i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. i.MX 6/7 Family DDR Stress Test  The i.MX6/7 DDR Stress Test Tool is a PC-based software to fine-tune DDR parameters and verify the DDR performance on a non-OS, single-task environment(it is a light-weight test tool to test DDR performance). It performs write leveling, DQS gating and read/write delay calibration features. The tool described on this page cover the following i.MX 6/7 series SoCs: i.MX 6DQP (Dual/Quad Plus) i.MX 6DQ (Dual/Quad) i.MX 6DL/S (Dual Lite/Solo) i.MX 6SoloX i.MX 6SL i.MX 6SLL i.MX 6UL i.MX 6ULL/ULZ i.MX 7D/S i.MX 7ULP Note that the DDR Stress test tool supports the all of the above i.MX SoCs, however, some of the supported i.MX SoCs named in the tool support multiple i.MX SoCs as follows: MX6DQ – when selected, this supports both i.MX 6DQ and i.MX 6DQP (Plus) MX6DL – when selected, this supports both i.MX 6DL and i.MX 6S (i.MX 6DLS family) MX6ULL – when selected, this supports both i.MX 6ULL and i.MX6 ULZ MX7D – when selected, this supports both i.MX 7D and i.MX 7S The purpose of the i.MX 6/7 series DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.). This process equips the user to then proceed with the bring-up of a boot loader and an OS. Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface. The i.MX 6/7 series DDR Tools consist of: DDR Register Programming Aid (RPA): i.MX 6/7 Series DDR Tool Release DDR Stress test: Described below There are three options to run the DDR Stress test. Each of these options are provided in the attached zip files. The following is a high-level overview of each option along with the naming convention of the associated zip file: Option 1 GUI based: Run the GUI executable and connect your board to the host PC via USB Archive file: ddr_stress_tester_vX.xx.zip The tool will first need to run a DDR initialization script for the specified i.MX SoC (refer to Load Init Script in the GUI tool).  Example initialization scripts based on NXP's development boards can be found in this zip file under the script folder.  Note, these scripts may need to be modified for your custom board and memory.   Option 2 DDR Stress Tester: JTAG Interface A hardware debugger connected to the board via the JTAG interface is used to download an elf file into the i.MX SoC OCRAM (internal RAM) and then begin execution. Results are shown on the UART serial port (115200-8-n-1). Archive file: ddr_stress_tester_jtag_vX.xx.zip As with the GUI tool, the JTAG/debugger option will first need to run a DDR initialization script for the specified i.MX SoC. Refer to the GUI tool description above for the location of the example scripts (which are found in the ddr_stress_tester_vX.xx.zip file). Note that the scripts are available either in the RealView ICE format (.inc file) or the DS-5 DSTERAM format (.ds). For other debuggers, the user will have to modify the script's command syntax for their specific debugger. This is also true if converting from a RealView Ice (.inc) format to a DS-5 DSTREAM (.ds) format and vice versa. The DDR Stress Tester executable (starting with V2.20) has an auto UART detection feature. If a different UART port for the serial console has been chosen than used on the NXP development tool (EVK, SABRE) specific commands can be added to the DDR initialization script that allows you to configure for the specific UART and then load and run the elf executable. Refer to the FAQ section of this community post and the txt file found in the JTAG archive file for instructions.   Option 3 U-Boot: The boot loader u-boot is running and commands in u-boot are used to download the bin file into SoC OCRAM and begin execution. Results are shown on the UART serial port (115200-8-n-1) Archive file: ddr_stress_tester_uboot_vX.xx.zip When downloading the DDR Stress Tool by u-boot, please copy the ddr-test-uboot-jtag-mxxxx.bin to SD card and load it to IRAM using the 'fatload' u-boot command (see notes below when using newer versions of u-boot). For i.MX6, please load the binary to 0x00907000. For i.MX7D, please load the binary to 0x00910000.  