Need guidance: YOLOv8 output shape mismatch on NNStreamer (i.MX8MP) + pipeline design question (mini

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 
已解决

Need guidance: YOLOv8 output shape mismatch on NNStreamer (i.MX8MP) + pipeline design question (mini

跳至解决方案
188 次查看
SiddavatamVishnu
Contributor II

HARDWARE AND SOFTWARE DETAILS

I.MX8MPlus and Linux BSP LF6.12.34_2.1.0

 

Goal

I’m building a command-line pipeline (no GUI) where inference, overlay, and display all run in GStreamer and NNStreamer on an i.MX8MP.

Current experiment (command line)

I tried this pipeline:

 

 

 

 
 

 

GST_DEBUG=GStreamer:4,tensor_filter:6,tensor_transform:6,tensor_decoder:7 \ gst-launch-1.0 --no-position \ v4l2src device=/dev/video4 num-buffers=200 ! \ video/x-raw,width=1920,height=1080,format=NV12,framerate=30/1 ! \ imxvideoconvert_g2d ! \ video/x-raw,width=320,height=320,format=RGBA ! \ videoconvert ! \ video/x-raw,width=320,height=320,format=BGR ! \ tensor_converter ! \ tensor_transform mode=arithmetic option=typecast:int8,add:-128 ! \ tensor_filter framework=tensorflow-lite model=${MODEL} custom=Delegate:External,ExtDelegateLib:${VX_LIB} ! \ tensor_transform mode=arithmetic option=typecast:float32,add:128.0,mul:0.004982381127774715 ! \ tensor_transform mode=transpose option=1:0:2 ! \ tensor_decoder mode=bounding_boxes option1=yolov8 option2=${LABELS} option3=0 option4=1920:1080 option5=320:320 ! \ cairooverlay name=overlay ! \ videoconvert ! \ autovideosink
log file link LINK 

Problem

My YOLOv8 TFLite model outputs (1, 7, 2100), but NNStreamer on i.MX8MP expects 7 × 2100 × 1.

I received this explanation:

The YOLOv8 TFLite model outputs (1,7,2100), but NNStreamer’s YOLOv8 decoder for i.MX8MP expects 7×2100×1. This BSP version only supports transpose on 4D tensors, so the model output needs dequantization, reshape to (1,7,2100,1), then transpose.

 

  • input: int8 [1, 320, 320, 3]

  • output: int8 [1, 7, 2100]

  • scale/zero point

  • output correctly contains 3 classes + 4 bbox values


Current (slow) approach

Right now the application flow is:

  1. GStreamer → BGR → OpenCV

  2. NPU inference

  3. OpenCV post-processing

  4. Back to RTSP pipeline

This causes multiple software videoconvert, and in ideal conditions we reach only ~20 FPS, although the model alone can run 60+ FPS.


Proposed new approach

I want to split the pipeline:

Path A — Inference

Convert NV12 → BGR only here
Run NNStreamer

Path B — Overlay + Display

Keep original NV12/YUY2 frames
Draw bounding boxes directly on NV12 (preferably using hardware)

→ Feed NV12 to encoder / RTSP
→ Avoid software videoconvert completely

I’d first like to prototype this using pure gst-launch, then apply the approach in Python (possibly using OpenGL for NV12 overlay).


What I need help on

  1. How to reshape/transpose (1,7,2100) TFLite output into the format required by NNStreamer’s YOLOv8 decoder on i.MX8MP

    • Any working example using only tensor_filter / transform / decoder?

    • Is there a known workaround for the 3-D output?

  2. Best practice for overlay on NV12/YUY2

    • Any NNStreamer-friendly way to draw boxes directly on NV12?

    • Recommended elements (cairooverlay on NV12? OpenGL? v4l2convert? imxvideoconvert_g2d overlays?)

  3. General advice: Is the split-pipeline (inference on BGR, overlay on NV12) a reasonable architectural direction on i.MX8MP?


标签 (1)
0 项奖励
回复
1 解答
83 次查看
SiddavatamVishnu
Contributor II

I have a Update, i have used the mode dimension change (dimchg ) in the tensor_transform element to match the expections of the tensor_decoder.  
 
....  ! tensor_filter framework=tensorflow-lite model=../../vaishnavi/model_calibrated_int8_og_320.tflite custom=Delegate:External,ExtDelegateLib:libvx_delegate.so ! tensor_transform mode=arithmetic option=typecast:float32,add:128.0,mul:0.004982381 ! tensor_transform mode=dimchg option=0:1 ! tensor_decoder mode=bounding_boxes option1=yolov8 option2=labels_over.txt option3=0 option4=1920:1080 option5=320:320 ! ......



Thanks for the replies.

Thanks and Regards
Siddavatam Vishnu

在原帖中查看解决方案

0 项奖励
回复
4 回复数
161 次查看
Bio_TICFSL
NXP TechSupport
NXP TechSupport

Hello,

The issue stems from a mismatch between your YOLOv8 TFLite model output shape (1,7,2100) and the format expected by NNStreamer's YOLOv8 decoder on i.MX8MP (7×2100×1). This is happening because:

1. Your current BSP version (LF6.12.34_2.1.0) supports transpose operations only on 4D tensors
2. The model output needs reshaping and transposing to match the decoder's expectations

## Recommended Solution

For the tensor transformation, you need to apply:
1. Dequantization (if using quantized model)
2. Reshape the output from (1,7,2100) to (1,7,2100,1)
3. Transpose the tensor to the required format (7×2100×1)

## Pipeline Optimization

Your proposed architecture (splitting the pipeline) is a sound approach:
- Convert NV12 → BGR only for inference
- Keep original NV12/YUY2 frames for display/encoding
- Overlay detection results directly on NV12 using hardware acceleration

This will eliminate software videoconvert operations and achieve better performance.

## Recommended Elements for NV12 Pipeline

For drawing bounding boxes directly on NV12:
- Use `imxvideoconvert_g2d` with overlay capability
- Alternative: `cairooverlay` can work with NV12 but may require format adaptation

Example pipeline structure:
```
v4l2src → NV12 → tee → branch1: convert to BGR → inference → detection results
branch2: original NV12 → imxvideoconvert_g2d (with overlay) → encoder/display
```

This approach should significantly improve performance beyond your current ~20 FPS limit, leveraging the NPU's 60+ FPS capability by eliminating unnecessary format conversions.

