6.6 V	$\begin{gathered} 6.8 \mathrm{nF}(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.480 ± 0.008	-	Pass
2.5.1.3.1	7.0V / 8.0V	6.0 V	$\begin{gathered} 10 n F(1 \%) \\ 500 \Omega(0.1 \%) \end{gathered}$	0.461 ± 0.019	-	Pass
2.5.1.3.2	7.0V / 8.0V	6.6V	$\begin{gathered} 10 n F(1 \%) \\ 500 \Omega(0.1 \%) \end{gathered}$	0.479 ± 0.009	-	Pass
2.5.1.4.1	7.6V / 8.6V	6.6V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.497 ± 0.004	0.528 ± 0.003	Pass
2.5.1.4.2	7.6V / 8.6V	7.2V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.502 ± 0.003	0.531 ± 0.003	Pass
2.5.1.5.1	7.6V / 8.6V	6.6 V	$\begin{aligned} & 6.8 n F(1 \%) ; \\ & 660 \Omega(0.1 \%) \end{aligned}$	0.466 ± 0.014	0.518 ± 0.003	Pass
2.5.1.5.2	7.6V / 8.6V	7.2V	$\begin{gathered} 6.8 n F(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.480 ± 0.008	0.522 ± 0.003	Pass
2.5.1.6.1	7.6V / 8.6V	6.6 V	$\begin{gathered} 10 n F(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.464 ± 0.015	0.520 ± 0.004	Pass
2.5.1.6.2	7.6V / 8.6V	7.2V	$\begin{gathered} 10 n F(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.480 ± 0.008	0.524 ± 0.003	Pass
2.5.1.7.1	18V / 18.6V	17.0V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.501 ± 0.005	0.529 ± 0.005	Pass
2.5.1.7.2	18V / 18.6V	17.6V	$\begin{gathered} 1 \mathrm{nF}(1 \%) \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.502 ± 0.005	0.530 ± 0.005	Pass
2.5.1.8.1	18V / 18.6V	17.0V	$\begin{gathered} 6.8 \mathrm{nF}(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.478 ± 0.013	0.519 ± 0.005	Pass
2.5.1.8.2	18V / 18.6V	17.6V	$\begin{gathered} 6.8 n F(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.482 ± 0.011	0.521 ± 0.005	Pass
2.5.1.9.1	18V / 18.6V	17.0V	$\begin{gathered} 10 n F(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.477 ± 0.014	0.522 ± 0.006	Pass
2.5.1.9.2	18V / 18.6V	17.6 V	$\begin{gathered} 10 \mathrm{nF}(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.481 ± 0.012	0.524 ± 0.006	Pass

*The measurement uncertainty analysis based on the type B evaluation according to the "Guide to the Expression of Uncertainty in Measurement" (European Committee for Standardization, ENV 13005, 1999).

The steps involved are as follows:

1. Evaluation of the relationship between input quantities $x i$ and the output quantity $y=f\left(x_{1}, x_{2}, \ldots\right.$, x_{n})
2. Identification of the standard uncertainty $u\left(x_{i}\right)$ for each input estimate x_{i}
3. Identification of the combined standard uncertainty $u_{c}\left(x_{i}\right)$ for the output quantity y
4. Calculation of the expanded uncertainty $U=k \cdot u_{c}\left(x_{i}\right)$, with coverage factor $k=2$. The coverage probability is approximately 95%.

Comment	Test Result
The measured duty cycle D3 must be greater or equal than 0.417 for	
$\mathrm{V}_{\text {Sup }}=[7.0 \mathrm{~V} \ldots 18 \mathrm{~V}]$, the measured duty cycle D4 must also be less or	
equal than 0.590 for $\mathrm{V}_{\text {Sup }}=[7.6 \mathrm{~V} \ldots 18 \mathrm{~V}]$.	Pass