It is imperative to first disable the I and D cache in u-boot as shown below as the DDR Stress Test re-configures and re-enables the cache and MMU page table. While this option allows the user to load and run the DDR stress test from u-boot, NXP highly recommends executing the GUI based version for system testing and debugging. The u-boot version is considered a “last resort” for systems in production which may not have USB or JTAG connectivity. The reasons behind this stance are: In the GUI version, the system starts “clean” and uninitialized, whereas u-boot initializes many SoC features outside the knowledge of the DDR stress test and may conflict with the stress test operation When running the u-boot version, the test will overwrite the contents of u-boot residing in DDR, hence the test will overwrite any data in DDR. Once the stress test is loaded and executed, u-boot itself will no longer be accessible. To return to the functionality of u-boot, a system re-boot is required. Newer versions on u-boot do not allow a direct loading of the DDR stress test code from the SD card (boot media) directly to the SoC internal OCRAM (aka IRAM). Hence, the procedure is updated to first load the DDR stress test code into DDR and then copy into OCRAM, as shown in the procedure below: u-boot> dcache off;icache off;fatload mmc 2:1 0x12000000 ddr-test-uboot-jtag-mx6dq.bin;cp.b 0x12000000 0x00907000 0x20000;go 0x00907000 As u-boot initializes many peripherals that may conflict with the operation of the DDR stress test, it is necessary to clock gate these peripherals prior to running the DDR stress test. Hence, it is highly recommended to augment the procedure above as follows: u-boot> dcache off;icache off;fatload mmc 2:1 0x12000000 ddr-test-uboot-jtag-mx6dq.bin;cp.b 0x12000000 0x00907000 0x20000; u-boot> mw 0x020c4068 0x00C0000F; u-boot> mw 0x020c406c 0x00000000; u-boot> mw 0x020c4074 0x3F300000; u-boot> mw 0x020c4078 0x0000F300; u-boot> mw 0x020c407c 0x0F000003; u-boot> mw 0x020c4080 0x000003FC; u-boot> go 0x00907000 Note, in the above procedure, it is recommended to write to each clock gate register in separate commands (refer to commands starting with “mw”). The SoC requires a finite amount of time to gate each clock hence performing this sequence with a new command line write ensures the SoC has time to gate the intended clocks.   Stress Test Revision Features Comments 3.00 Add i.MX 7ULP support in the GUI version Known issues: USB connection is unstable when under USB HUB or some PC environments 2.92 Minor correction with write leveling calibration code error check to avoid a corner case of flagging an error when none have occurred.    2.91 Resolved issue with write leveling calibration code where a race condition in the code may result in the calibration routine not being able to find any delay values.   Only applies to MX6 series SoCs that support DDR3.  2.90 Reserve write delay line register (MMDC_MPWRDLCTL) configuration as DDR script does when do write calibration. In previous releases, MMDC_MPWRDLCTL would be changed to 0x40404040 by default.      * Further details available in the release notes  _________________________________________________________________________________________________________________________________________    FAQ   Q. I see an error message that states "ERROR: DCD addr is out of valid range.", why is this and how do I resolve?   A. Sometimes, when using the register programming aid, there are registers writes that are not supported in the DCD range.  Try looking for the following items and comment them out from the DDR initialization script: wait = on setmem /16 0x020bc000 = 0x30 // disable watchdog (note the address for this may be different between i.MX6x devices)  Q. How do I select the "DDR Density" pull-down menu and what is the purpose of this?   A. The DDR Density pull-down menu gives the user the option of testing a DDR density smaller than what they actually have on their board.  The advantage of doing this is to speed up test time to allow the user to perform a "quick test" of their system.  IMPORTANT: it is imperative that the user not set this value higher than the supported density on their board, doing so will cause the stress test to fail and/or lock up. The DDR Density has a different meaning depending on the memory type being tested (DDR3 or LPDDR2): For DDR3, this is the density per CHIP SELECT.  So if your board has two chip selects, and each chip select has 512MB, you would simply select 512MB or lower.  The default setting will simply set this to the detected density per chip select. For LPDDR2, this is the density per CHANNEL.  This is only relevant for MX6 devices that support 2 channel LPDDR2 memories (MX6DQ, MX6DL).  