 

Regards

0 项奖励
回复
158 次查看
SiddavatamVishnu
Contributor II
Thanks for the Quick response, I had tried to use the reshape in the tensor_transform before, but it returned an error.
root@imx8mpevk:~# export MODEL=/root/rtsp/testing1/saved_model_triding_320.tflite
root@imx8mpevk:~# export LABELS=/root/rtsp/testing1/labels.txt
root@imx8mpevk:~# gst-launch-1.0 --no-position v4l2src device=/dev/video4 ! video/x-raw,format=NV12,width=1920,height=1080,framerate=30/1 ! imxvideoconvert_g2d ! video/x-raw,width=320,height=320,format=RGBA ! videoconvert ! video/x-raw,width=320,height=320,format=BGR ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:int8,add:-128 ! tensor_filter framework=tensorflow-lite model=${MODEL} ! tensor_transform mode=arithmetic option=typecast:float32,add:128.0,mul:0.004982381 ! tensor_transform mode=reshape option=1:7:2100:1 ! tensor_transform mode=transpose option=1:0:2:3 ! tensor_decoder mode=bounding_boxes option1=yolov8 option2=${LABELS} option3=0 option4=1920:1080 option5=320:320 ! cairooverlay name=overlay ! videoconvert ! autovideosink
** Message: 14:56:17.877: accl = cpu

** (gst-launch-1.0:1335): CRITICAL **: 14:56:17.931: bb_getOutCaps: assertion 'config->info.info[0].type == _NNS_FLOAT32' failed

** (gst-launch-1.0:1335): CRITICAL **: 14:56:17.931: bb_getOutCaps: assertion 'config->info.info[0].type == _NNS_FLOAT32' failed

** (gst-launch-1.0:1335): CRITICAL **: 14:56:17.931: bb_getOutCaps: assertion 'config->info.info[0].type == _NNS_FLOAT32' failed

** (gst-launch-1.0:1335): CRITICAL **: 14:56:17.935: bb_getOutCaps: assertion 'config->info.info[0].type == _NNS_FLOAT32' failed

** (gst-launch-1.0:1335): CRITICAL **: 14:56:17.938: bb_getOutCaps: assertion 'config->info.info[0].type == _NNS_FLOAT32' failed

** (gst-launch-1.0:1335): CRITICAL **: 14:56:17.939: bb_getOutCaps: assertion 'config->info.info[0].type == _NNS_FLOAT32' failed
WARNING: erroneous pipeline: could not set property "mode" in element "tensor_transform" to "reshape"
root@imx8mpevk:~#

Could you please suggest changes to the pipeline to match the expected formats and also for overlaying on the nv12.

Or do i need to downgrade or upgrade my linux bsp version to match them.

If possible please test the pipeline and provide back.

Thanks and Regards
S Vishnu
0 项奖励
回复
106 次查看
Bio_TICFSL
NXP TechSupport
NXP TechSupport

Hi,

Yes, you need downgrade your linux BSP. I guess with that will work because We have not yet tested pipeline in Yolov8

Regards

84 次查看
SiddavatamVishnu
Contributor II

I have a Update, i have used the mode dimension change (dimchg ) in the tensor_transform element to match the expections of the tensor_decoder.  
 
....  ! tensor_filter framework=tensorflow-lite model=../../vaishnavi/model_calibrated_int8_og_320.tflite custom=Delegate:External,ExtDelegateLib:libvx_delegate.so ! tensor_transform mode=arithmetic option=typecast:float32,add:128.0,mul:0.004982381 ! tensor_transform mode=dimchg option=0:1 ! tensor_decoder mode=bounding_boxes option1=yolov8 option2=labels_over.txt option3=0 option4=1920:1080 option5=320:320 ! ......



Thanks for the replies.