TC 2.5.2 Measuring the Duty Cycle @ 20 kBit/sec - IUT as Transmitter

Test case \#	$\begin{gathered} V_{\text {SUP }} / V_{\text {BAT }} \\ \text { (PS 1) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{PS} 2} \\ \text { (PS 2) } \end{gathered}$	Bus loads (C; R)	Duty cycle		Result
				D1 \pm U*	D2 \pm U* $^{\text {* }}$	
2.5.2.1.1	7.0V / 8.0V	6.0 V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.480 ± 0.008	-	Pass
2.5.2.1.2	7.0V / 8.0V	6.6 V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.489 ± 0.006	-	Pass
2.5.2.2.1	7.0V / 8.0V	6.0 V	$\begin{gathered} 6.8 n F(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.447 ± 0.023	-	Pass
2.5.2.2.2	7.0V / 8.0V	6.6 V	$\begin{gathered} \hline 6.8 \mathrm{nF}(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.472 ± 0.014	-	Pass
2.5.2.3.1	7.0V / 8.0V	6.0 V	$\begin{gathered} 10 n F(1 \%) \\ 500 \Omega(0.1 \%) \end{gathered}$	0.445 ± 0.025	-	Pass
2.5.2.3.2	7.0V / 8.0V	6.6 V	$\begin{gathered} 10 n F(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.472 ± 0.015	-	Pass
2.5.2.4.1	7.6V / 8.6V	6.6 V	$\begin{gathered} \hline \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.481 ± 0.007	0.529 ± 0.005	Pass
2.5.2.4.2	7.6V / 8.6V	7.2V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.489 ± 0.006	0.535 ± 0.006	Pass
2.5.2.5.1	7.6V / 8.6V	6.6 V	$\begin{aligned} & 6.8 n F(1 \%) ; \\ & 660 \Omega(0.1 \%) \end{aligned}$	0.450 ± 0.019	0.529 ± 0.007	Pass
2.5.2.5.2	7.6V / 8.6V	7.2V	$\begin{gathered} 6.8 n F(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.473 ± 0.012	0.537 ± 0.006	Pass
2.5.2.6.1	7.6V / 8.6V	6.6 V	$\begin{gathered} 10 n F(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.447 ± 0.021	0.532 ± 0.007	Pass
2.5.2.6.2	7.6V / 8.6V	7.2V	$\begin{gathered} 10 n F(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.472 ± 0.014	0.541 ± 0.007	Pass
2.5.2.7.1	18V / 18.6V	17.0V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.486 ± 0.010	0.530 ± 0.009	Pass
2.5.2.7.2	18V / 18.6V	17.6V	$\begin{gathered} 1 \mathrm{nF}(1 \%) ; \\ 1 \mathrm{k} \Omega(0.1 \%) \end{gathered}$	0.489 ± 0.010	0.532 ± 0.009	Pass
2.5.2.8.1	18V / 18.6V	17.0V	$\begin{gathered} 6.8 n F(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.468 ± 0.022	0.531 ± 0.010	Pass
2.5.2.8.2	18V / 18.6V	17.6V	$\begin{gathered} 6.8 n F(1 \%) ; \\ 660 \Omega(0.1 \%) \end{gathered}$	0.475 ± 0.019	0.534 ± 0.010	Pass
2.5.2.9.1	18V / 18.6V	17.0V	$\begin{gathered} 10 n F(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.466 ± 0.024	0.536 ± 0.012	Pass
2.5.2.9.2	18V / 18.6V	17.6V	$\begin{gathered} 10 \mathrm{nF}(1 \%) ; \\ 500 \Omega(0.1 \%) \end{gathered}$	0.474 ± 0.020	0.540 ± 0.012	Pass

*The measurement uncertainty analysis based on the type B evaluation according to the "Guide to the Expression of Uncertainty in Measurement" (European Committee for Standardization, ENV 13005, 1999).

The steps involved are as follows:

1. Evaluation of the relationship between input quantities $x i$ and the output quantity $y=f\left(x_{1}, x_{2}, \ldots\right.$, x_{n})
2. Identification of the standard uncertainty $u\left(x_{i}\right)$ for each input estimate x_{i}
3. Identification of the combined standard uncertainty $u_{c}\left(x_{i}\right)$ for the output quantity y
4. Calculation of the expanded uncertainty $U=k \cdot u_{c}\left(x_{i}\right)$, with coverage factor $k=2$. The coverage probability is approximately 95%.

Comment	Test Result
The measured duty cycle D 1 must be greater or equal than	
0.396 for $\mathrm{V}_{\text {SuP }}=[7.0 \mathrm{~V}-18 \mathrm{~V}]$, the measured duty cycle D 2 must	Pass
be less or equal than 0.581 for $\mathrm{V}_{\text {SUP }}=[7.6 \mathrm{~V}-18 \mathrm{~V}]$.	