For other MX6 devices that support only one LPDDR2 channel, then this is the total density (for the maximum setting) for that channel. Note that for LPDDR2, the number of chip selects (per channel) is irrelevant when selecting the density to test as the stress test combines both chip-selects into one combined density per channel.  For example, lets say you have a 2GB LPDDR2 device, which 2 channels and 2 chip-selects per channel.  That means you have 512MB per chip select, per channel.  Or, it also means you have 1GB per channel when combining both chip selects per channel.  In this case, you would choose (a maximum setting of) 1GB in the DDR Density drop down menu.  However, this is also the same setting as the default setting (which you are welcome to still choose 1GB to convince yourself that 1GB per channel is indeed being tested). Now let's assume you have only one channel (LPDDR2) and one chip select, with a density of 128MB; in this case, the maximum DDR Density you can select is 128MB. Let's assume you have one channel and two chip selects, each chip select is 128MB;  in this case, the maximum DDR Density you can select is 256MB (a combination of both chip selects).   Note, for the MX7D, an actual density needs to be entered. For the MX6x series, simply leaving this field as Default will cause the DDR stress test to ascertain the supported density from the DDR init script. As the MX7D DDR controller is different, this feature is not supported, hence it is required for the user to enter an actual density (for more details regarding MX7D usage of density and number of chip-selects, see the next FAQ on the DDR CS setting).   Q.  What is the purpose of the "DDR CS" pull-down option?   A.  The answer depends on which processor you are testing:   For the i.MX 6x series: This pull down menu gives you the option of testing one chip select (CS0) or ALL (both) chip selects *IF* you have a two-chip select configuration.  If you have a two-chip select configuration, then this allows you to test only one chip select for faster test time; else you can choose to test both chip selects.  Note that if you have a one-chip select configuration and you choose "ALL", the stress test will return an error.   For the iMX 7D: Because the MX7D DDR controller is different, the DDR stress test will need the user to supply the entire supported density found on their board. The chip select field should be left as is (0) as the test will naturally test one chip select to the next. For example, let’s assume you are using two chip selects, with each chip select being 512MB. In this case, you would enter 1GB for the DDR Density field ensuring that both chip selects will be tested. The user is allowed to enter a density less than the density found on their board (for quicker testing), but keeping in mind both chip selects may not be tested in this case.   Q. I run DDR calibration using the DDR Stress Test Tool to obtain the calibration results.  Are these calibration parameters are written to the uboot flash_header.S automatically or manually?   A. The calibration values obtained from the DDR Stress Test Tool will need to be manually updated in the flash_header.S file or any other DDR initialization script.   Q. When running the DDR stress test on MX7D and I try to perform calibration, I get an error stating that calibration is not supported, is this expected?   A. Yes, calibration is not supported or needed when using MX7.  The reason is, MX7 uses a different memory controller than the MX6 series.  The MX6 series memory controller has built-in support for calibration where the MX7 memory controller does not.   Q. When running the GUI version of the DDR stress test, on MX7 and I leave DDR Density as default, I get an error in the tool stating I must supply a density.  Why is this?   A. This is due to the fact that MX7 uses a different memory controller than the MX6 series.  In the MX6 series, it was possible to calculate the memory density from the memory controller register settings.  The MX7 memory controller is different and does not lend itself to easily calculate the supported density based on the register settings.  Instead, the user should verify the density on their board and selected this value in the DDR Density pull-down menu.    Q. I noticed that when I run write-leveling calibration I sometimes see a note that due to the write-leveling calibration value being greater than 1/8 clock cycle that WALAT must be set to 1.  