Thanks and Regards
Siddavatam Vishnu

0 项奖励
回复
%3CLINGO-SUB%20id%3D%22lingo-sub-2257202%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%E9%9C%80%E8%A6%81%E6%8C%87%E5%AF%BC%EF%BC%9ANNStreamer%20(i.MX8MP)%20%E4%B8%8A%E7%9A%84%20YOLOv8%20%E8%BE%93%E5%87%BA%E5%BD%A2%E7%8A%B6%E4%B8%8D%E5%8C%B9%E9%85%8D%20%2B%20%E7%AE%A1%E9%81%93%E8%AE%BE%E8%AE%A1%E9%97%AE%E9%A2%98%EF%BC%88%E5%BE%AE%E5%9E%8B%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-2257202%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%3CFONT%20face%3D%22arial%2Chelvetica%2Csans-serif%22%3E%3CSTRONG%3E%E7%A1%AC%E4%BB%B6%E5%92%8C%E8%BD%AF%E4%BB%B6%E8%AF%A6%E6%83%85%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%3CP%3Ei.mx8mPlus%20%E5%92%8C%20Linux%20%E7%94%B5%E8%B7%AF%E6%9D%BF%E6%94%AF%E6%8C%81%E5%8C%85%20LF6.12.34_2.1.0%3C%2FP%3E%3CBR%20%2F%3E%3CH2%20id%3D%22toc-hId--495505486%22%20id%3D%22toc-hId--495476471%22%20id%3D%22toc-hId--495476471%22%20id%3D%22toc-hId--495476471%22%3E%E7%9B%AE%E6%A0%87%3C%2FH2%3E%3CP%3E%E6%88%91%E6%AD%A3%E5%9C%A8%3CSTRONG%3Ei.MX8MP%3C%2FSTRONG%3E%20%E4%B8%8A%E6%9E%84%E5%BB%BA%E4%B8%80%E4%B8%AA%E5%91%BD%E4%BB%A4%E8%A1%8C%E6%B5%81%E6%B0%B4%E7%BA%BF%EF%BC%88%E6%97%A0%E5%9B%BE%E5%BD%A2%E7%94%A8%E6%88%B7%E7%95%8C%E9%9D%A2%EF%BC%89%EF%BC%8C%E5%85%B6%E4%B8%AD%3CSTRONG%3E%E6%8E%A8%E7%90%86%E3%80%81%E5%8F%A0%E5%8A%A0%E5%92%8C%E6%98%BE%E7%A4%BA%3C%2FSTRONG%3E%E5%9D%87%E5%9C%A8%20GStreamer%20%E5%92%8C%20NNStreamer%20%E4%B8%AD%E8%BF%90%E8%A1%8C%E3%80%82%3C%2FP%3E%3CH2%20id%3D%22toc-hId-1992007347%22%20id%3D%22toc-hId-1992036362%22%20id%3D%22toc-hId-1992036362%22%20id%3D%22toc-hId-1992036362%22%3E%E5%BD%93%E5%89%8D%E5%AE%9E%E9%AA%8C%EF%BC%88%E5%91%BD%E4%BB%A4%E8%A1%8C%EF%BC%89%3C%2FH2%3E%3CP%3E%E6%88%91%E8%AF%95%E8%BF%87%E8%BF%99%E4%B8%AA%E7%AE%A1%E9%81%93%EF%BC%9A%3C%2FP%3E%3CBR%20%2F%3E%3CDIV%20class%3D%22%22%3E%26nbsp%3B%3C%2FDIV%3E%3CBR%20%2F%3E%3CPRE%20translate%3D%22no%22%3E%26nbsp%3B%3C%2FPRE%3E%3CDIV%20class%3D%22%22%3E%3CDIV%20class%3D%22%22%3E%26nbsp%3B%3C%2FDIV%3E%3C%2FDIV%3E%3CBR%20%2F%3E%3CDIV%20class%3D%22%22%3E%3CDIV%20class%3D%22%22%3E%3CSPAN%3Egst_debug%3Dgstreamer%3A%204%E3%80%81tensor_filter%3A%206%E3%80%81tensor_transform%3A%206%E3%80%81tensor_decoder%3A%207%5C%20gst-launch-1.0--no-position%5C%20v4l2src%20%E8%AE%BE%E5%A4%87%3D%2Fdev%2Fvideo4%20num-buffers%3D200%EF%BC%81%5C%20video%2Fx-raw%2Cwidth%3D1920%2Cheight%3D1080%2Cformat%3DNV12%2Cframerate%3D30%2F1%20!%5C%20imxvideoconvert_g2d%20%EF%BC%81%5C%20video%2Fx-raw%2Cwidth%3D320%2Cheight%3D320%2Cformat%3DRGBA%20%EF%BC%81%5C%20videoconvert%20%EF%BC%81%5C%20video%2Fx-raw%2Cwidth%3D320%2Cheight%3D320%2Cformat%3DBGR%20%EF%BC%81%5C%20tensor_converter%20%EF%BC%81%5C%20tensor_transform%20mode%3Darithmetic%20option%3Dtypecast%3Aint8%2Cadd%3A-128%20%EF%BC%81%5C%20tensor_filter%20framework%3Dtensorflow-lite%20model%3D%3CSPAN%20class%3D%22%22%3E%24%7BMODEL%7D%3C%2FSPAN%3Ecustom%3DDelegate%3AExternal%2CExtDelegateLib%EF%BC%9A%3CSPAN%20class%3D%22%22%3E%24%7BVX_LIB%7D%3C%2FSPAN%3E!%5C%20tensor_transform%20mode%3Darithmetic%20option%3Dtypecast%3Afloat32%2Cadd%3A128.0%2Cmul%3A0.004982381127774715!%5C%20tensor_transform%20mode%3Dtranspose%20option%3D1%3A0%3A2%20%EF%BC%81%5C%20tensor_decoder%20mode%3Dbounding_boxes%20option1%3Dyolov8%20option2%3D%3CSPAN%20class%3D%22%22%3E%24%7BLABELS%7D%3C%2FSPAN%3Eoption3%3D0%20option4%3D1920%3A1080%20option5%3D320%3A320%20%EF%BC%81%5C%20cairooverlay%20name%3Doverlay%20%EF%BC%81%5C%20videoconvert%20%EF%BC%81%5C%20autovideosink%20%3C%2FSPAN%3E%3C%2FDIV%3E%3C%2FDIV%3E%3CPRE%20translate%3D%22no%22%3Elog%20file%20link%20%3CA%20title%3D%22LINK%22%20href%3D%22https%3A%2F%2Fdocs.google.com%2Fdocument%2Fd%2F12BDRLqtU40uK-Gbz039lmZXWCKbktnZPyXj5ZRzyr3w%2Fedit%3Fusp%3Dsharing%22%20target%3D%22_self%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