TC 2.6 Propagation Delay

TC 2.6.1 Propagation Delay of the Receiver

The following test checks the receiver internal delay and its symmetry.

TC	$V_{\text {SUP }}$	$R X$ Load	$t_{\text {rx_pdf }}$	$t_{\text {rx_pdr }}$	$t_{\text {rx_pd }}$	$t_{\text {rx_sym }}$
2.6 .1 .1	7 V	20 pF	$2.920 \mu \mathrm{~s}$	$2.940 \mu \mathrm{~s}$	$2.940 \mu \mathrm{~s}$	$-0.020 \mu \mathrm{~s}$
2.6 .1 .2	14 V	20 pF	$2.860 \mu \mathrm{~s}$	$2.885 \mu \mathrm{~s}$	$2.885 \mu \mathrm{~s}$	$-0.025 \mu \mathrm{~s}$
2.6 .1 .3	18 V	20 pF	$2.865 \mu \mathrm{~s}$	$2.875 \mu \mathrm{~s}$	$2.875 \mu \mathrm{~s}$	$-0.010 \mu \mathrm{~s}$

Comment	Test Result
The measured time $t_{\text {rx_pd }}$ is less than $6 \mu \mathrm{~s}$, the symmetry $\mathrm{t}_{\text {rx_sym }}$ is in range of $\pm 2 \mu \mathrm{~s}$	Pass

TC 2.7 GND/V BAT Shift Test - Dynamic
TC 2.7.1 GND Shift Test - Dynamic - IUT as Transceiver (Master)

$1 \mathrm{k} \Omega / 1 \mathrm{nF}$
Duty Cycle in range of $52.1 \%-53.6 \%$

Comment	Test Result
The receive duty cycle measured at RxD2 must be in the range of $0.376 \ldots 0.601$.	Pass

Comment	Test Result
The receive duty cycle measured at RxD2 must be in the range of $0.376 \ldots 0.601$.	Pass

Comment	Test Result
The receive duty cycle measured at RxD2 must be in the range of $0.376 \ldots 0.601$.	Pass

TC 2.7.4 $\quad \mathrm{V}_{\mathrm{BAT}}$ Shift Test - Dynamic - IUT as Transceiver (Slave)

$1 \mathrm{k} \Omega / 1 \mathrm{nF}$
Duty Cycle in range of $51.5 \%-52.9 \%$

Duty Cycle in range of $50.5 \%-52.3 \%$

Comment	Test Result
The receive duty cycle measured at RxD2 must be in the range of $0.376 \ldots 0.601$.	Pass

TC $2.8 \quad$ Failure

Purpose of this test is to check, whether some parasitic reverse currents are flowing into the IUT.

TC 2.8.1 Loss of Battery

Comment	Test Result
I Bus $\mathrm{R}=10 \mathrm{KOhm}$ be less than $100 \mu \mathrm{~A}$, means 1 V voltage drop over after failure recovery.	Pass

TC 2.8.2 Loss of GND

Comment	Test Result
IBus must be included in $\pm 1 \mathrm{~mA}$, means 1V voltage drop over $R=1 \mathrm{kOhm}$.	Pass

TC 2.9 Verifying internal capacitance and dynamic interference - IUT as Slave

Test Configuration:

TC 2.9.1 Normal power supply

${ }^{\text {* }} \mathrm{T}_{\text {INT }}$ is within the tolerance of $\pm 5 \%$.

Comment	Test Result
Cslave must be less or equal than $250 \mathrm{pF:}$ The IUT IUT must not interfere with the remamic stimulus.	Pass

TC 2.9.2 IUT loss of GND

${ }^{\text {T }} \mathrm{T}_{\text {INT }}$ is within the tolerance of $\pm 5 \%$.

Comment	Test Result
CsLave must be less or equal than 250pF: Tint \leq Trief The IUT must not interfere with the dynamic stimulus.	Pass

TC 2.9.3 IUT loss of $V_{\text {sup }}$

${ }^{\text {* }} \mathrm{T}_{\text {INT }}$ is within the tolerance of $\pm 5 \%$.

Comment	Test Result
CsLave must be less or equal than 250pF: Tint \leq Tref $_{\text {ReF }}$ The IUT must not interfere with the dynamic stimulus.	Pass