What does this mean?   A. In the MMDC chapter of the reference manual for the specific i.MX 6 device, the need to set WALAT is described in the MDMISC register as follows: "The purpose of WALAT is to add time delay at the end of a burst write operation to ensure that the JEDEC time specification for Write Post Amble Delay (tWPST) is met (DQS strobe is held low at the end of a write burst for > 30% a clock cycle before it is released). If the value of any of the WL_DL_ABS_OFFSETn register fields are greater than ‘1F’, WALAT should be set to ‘1’ (cycle additional delay). WALAT should be further increased for any full-cycle delays added by the WL_CYC_DELn register fields." Therefore, if the write-leveling calibration routine detects any write-leveling delay value greater than 0x1F, it will note to the user that WALAT must be set and the user should update their DDR3 init script to ensure WALAT is set.  Sometimes, a user may find that the write-leveling delay value may fluctuate from one run to the next, which is quite normal.  If it is found that this delay is "borderline" meaning sometimes it is greater than 0x1F and sometimes it might be slightly less, then it is ok to go ahead and set WALAT permanently in your init script as there is no harm in doing so and will ensure you will stay within JEDEC's tWPST.   Q. I sometimes see that after running write-leveling calibration that delay values being reported back are zero'd out (0x00), and then at times I see a non-zero value being reported, why is this? A. It is quite normal to see slight variations in the delay value between write-leveling calibration runs.  The write-leveling calibration routine assumes a majority of users have designed their board such that the DDR3 memories are placed close to the i.MX 6 SoC. There’s a mechanism in NXP’s DDR Stress test write leveling calibration code that checks the returned write leveling value. If the write-leveling calibration routine detects that the returned delay value is greater than ¾ of a clock cycle, it will "zero out" the delay value. It does this because it assumes that such a large delay result is due to the fact that the DQS signal is already delayed relative to the SDCLK, and to align DQS with SDCLK requires the calibration routine to delay DQS even further to align it to the next SDCLK edge, something we ideally would like to avoid.  JEDEC specs that the DQS edge must be within 25% of a SDCLK cycle with respect to the SDCLK edge, so having DQS initially slightly delayed from SDCLK is actually ok, hence why the calibration routine “zero’s” this out when the returned value exceeds ¾ of a clock cycle.  In cases like this, the DQS edge and SDCLK edge are so close together that in some calibration runs, the DQS edge may slightly precede SDCLK (resulting in a very small write-leveling delay value) and other runs, it may be slightly delayed relative to the SDCLK (resulting in a very large write-leveling delay value that will try to align DQS to the next SDCLK edge, hence needs to be zero’d out).   Q. When using the JTAG version of the DDR stress test, how can I select a different UART port for my serial port?   A. Under the folder ddr_stress_tester_jtag_v2.52, there's a text file that describes how to add a different UART port by adding a few additional commands to your DDR init script.  The following is an outline of these commands: 1. Ungate UART module clocks (most NXP scripts ungate all of the peripheral clocks at the beginning of the script, so this part is already done) 2. Configure the IOMUX options for the pins you wish the UART to use (normally an IOMUX option for UART_TX and UART_RX, and a daisy chain option for the UART_RX input) 3. Enable the desired UART module via the register UCR1, bit UART_EN 4. Disable other UART modules (UCR1[UART_EN] = 0).  Normally disabling UART1 should be sufficient, but it doesn't hurt to disable all of the other un-used UART options for the purpose of the stress test.   