%3ELINK%3C%2FA%3E%26nbsp%3B%3C%2FPRE%3E%3CH2%20id%3D%22toc-hId-184552884%22%20id%3D%22toc-hId-184581899%22%20id%3D%22toc-hId-184581899%22%20id%3D%22toc-hId-184581899%22%3E%3CLI-EMOJI%20id%3D%22lia_exclamation-mark%22%20title%3D%22%3Aexclamation_mark%3A%22%3E%3C%2FLI-EMOJI%3E%20%E9%97%AE%E9%A2%98%3C%2FH2%3E%3CP%3E%E6%88%91%E7%9A%84%20YOLOv8%20TFLite%20%E6%A8%A1%E5%9E%8B%E8%BE%93%E5%87%BA%EF%BC%881%E3%80%817%E3%80%812100%EF%BC%89%EF%BC%8C%E4%BD%86%20i.MX8MP%20%E4%B8%8A%E7%9A%84%20NNStreamer%20%E5%8D%B4%E6%98%BE%E7%A4%BA%3CSTRONG%3E7%20%C3%97%202100%20%C3%97%201%3C%2FSTRONG%3E%E3%80%82%3C%2FP%3E%3CP%3E%E6%88%91%E6%94%B6%E5%88%B0%E4%BA%86%E8%BF%99%E6%A0%B7%E7%9A%84%E8%A7%A3%E9%87%8A%EF%BC%9A%3C%2FP%3E%3CBLOCKQUOTE%3E%3CP%3EYOLOv8%20TFLite%20%E5%9E%8B%E5%8F%B7%E7%9A%84%E8%BE%93%E5%87%BA%E4%B8%BA%EF%BC%881%2C7%2C2100%EF%BC%89%EF%BC%8C%E8%80%8C%20NNStreamer%20%E7%9A%84%20i.MX8MP%20YOLOv8%20%E8%A7%A3%E7%A0%81%E5%99%A8%E7%9A%84%E8%BE%93%E5%87%BA%E4%B8%BA%207%C3%972100%C3%971%E3%80%82%E6%AD%A4%E7%94%B5%E8%B7%AF%E6%9D%BF%E6%94%AF%E6%8C%81%E5%8C%85%E7%89%88%E6%9C%AC%E4%BB%85%E6%94%AF%E6%8C%81%E5%AF%B9%E5%9B%9B%E7%BB%B4%E5%BC%A0%E9%87%8F%E8%BF%9B%E8%A1%8C%E8%BD%AC%E7%BD%AE%EF%BC%8C%E5%9B%A0%E6%AD%A4%E6%A8%A1%E5%9E%8B%E8%BE%93%E5%87%BA%E9%9C%80%E8%A6%81%E5%8E%BB%E9%87%8F%E5%8C%96%EF%BC%8C%E9%87%8D%E5%A1%91%E4%B8%BA%20(1%2C7%2C2100%2C1)%EF%BC%8C%E7%84%B6%E5%90%8E%E8%BF%9B%E8%A1%8C%E8%BD%AC%E7%BD%AE%E3%80%82%3C%2FP%3E%3C%2FBLOCKQUOTE%3E%3CBR%20%2F%3E%3CUL%3E%3CLI%3E%3CP%3E%E8%BE%93%E5%85%A5%EF%BC%9A%20int8%20%5B1%2C%20320%2C%20320%2C%203%5D%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%E8%BE%93%E5%87%BA%EF%BC%9Aint8%20%5B1%2C%207%2C%202100%5D%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%E5%88%BB%E5%BA%A6%2F%E9%9B%B6%E7%82%B9%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%E8%BE%93%E5%87%BA%E6%AD%A3%E7%A1%AE%E5%8C%85%E5%90%AB%203%20%E4%B8%AA%E7%B1%BB%E5%88%AB%20%2B%204%20%E4%B8%AA%20bbox%20%E5%80%BC%3C%2FP%3E%3C%2FLI%3E%3C%2FUL%3E%3CHR%20%2F%3E%3CH2%20id%3D%22toc-hId--1622901579%22%20id%3D%22toc-hId--1622872564%22%20id%3D%22toc-hId--1622872564%22%20id%3D%22toc-hId--1622872564%22%3E%3CLI-EMOJI%20id%3D%22lia_gear%22%20title%3D%22%3Agear%3A%22%3E%3C%2FLI-EMOJI%3E%20%E5%BD%93%E5%89%8D%EF%BC%88%E7%BC%93%E6%85%A2%EF%BC%89%E7%9A%84%E6%96%B9%E6%B3%95%3C%2FH2%3E%3CP%3E%E7%8E%B0%E5%9C%A8%E7%9A%84%E7%94%B3%E8%AF%B7%E6%B5%81%E7%A8%8B%E6%98%AF%3C%2FP%3E%3COL%3E%3CLI%3E%3CP%3EGStreamer%20%E2%86%92%20BGR%20%E2%86%92%20OpenCV%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3ENPU%20%E6%8E%A8%E6%96%AD%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3EOpenCV%20%E5%90%8E%E5%A4%84%E7%90%86%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%E8%BF%94%E5%9B%9E%20RTSP%20%E7%AE%A1%E9%81%93%3C%2FP%3E%3C%2FLI%3E%3C%2FOL%3E%3CP%3E%E8%BF%99%E4%BC%9A%E5%AF%BC%E8%87%B4%3CSTRONG%3E%E5%A4%9A%E4%B8%AA%E8%BD%AF%E4%BB%B6%E8%A7%86%E9%A2%91%E8%BD%AC%E6%8D%A2%3C%2FSTRONG%3E%EF%BC%8C%E5%9C%A8%E7%90%86%E6%83%B3%E6%9D%A1%E4%BB%B6%E4%B8%8B%EF%BC%8C%E6%88%91%E4%BB%AC%E5%8F%AA%E8%83%BD%E8%BE%BE%E5%88%B0%3CSTRONG%3E%E7%BA%A6%2020%20FPS%3C%2FSTRONG%3E%EF%BC%8C%E5%B0%BD%E7%AE%A1%E6%A8%A1%E5%9E%8B%E6%9C%AC%E8%BA%AB%E5%8F%AF%E4%BB%A5%E8%BF%90%E8%A1%8C%2060%20%E5%A4%9A%20FPS%E3%80%82%3C%2FP%3E%3CHR%20%2F%3E%3CH2%20id%3D%22toc-hId-864611254%22%20id%3D%22toc-hId-864640269%22%20id%3D%22toc-hId-864640269%22%20id%3D%22toc-hId-864640269%22%3E%3CLI-EMOJI%20id%3D%22lia_counterclockwise-arrows-button%22%20title%3D%22%3Acounterclockwise_arrows_button%3A%22%3E%3C%2FLI-EMOJI%3E%20%E5%BB%BA%E8%AE%AE%E7%9A%84%E6%96%B0%E6%96%B9%E6%B3%95%3C%2FH2%3E%3CP%3E%E6%88%91%E6%83%B3%E6%8A%8A%E7%AE%A1%E9%81%93%E5%88%86%E5%BC%80%EF%BC%9A%3C%2FP%3E%3CH3%20id%3D%22toc-hId-1555172728%22%20id%3D%22toc-hId-1555201743%22%20id%3D%22toc-hId-1555201743%22%20id%3D%22toc-hId