Here's an example in the .ds file vernacular of a set up as follows: MX6DQ, UART4 on KEY_COL0 and KEY_ROW0 (assume clock is ungated to all peripherals): mem set 0x020E01F8 32 0x00000004   #// config_pad_mode(KEY_COL0, ALT4) mem set 0x020E01FC 32 0x00000004   #// config_pad_mode(KEY_ROW0, ALT4); mem set 0x020E0938 32 0x00000001   #// Pad KEY_ROW0 is involved in Daisy Chain. mem set 0x02020080 32 0x00000000   #//disable UART1 in UART1_UCR1 (Note, you can disable other UART modules as well) mem set 0x021F0080 32 0x00000001   #//enable UART4 in UART4_UCR1   Here's another example in the .inc file vernacular of a set up as follows: MX6SX, UART5 on SD4_DATA4 abd SD4_DATA5 (assume clock is ungated to all peripherals): setmem /32 0x020E0294 = 0x2 //IOMUXC_SW_MUX_CTL_PAD_SD4_DATA5, ALT2; UART5_TX_DATA setmem /32 0x020E0290 = 0x2 //IOMUXC_SW_MUX_CTL_PAD_SD4_DATA4, ALT2; UART5_RX_DATA setmem /32 0x020E0850 = 0x00000000 // IOMUXC_UART5_IPP_UART_RXD_MUX_SELECT_INPUT, daisy chain for UART5_RX input to use SD4_DATA4 setmem /32 0x021F4080 = 0x00000001 // Enable UART_EN in UCR1 of UART5 // Disable UART_EN in UCR1 of UART1, UART2, UART3, and UART4 setmem /32 0x02020080 = 0x00000000 // UART1 setmem /32 0x021F0080 = 0x00000000 // UART2 setmem /32 0x021EC080 = 0x00000000 // UART3 setmem /32 0x021E8080 = 0x00000000 // UART4     Related Resources Links: iMX 8M Mini Register Programming Aid DRAM PLL setting  i.MX 8/8X Series DDR Tool Release  i.MX 8M Family DDR Tool Release 
View full article
1. Description     These patches are used to support MPU 8080 LCD on L3.14.52_1.1.0_GA BSP.     They are based on ELCDIF hardware module, iMX6UL and iMX7D is the reference platform.   2. File List -- 0001-Add-ST7789S-MPU-LCD-support-for-iMX6UL-board.patch    Patch to support MPU display for iMX6UL, ST7789S 240*320 panel is the example.   -- 0002-Add-ST7735R-MPU-LCD-support-for-iMX7D-board.patch    Patch to support MPU display for iMX7D, ST7735R 128*128 panel is the example.   -- readme.txt    this file, please refer to it before use the patches   3. Requirement - iMX6UL EVK board or iMX7D SabreSD board. - L3.14.52_1.1.0_GA kernel.   4. How to use -- Copy the patch files to kernel folder.     $ cd ~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/3.14.52-r0/git     $ git apply ./0001-Add-ST7789S-MPU-LCD-support-for-iMX6UL-board.patch     $ git apply ./0002-Add-ST7735R-MPU-LCD-support-for-iMX7D-board.patch   -- Build the new kernel image:     $ cd ~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/3.14.52-r0/git     $ export CROSS_COMPILE=~/L3.14.52_GA1.1.0/build-imx7dsabresd-X11/tmp/sysroots/x86_64-linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-     $ export ARCH=arm     $ make imx_v7_defconfig     $ make zImage     $ make dtbs   5. How to add a new MPU panel     1) in dts file, such as imx6ul-14x14-evk-i80lcd.dts, update the panel name "lcd_panel",        update the PINs in "pinctrl_lcdif_dat" and "pinctrl_lcdif_ctrl" for the new panel,        the reset and rs PINs can be from GPIO pin, lcd_reset_gpio and lcd_rs_gpio. &lcdif { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_lcdif_dat        &pinctrl_lcdif_ctrl>; display = <&display0>; status = "okay"; display0: display {   mpu-mode;   lcd_reset_gpio = <&gpio3 14 0>;   lcd_panel = "ST7789S-QVGA"; }; };       2) Reference to "mxsfb_st7789s_qvga.c", add a new panel driver code.       3) Add the new panel support in Makefile and Kconfig under "drivers/video/mxc/"       4) Add the new panel support in file "mxsfb.c" and "mxsfb.h"       5) Add the new panel support in default kernel config file "imx_v7_defconfig"   Note: mpu_lcd_fb_test.tar.gz is the test application, for 8080 display, it is not sync display, so software need call ioctl to refresh the LCD.     2016-08-02: Add the uboot reference patch for iMX7D. File: L3.14.52_Uboot_mpu_display.patch  
View full article
                                                                                         Watch the Freescale i.MX team boot up Android 5.0 Lollipop in i.mx6 application processors—在线播放—优酷网,视频高清在线观看 The Freescale i.MX Android team has booted up Android 5.0 Lollipop in the SABRE platform for i.mx6 series. Google pushed all of the latest source for its Android release to AOSP on Nov. 5, and the Freescale Android Team started their work. With the previous 6 days to boot Android Lollipop up, the Freescale i.MX Android team enabled the basic features like connectivity, audio/video playback, sensors, inputs and display on day 7! You can see the some changes in the demo video at the beginning of the post. The Freescale i.MX Android team has closely followed almost every version of Android since it is released by AOSP and has good experience on it. Below are some snapshots and pictures for the Android Lollipop.