-1555201743%22%3E%E8%B7%AF%E5%BE%84%20A%20-%20%E6%8E%A8%E6%96%AD%3C%2FH3%3E%3CP%3E%E4%BB%85%E5%9C%A8%E6%AD%A4%E5%A4%84%E8%BD%AC%E6%8D%A2%20NV12%20%E2%86%92%20BGR%3CBR%20%2F%3E%E8%BF%90%E8%A1%8C%20NNStreamer%3C%2FP%3E%3CH3%20id%3D%22toc-hId--252281735%22%20id%3D%22toc-hId--252252720%22%20id%3D%22toc-hId--252252720%22%20id%3D%22toc-hId--252252720%22%3E%E8%B7%AF%E5%BE%84%20B%20-%20%E5%8F%A0%E5%8A%A0%20%2B%20%E6%98%BE%E7%A4%BA%3C%2FH3%3E%3CP%3E%E4%BF%9D%E7%95%99%E5%8E%9F%E5%A7%8B%20NV12%2FYUY2%20%E6%A1%86%E6%9E%B6%3CBR%20%2F%3E%E7%9B%B4%E6%8E%A5%E5%9C%A8%20NV12%20%E4%B8%8A%E7%BB%98%E5%88%B6%E8%BE%B9%E7%95%8C%E6%A1%86%EF%BC%88%E6%9C%80%E5%A5%BD%E4%BD%BF%E7%94%A8%E7%A1%AC%E4%BB%B6%EF%BC%89%3C%2FP%3E%3CP%3E%E2%86%92%20%E5%B0%86%20NV12%20%E9%80%81%E5%85%A5%E7%BC%96%E7%A0%81%E5%99%A8%2FRTSP%3CBR%20%2F%3E%E2%86%92%20%E5%AE%8C%E5%85%A8%E9%81%BF%E5%85%8D%E8%BD%AF%E4%BB%B6%E8%A7%86%E9%A2%91%E8%BD%AC%E6%8D%A2%3C%2FP%3E%3CP%3E%E6%88%91%E9%A6%96%E5%85%88%E6%83%B3%E4%BD%BF%E7%94%A8%E7%BA%AF%E7%B2%B9%E7%9A%84%20gst-launch%20%E6%9D%A5%E5%88%B6%E4%BD%9C%E8%BF%99%E4%B8%AA%E5%8E%9F%E5%9E%8B%EF%BC%8C%E7%84%B6%E5%90%8E%E5%9C%A8%20Python%20%E4%B8%AD%E5%BA%94%E7%94%A8%E8%BF%99%E7%A7%8D%E6%96%B9%E6%B3%95%EF%BC%88%E5%8F%AF%E8%83%BD%E4%BD%BF%E7%94%A8%20OpenGL%20%E6%9D%A5%E5%AE%9E%E7%8E%B0%20NV12%20%E5%8F%A0%E5%8A%A0%E5%B1%82%EF%BC%89%E3%80%82%3C%2FP%3E%3CHR%20%2F%3E%3CH2%20id%3D%22toc-hId--262784839%22%20id%3D%22toc-hId--262755824%22%20id%3D%22toc-hId--262755824%22%20id%3D%22toc-hId--262755824%22%3E%3CLI-EMOJI%20id%3D%22lia_folded-hands%22%20title%3D%22%3Afolded_hands%3A%22%3E%3C%2FLI-EMOJI%3E%20%E6%88%91%E9%9C%80%E8%A6%81%E5%B8%AE%E5%8A%A9%3C%2FH2%3E%3COL%3E%3CLI%3E%3CP%3E%3CSTRONG%3E%E5%A6%82%E4%BD%95%3C%2FSTRONG%3E%E5%9C%A8%20i.MX8MP%20%E4%B8%8A%E5%B0%86(1%2C7%2C2100)%20TFLite%20%E8%BE%93%E5%87%BA%E9%87%8D%E5%A1%91%2F%E8%BD%AC%E6%8D%A2%E4%B8%BA%20NNStreamer%20%E7%9A%84%20YOLOv8%20%E8%A7%A3%E7%A0%81%E5%99%A8%E6%89%80%E9%9C%80%E7%9A%84%E6%A0%BC%E5%BC%8F%3C%2FP%3E%3CUL%3E%3CLI%3E%3CP%3E%E6%9C%89%E5%8F%AA%E4%BD%BF%E7%94%A8%E5%BC%A0%E9%87%8F%E6%BB%A4%E6%B3%A2%E5%99%A8%2F%E5%8F%98%E6%8D%A2%2F%E8%A7%A3%E7%A0%81%E5%99%A8%E7%9A%84%E5%B7%A5%E4%BD%9C%E7%A4%BA%E4%BE%8B%E5%90%97%EF%BC%9F%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%E6%9C%89%E6%B2%A1%E6%9C%89%E8%A7%A3%E5%86%B3%E4%B8%89%E7%BB%B4%E8%BE%93%E5%87%BA%E9%97%AE%E9%A2%98%E7%9A%84%E6%96%B9%E6%B3%95%EF%BC%9F%3C%2FP%3E%3C%2FLI%3E%3C%2FUL%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%3CSTRONG%3E%E5%9C%A8%20NV12%2FYUY2%20%E4%B8%8A%E5%8F%A0%E5%8A%A0%E7%9A%84%E6%9C%80%E4%BD%B3%E5%81%9A%E6%B3%95%3C%2FSTRONG%3E%3C%2FP%3E%3CUL%3E%3CLI%3E%3CP%3E%E6%9C%89%E4%BB%80%E4%B9%88%20NNStreamer%20%E5%8F%8B%E5%A5%BD%E7%9A%84%E6%96%B9%E6%B3%95%E5%8F%AF%E4%BB%A5%E7%9B%B4%E6%8E%A5%E5%9C%A8%20NV12%20%E4%B8%8A%E7%BB%98%E5%88%B6%E6%96%B9%E6%A1%86%E5%90%97%EF%BC%9F%3C%2FP%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%E6%8E%A8%E8%8D%90%E5%85%83%E7%B4%A0%EF%BC%88NV12%20%E4%B8%8A%E7%9A%84%20cairooverlay%EF%BC%9FOpenGL%3Fv4l2convert%3Fimxvideoconvert_g2d%20%E9%87%8D%E5%8F%A0%EF%BC%9F%EF%BC%89%3C%2FP%3E%3C%2FLI%3E%3C%2FUL%3E%3C%2FLI%3E%3CLI%3E%3CP%3E%3CSTRONG%3E%E4%B8%80%E8%88%AC%E5%BB%BA%E8%AE%AE%EF%BC%9A%3C%2FSTRONG%3E%E5%9C%A8%20i.MX8MP%20%E4%B8%8A%EF%BC%8C%E5%88%86%E5%89%B2%E7%AE%A1%E9%81%93%EF%BC%88BGR%20%E4%B8%8A%E7%9A%84%E6%8E%A8%E7%90%86%EF%BC%8CNV12%20%E4%B8%8A%E7%9A%84%E5%8F%A0%E5%8A%A0%EF%BC%89%E6%98%AF%E5%90%88%E7%90%86%E7%9A%84%E6%9E%B6%E6%9E%84%E6%96%B9%E5%90%91%E5%90%97%EF%BC%9F%3C%2FP%3E%3C%2FLI%3E%3C%2FOL%3E%3CHR%20%2F%3E%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-2257202%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CLINGO-LABEL%3Ei.MX%208M%20%7C%20i.MX%208M%20Mini%20%7C%20i.MX%208M%20Nano%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E%3CLINGO-SUB%20id%3D%22lingo-sub-2257251%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20Need%20guidance%3A%20YOLOv8%20output%20shape%20mismatch%20on%20NNStreamer%20(i.MX8MP)%20%2B%20pipeline%20design%20question%20(%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-2257251%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%E6%84%9F%E8%B0%A2%E6%82%A8%E7%9A%84%E5%BF%AB%E9%80%9F%E5%9B%9E%E5%A4%8D%EF%BC%8C%E6%88%91%E4%B9%8B%E5%89%8D%E6%9B%BE%E5%B0%9D%E8%AF%95%E5%9C%A8%20tensor_transform%20%E4%B8%AD%E4%BD%BF%E7%94%A8%E9%87%8D%E5%A1%91%EF%BC%8C%E4%BD%86%E8%BF%94%E5%9B%9E%E9%94%99%E8%AF%AF%E3%80%82%3CBR%20%2F%3Eroot%40imx8mpevk%3A~%23%20export%20MODEL%3D%2Froot%2Frtsp%2Ftesting1%2Fsaved_model_Triding_320.tflite%3CBR%20%2F%3Eroot%40imx8mpevk%3A~%23%20export%20LABELS%3D%2Froot%2Frtsp%2Ftesting1%2Flabels.txt%3CBR%20%2F%3Eroot%40imx8mpevk%3A~%23%20gst-%E7%94%A8%E4%B8%8A%E5%B8%82-1.0%20--no-position%20v4l2src%20%E8%AE%BE%E5%A4%87%3D%2Fdev%2Fvideo4%EF%BC%81video%2Fx-raw%2Cformat%3DNV12%2Cwidth%3D1920%2Cheight%3D1080%2Cframerate%3D30%2F1%20!imxvideoconvert_g2d%20%EF%BC%81video%2Fx-raw%2Cwidth%3D320%2Cheight%3D320%2Cformat%3DRGBA%20%EF%BC%81%E8%A7%86%E9%A2%91%E8%BD%AC%E6%8D%A2%20%EF%BC%81video%2Fx-raw%2Cwidth%3D320%2Cheight%3D320%2Cformat%3DBGR%20%EF%BC%81%E5%BC%A0%E9%87%8F%E8%BD%AC%E6%8D%A2%E5%99%A8%20%EF%BC%81tensor_transform%20mode%3Darithmetic%20option%3Dtypecast%3Aint8%2Cadd%3A-128%20%EF%BC%81tensor_filter%20framework%3Dtensorflow-lite%20model%3D%24%7BMODEL%7D%20%EF%BC%81tensor_transform%20mode%3Darithmetic%20option%3Dtypecast%3Afloat32%2Cadd%3A128.0%2Cmul%3A0.004982381!tensor_transform%20mode%3Dreshape%20option%3D1%3A7%3A2100%3A1%20%EF%BC%81tensor_transform%20mode%3Dtranspose%20option%3D1%3A0%3A2%3A3%20%EF%BC%81tensor_decoder%20mode%3Dbounding_boxes%20option1%3Dyolov8%20option2%3D%24%7BLABELS%7D%20option3%3D0%20option4%3D1920%3A1080%20option5%3D320%3A320%20%EF%BC%81cairooverlay%20name%3Doverlay%20%EF%BC%81%E8%A7%86%E9%A2%91%E8%BD%AC%E6%8D%A2%20%EF%BC%81autovideosink%3CBR%20%2F%3E**%20%E6%B6%88%E6%81%AF%EF%BC%9A14%3A56%3A17.877%3Aaccl%20%3D%20cpu%20%3CBR%20%2F%3E%3CBR%20%2F%3E**%EF%BC%88gst-launch-1.0%3A1335%EF%BC%89%EF%BC%9ACRITICAL%20**%EF%BC%9A14%3A56%3A17.931%3Abb_getOutCaps%3A%20assertion%20'config-%26gt%3Binfo.info%5B0%5D.type%3D%3D%20_NNS_FLOAT32'%20%E5%A4%B1%E8%B4%A5%20%3CBR%20%2F%3E%3CBR%20%2F%3E**%20(gst-launch-1.0%3A1335)%EF%BC%9ACRITICAL%20**%EF%BC%9A14%3A56%3A17.931%3Abb_getOutCaps%3A%20assertion%20'config-%26gt%3Binfo.info%5B0%5D.type%3D%3D%20_NNS_FLOAT32'%20%E5%A4%B1%E8%B4%A5%20%3CBR%20%2F%3E%3CBR%20%2F%3E**%20(gst-launch-1.0%3A1335)%EF%BC%9ACRITICAL%20**%EF%BC%9A14%3A56%3A17.931%3Abb_getOutCaps%3A%20assertion%20'config-%26gt%3Binfo.info%5B0%5D.type%3D%3D%20_NNS_FLOAT32'%20%E5%A4%B1%E8%B4%A5%20%3CBR%20%2F%3E%3CBR%20%2F%3E**%20(gst-launch-1.0%3A1335)%EF%BC%9ACRITICAL%20**%EF%BC%9A14%3A56%3A17.935%3Abb_getOutCaps%3A%20assertion%20'config-%26gt%3Binfo.info%5B0%5D.type%3D%3D%20_NNS_FLOAT32'%20%E5%A4%B1%E8%B4%A5%20%3CBR%20%2F%3E%3CBR%20%2F%3E**%20(gst-launch-1.0%3A1335)%EF%BC%9ACRITICAL%20**%EF%BC%9A14%3A56%3A17.938%3Abb_getOutCaps%3A%20assertion%20'config-%26gt%3Binfo.info%5B0%5D.type%3D%3D%20_NNS_FLOAT32'%20%E5%A4%B1%E8%B4%A5%20%3CBR%20%2F%3E%3CBR%20%2F%3E**%20(gst-launch-1.0%3A1335)%EF%BC%9ACRITICAL%20**%EF%BC%9A14%3A56%3A17.939%3Abb_getOutCaps%3A%20assertion%20'config-%26gt%3Binfo.info%5B0%5D.type%3D%3D%20_NNS_FLOAT32'%E5%A4%B1%E8%B4%A5%3CBR%20%2F%3E%E8%AD%A6%E5%91%8A%EF%BC%9A%E6%B5%81%E6%B0%B4%E7%BA%BF%E9%94%99%E8%AF%AF%EF%BC%9A%E6%97%A0%E6%B3%95%E5%9C%A8%E5%85%83%E7%B4%A0%22tensor_transform%22%20%E4%B8%AD%E8%AE%BE%E7%BD%AE%E5%B1%9E%E6%80%A7%22mode%22%20%EF%BC%8C%E4%BB%A5%22%E9%87%8D%E5%A1%91%22%3CBR%20%2F%3E%20root%40imx8mpevk%3A~%23%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%82%A8%E8%83%BD%E5%90%A6%E