View full article
The i.MX Android O8.0.0_1.0.0 GA release is now available from IMX_SW page. Overview -> BSP Updates and Releases -> Android 8.0.0 Oreo (O8.0.0_1.0.0, 4.9 kernel)   Files available: # Name Description 1 android_O8.0.0_1.0.0_docs.tar.gz i.MX Android O8.0.0_1.0.0 BSP Documentation 2 imx-o8.0.0_1.0.0_ga.tar.gz i.MX Android O8.0.0_1.0.0 proprietary surce code for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo  i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_O8.0.0_1.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_O8.0.0_1.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_O8.0.0_1.0.0_image_6slevk.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_O8.0.0_1.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_O8.0.0_1.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_O8.0.0_1.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec_O8.0.0_1.0.0.tar.gz AAC Plus Codec for O8.0.0_1.0.0 10 android_O8.0.0_1.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for O8.0.0_1.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.2_2.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.2_r9 to android-8.0.0_r25. Removed the device partition and added the vendor partition. Enabled ION-based gralloc and EGL. Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
Design Check Lists: HW Design Checking List for i.MX6DQSDL HW Design Checking List for i.Mx53 Hardware Design Checklist for i.MX28 HW_Design_Checking_List_for_i.MX6SoloX i.MX6UL Hardware design checklist   DDR Design Tool: I.MX53 DDR3 Script Aid imx53 DDR stress tester V0.042 i.Mx6DQSDL DDR3 Script Aid MX6DQP DDR3 Script Aid i.Mx6DQSDL LPDDR2 Script Aid i.Mx6SL LPDDR2 Script Aid i.MX6SX DDR3 Script Aid I.MX6UL DDR3 Script Aid i.MX6UL_LPDDR2_Script_Aid i.MX6ULL_DDR3_Script_Aid  i.MX6ULL_LPDDR2_Script_Aid  MX6SLL_LPDDR2_Script_Aid  MX6SLL_LPDDR3_Script_Aid  i.MX6 DDR Stress Test Tool V1.0.3 i.MX6/7 DDR Stress Test Tool V3.00 i.MX8MSCALE DDR Tool Release  i.MX8M DDR3L register programming aid  i.MX 8/8X Family DDR Tools Release   Application Notes: MX_Design_Validation_Guide I.MX6 series USB Certification Guides
View full article
The i.MX Android N7.1.2_2.0.0 GA release is now available on IMX_SW page.   Files available: # Name Description 1 android_N7.1.2_2.0.0_docs.tar.gz i.MX Android N7.1.2_2.0.0 BSP Documentation 2 android_N7.1.2_2.0.0_source.tar.gz Source Code of Android N7.1.2_2.0.0 BSP (4.1 kernel) for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_N7.1.2_2.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_N7.1.2_2.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_N7.1.2_2.0.0_image_6slevk.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_N7.1.2_2.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_N7.1.2_2.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_N7.1.2_2.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec.tar.gz AAC Plus Codec for N7.1.2_2.0.0 10 android_N7.1.2_2.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for N7.1.2_2.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.1_1.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.1_r13 to android-7.1.2_r9. Upgraded U-Boot from v2015.04 to v2017.03. Upgraded the kernel from v4.1.15 to v4.9.17. Upgraded the GPU driver from 6.2.0.p2 to 6.2.2.p1. Upgraded the Wi-Fi BCMDHD release version to 1.141.100.6. Refine the Gralloc and HWC HAL. Enable the GPT partition to replace the MBR partition.   Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
BlueZ5 provides support for the core Bluetooth layers and protocols. It is flexible, efficient and uses a modular implementation. BlueZ5 has implemented the Bluetooth low level host stack for Bluetooth core specification 4.0 and 3.0+HS which includes GAP, L2CAP, RFCOMM, and SDP. Besides the host stack, BlueZ5 has also supported the following profiles itself or via a third party software. Profiles provided by BlueZ: A2DP 1.3 AVRCP 1.5 DI 1.3 HDP 1.0 HID 1.0 PAN 1.0 SPP 1.1 GATT (LE) profiles: PXP 1.0 HTP 1.0 HoG 1.0 TIP 1.0 CSCP 1.0 OBEX based profiles (by obexd): FTP 1.1 OPP 1.1 PBAP 1.1 MAP 1.0 Provided by the oFono project: HFP 1.6 (AG & HF)Supported Profiles BlueZ5 has been supported in the latest Freescale Linux BSP