5%BB%BA%E8%AE%AE%E4%BF%AE%E6%94%B9%E6%B5%81%E6%B0%B4%E7%BA%BF%EF%BC%8C%E4%BB%A5%E7%AC%A6%E5%90%88%E9%A2%84%E6%9C%9F%E6%A0%BC%E5%BC%8F%EF%BC%8C%E5%B9%B6%E8%A6%86%E7%9B%96%E5%88%B0%20nv12%20%E4%B8%8A%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%88%96%E8%80%85%E6%88%91%E9%9C%80%E8%A6%81%E9%99%8D%E7%BA%A7%E6%88%96%E5%8D%87%E7%BA%A7%E6%88%91%E7%9A%84%20linux%20%E7%94%B5%E8%B7%AF%E6%9D%BF%E6%94%AF%E6%8C%81%E5%8C%85%20%E7%89%88%E6%9C%AC%E6%89%8D%E8%83%BD%E5%8C%B9%E9%85%8D%E5%AE%83%E4%BB%AC%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E5%A6%82%E6%9E%9C%E5%8F%AF%E8%83%BD%EF%BC%8C%E8%AF%B7%E6%B5%8B%E8%AF%95%E7%AE%A1%E9%81%93%E5%B9%B6%E6%8F%90%E4%BE%9B%E5%8F%8D%E9%A6%88%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%84%9F%E8%B0%A2%E5%B9%B6%E9%97%AE%E5%80%99%3CBR%20%2F%3ES%20Vishnu%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-2257223%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20Need%20guidance%3A%20YOLOv8%20output%20shape%20mismatch%20on%20NNStreamer%20(i.MX8MP)%20%2B%20pipeline%20design%20question%20(%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-2257223%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E4%BD%A0%E5%A5%BD%3C%2FP%3E%0A%3CP%3E%3CSPAN%3E%E9%97%AE%E9%A2%98%E6%BA%90%E4%BA%8E%E6%82%A8%E7%9A%84%20YOLOv8%20TFLite%20%E6%A8%A1%E5%9E%8B%E8%BE%93%E5%87%BA%E5%BD%A2%E7%8A%B6%EF%BC%881%2C7%2C2100%EF%BC%89%E4%B8%8E%20i.MX8MP%20%E4%B8%8A%20NNStreamer%20%E7%9A%84%20YOLOv8%20%E8%A7%A3%E7%A0%81%E5%99%A8%E6%89%80%E6%9C%9F%E6%9C%9B%E7%9A%84%E6%A0%BC%E5%BC%8F%EF%BC%887%C3%972100%C3%971%EF%BC%89%E4%B8%8D%E5%8C%B9%E9%85%8D%E3%80%82%E5%87%BA%E7%8E%B0%E8%BF%99%E7%A7%8D%E6%83%85%E5%86%B5%E7%9A%84%E5%8E%9F%E5%9B%A0%E6%98%AF%EF%BC%9A%3CBR%20%2F%3E%3CBR%20%2F%3E1.%E6%82%A8%E5%BD%93%E5%89%8D%E7%9A%84%E7%94%B5%E8%B7%AF%E6%9D%BF%E6%94%AF%E6%8C%81%E5%8C%85%E7%89%88%E6%9C%AC%20(LF6.12.34_2.1.0)%E4%BB%85%E6%94%AF%E6%8C%81%204D%20%E5%BC%A0%E9%87%8F%E7%9A%84%E8%BD%AC%E7%BD%AE%E6%93%8D%E4%BD%9C%3CBR%20%2F%3E2.%E6%A8%A1%E5%9E%8B%E8%BE%93%E5%87%BA%E9%9C%80%E8%A6%81%E9%87%8D%E5%A1%91%E5%92%8C%E8%BD%AC%E7%BD%AE%EF%BC%8C%E4%BB%A5%E7%AC%A6%E5%90%88%E8%A7%A3%E7%A0%81%E5%99%A8%E7%9A%84%E9%A2%84%E6%9C%9F%3CBR%20%2F%3E%3CBR%20%2F%3E%23%23%20Recommended%20Solution%3CBR%20%2F%3E%3CBR%20%2F%3EFor%20the%20tensor%20transformation%2C%20you%20need%20to%20apply%3A%3CBR%20%2F%3E1.%20Dequantization%20(if%20using%20quantized%20model)%3CBR%20%2F%3E2.%20Reshape%20the%20output%20from%20(1%2C7%2C2100)%20to%20(1%2C7%2C2100%2C1)%20%3CBR%20%2F%3E3.%20Transpose%20the%20tensor%20to%20the%20required%20format%20(7%C3%972100%C3%971)%3CBR%20%2F%3E%3CBR%20%2F%3E%23%23%20%E7%AE%A1%E9%81%93%E4%BC%98%E5%8C%96%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%82%A8%E5%BB%BA%E8%AE%AE%E7%9A%84%E6%9E%B6%E6%9E%84%EF%BC%88%E6%8B%86%E5%88%86%E7%AE%A1%E9%81%93%EF%BC%89%E6%98%AF%E4%B8%80%E7%A7%8D%E5%90%88%E7%90%86%E7%9A%84%E6%96%B9%E6%B3%95%EF%BC%9A%3CBR%20%2F%3E-%20%E4%BB%85%E4%B8%BA%E6%8E%A8%E7%90%86%E8%BD%AC%E6%8D%A2%20NV12%20%E2%86%92%20BGR%3CBR%20%2F%3E-%20%E4%BF%9D%E7%95%99%E5%8E%9F%E5%A7%8B%20NV12%2FYUY2%20%E5%B8%A7%E7%94%A8%E4%BA%8E%E6%98%BE%E7%A4%BA%2F%E7%BC%96%E7%A0%81%3CBR%20%2F%3E-%20%E4%BD%BF%E7%94%A8%E7%A1%AC%E4%BB%B6%E5%8A%A0%E9%80%9F%E7%9B%B4%E6%8E%A5%E5%9C%A8%20NV12%20%E4%B8%8A%E5%8F%A0%E5%8A%A0%E6%A3%80%E6%B5%8B%E7%BB%93%E6%9E%9C%3CBR%20%2F%3E%3CBR%20%2F%3E%E8%BF%99%E5%B0%86%E6%B6%88%E9%99%A4%E8%BD%AF%E4%BB%B6%E8%A7%86%E9%A2%91%E8%BD%AC%E6%8D%A2%E6%93%8D%E4%BD%9C%EF%BC%8C%E5%AE%9E%E7%8E%B0%E6%9B%B4%E5%A5%BD%E7%9A%84%E6%80%A7%E8%83%BD%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%23%23%20NV12%20%E7%AE%A1%E9%81%93%E7%9A%84%E6%8E%A8%E8%8D%90%E8%A6%81%E7%B4%A0%3CBR%20%2F%3E%3CBR%20%2F%3E%E5%9C%A8%20NV12%20%E4%B8%8A%E7%9B%B4%E6%8E%A5%E7%BB%98%E5%88%B6%E8%BE%B9%E7%95%8C%E6%A1%86%EF%BC%9A%3CBR%20%2F%3E-%20%E4%BD%BF%E7%94%A8%E5%85%B7%E6%9C%89%E5%8F%A0%E5%8A%A0%E5%8A%9F%E8%83%BD%E7%9A%84%20%60imxvideoconvert_g2d%60%3CBR%20%2F%3E-%20%E6%9B%BF%E4%BB%A3%E6%96%B9%E6%B3%95%EF%BC%9A%20%60cairooverlay%60%20%E5%8F%AF%E4%B8%8E%20NV12%20%E9%85%8D%E5%90%88%E4%BD%BF%E7%94%A8%EF%BC%8C%E4%BD%86%E5%8F%AF%E8%83%BD%E9%9C%80%E8%A6%81%E6%A0%BC%E5%BC%8F%E8%B0%83%E6%95%B4%3CBR%20%2F%3E%3CBR%20%2F%3E%E7%AE%A1%E9%81%93%E7%BB%93%E6%9E%84%E7%A4%BA%E4%BE%8B%EF%BC%9A%3CBR%20%2F%3E%60%60%60%3CBR%20%2F%3Ev4l2src%20%E2%86%92%20NV12%20%E2%86%92%20tee%20%E2%86%92%20branch1%EF%BC%9A%E8%BD%AC%E6%8D%A2%E4%B8%BA%20BGR%20%E2%86%92%20%E6%8E%A8%E7%90%86%20%E2%86%92%20%E6%A3%80%E6%B5%8B%E7%BB%93%E6%9E%9C%3CBR%20%2F%3Ebranch2%EF%BC%9A%E5%8E%9F%E5%A7%8B%20NV12%20%E2%86%92%20imxvideoconvert_g2d%EF%BC%88%E5%B8%A6%E5%8F%A0%E5%8A%A0%EF%BC%89%20%E2%86%92%20%E7%BC%96%E7%A0%81%E5%99%A8%2F%E6%98%BE%E7%A4%BA%E5%99%A8%3CBR%20%2F%3E%60%60%60%3CBR%20%2F%3E%3CBR%20%2F%3E%E9%80%9A%E8%BF%87%E6%B6%88%E9%99%A4%E4%B8%8D%E5%BF%85%E8%A6%81%E7%9A%84%E6%A0%BC%E5%BC%8F%E8%BD%AC%E6%8D%A2%EF%BC%8C%E5%88%A9%E7%94%A8%20NPU%2060%2B%20FPS%20%E7%9A%84%E8%83%BD%E5%8A%9B%EF%BC%8C%E8%BF%99%E7%A7%8D%E6%96%B9%E6%B3%95%E5%BA%94%E8%83%BD%E6%98%BE%E8%91%97%E6%8F%90%E9%AB%98%E6%80%A7%E8%83%BD%EF%BC%8C%E8%B6%85%E8%BF%87%E5%BD%93%E5%89%8D%E7%BA%A6%2020%20FPS%20%E7%9A%84%E9%99%90%E5%88%B6%E3%80%82%3C%2FSPAN%3E%3C%2FP%3E%0A%3CBR%20%2F%3E%0A%3CP%3E%3CSPAN%3E%E6%AD%A4%E8%87%B4%3C%2FSPAN%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-2258239%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20Need%20guidance%3A%20YOLOv8%20output%20shape%20mismatch%20on%20NNStreamer%20(i.MX8MP)%20%2B%20pipeline%20design%20question%20(%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-2258239%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E6%82%A8%E5%A5%BD%EF%BC%8C%3C%2FP%3E%0A%3CP%3E%E6%98%AF%E7%9A%84%EF%BC%8C%E4%BD%A0%E9%9C%80%E8%A6%81%E9%99%8D%E7%BA%A7%20Linux%20%E7%94%B5%E8%B7%AF%E6%9D%BF%E6%94%AF%E6%8C%81%E5%8C%85%E3%80%82%E6%88%91%E6%83%B3%E8%BF%99%E5%BA%94%E8%AF%A5%E8%83%BD%E8%A1%8C%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E8%BF%98%E6%B2%A1%E6%9C%89%E5%9C%A8%20Yolov8%20%E4%B8%AD%E6%B5%8B%E8%AF%95%E8%BF%87%E7%AE%A1%E9%81%93%E3%80%82%3C%2FP%3E%0A%3CP%3E%E6%AD%A4%E8%87%B4%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-2258998%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20Need%20guidance%3A%20YOLOv8%20output%20shape%20mismatch%20on%20NNStreamer%20(i.MX8MP)%20%2B%20pipeline%20design%20question%20(%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-2258998%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E6%88%91%E6%9C%89%E4%B8%80%E4%B8%AA%E6%9B%B4%E6%96%B0%EF%BC%8C%E6%88%91%E5%9C%A8%E5%BC%A0%E9%87%8F_%E5%8F%98%E6%8D%A2%E5%85%83%E7%B4%A0%E4%B8%AD%E4%BD%BF%E7%94%A8%E4%BA%86%E6%A8%A1%E5%BC%8F%E7%BB%B4%E5%BA%A6%E5%8F%98%E5%8C%96%EF%BC%88dimchg%EF%BC%89%EF%BC%8C%E4%BB%A5%E7%AC%A6%E5%90%88%E5%BC%A0%E9%87%8F%E8%A7%A3%E7%A0%81%E5%99%A8%E7%9A%84%E9%A2%84%E6%9C%9F%E3%80%82%20%20%3CBR%20%2F%3E%20%3CBR%20%2F%3E....%20%20tensor_filter%20framework%3Dtensorflow-lite%20model%3D..%2F..%2Fvaishnavi%2Fmodel_calibrated_int8_og_320.tflite%20custom%3DDelegate%3AExternal%2CExtDelegateLib%3Alibvx_delegate.so%20%EF%BC%81tensor_transform%20mode%3Darithmetic%20option%3Dtypecast%3Afloat32%2Cadd%3A128.0%2Cmul%3A0.004982381!tensor_transform%20mode%3Ddimchg%20option%3D0%3A1%20%EF%BC%81tensor_decoder%20mode%3Dbounding_boxes%20option1%3Dyolov8%20option2%3Dlabels_over.txt%20option3%3D0%20option4%3D1920%3A1080%20option5%3D320%3A320%20%EF%BC%81......%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%84%9F%E8%B0%A2%E6%82%A8%E7%9A%84%E5%9B%9E%E5%A4%8D%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%84%9F%E8%B0%A2%E5%92%8C%E9%97%AE%E5%80%99%3CBR%20%2F%3ESiddavatam%20Vishnu%3C%2FP%3E%3C%2FLINGO-BODY%3E