release, so it would be pretty easy to generate the binaries for Bluetooth core stack and its profiles. In order to support A2DP sink on a SabreSD board, the following software should be downloaded and installed onto the target rootfs too. sbc decoder version 1.3 (http://www.kernel.org/pub/linux/bluetooth/sbc-1.3.tar.gz) PulseAudio 5.0 (http://www.freedesktop.org/software/pulseaudio/releases/pulseaudio-5.0.tar.xz) PulseAudio package has some dependencies with bluetooth and sbc packages, and pulseaudio will detect if the two packages have been built and then decide which pulse plugin modules to be generated. So the building order will be 1) bluez5_utils or bluez_utils   2) sbc   3) pulseaudio. After compile and install the above software onto the target rootfs, you should be able to see the following executable under the directory /usr/bin From BlueZ5: bluetoothctl, hciconfig, hciattach (Needed by operating a UART bluetooth module) From PulseAudio: pulseaudio, pactl, paplay If the building dependency has been setup correctly, the following pulse plugin modules should be located under the directory /usr/lib/pulse-5.0/modules module-bluetooth-discover.so      module-bluetooth-policy.so        module-bluez5-device.so   module-bluez5-discover.so Edit the file /etc/dbus-1/system.d/pulseaudio-system.conf, and add the following lines in red: <policy user="pulse">     <allow own="org.pulseaudio.Server"/>    <allow send_destination="org.bluez"/>     <allow send_interface="org.freedesktop.DBus.ObjectManager"/> </policy> Edit the file /etc/dbus-1/system.d/bluetooth.conf, and add the following lines: <policy user="pulse">      <allow send_destination="org.bluez"/>      <allow send_interface="org.freedesktop.DBus.ObjectManager"/> </policy> Adding the following settings at the bottom of the pulseaudio system configuration file which locates in /etc/pulse/system.pa ### Automatically load driver modules for Bluetooth hardware .ifexists module-bluetooth-policy.so load-module module-bluetooth-policy .endif .ifexists module-bluetooth-discover.so load-module module-bluetooth-discover .endif load-module module-switch-on-connect load-module module-alsa-sink device_id=0 tsched=true tsched_buffer_size=1048576 tsched_buffer_watermark=262144 On the system that can automatically detect the alsa cards, the above line #13 should be removed.  Also make sure "auth-anonymous=1" is added to the following line, which can resolve the issue: "Denied access to client with invalid authorization data". load-module module-native-protocol-unix auth-anonymous=1 Selecting a audio re-sampling algorithm and configuring the audio output by adding the following settings to the file daemon.conf locating in /etc/pulse resample-method = trivial enable-remixing = no enable-lfe-remixing = no default-sample-format = s16le default-sample-rate = 48000 alternate-sample-rate = 24000 default-sample-channels = 2 Pulseaudio can be started as a daemon or as a system-wide instance. To run PulseAudio in system-wide mode, the program will automatically drop privileges from "root" and change to the "pulse" user and group. In this case, before launching the program, the "pulse" user and group needs to be created on the target system.  In the example below, "/var/run/pulse" is the home directory for "pulse" user. adduser -h /var/run/pulse pulse addgroup pulse-access adduser pulse pulse-access Because PulseAudio needs to access the sound devices, add the user "pulse" to the "audio" group too. adduser pulse audio Starting bluetoothd and pulseaudio: /usr/libexec/bluetooth/bluetoothd -d & pulseaudio --system --realtime & To verify if the pulseaudio has been set up correctly, you can play a local wave file by using the following command. If you can hear the sound, the system should have been configured correctly. paplay -vvv audio8k16S.wav After setting up the pulseaudio, launch bluetoothctl to pair and connect to a mobile phone. After connecting to a mobile phone, you should be able to see the following information in bluetoothctl console: [bluetooth]# show Controller 12:60:41:7F:03:00         Name: BlueZ 5.21         Alias: BlueZ 5.21         Class: 0x1c0000         Powered: yes         Discoverable: no         Pairable: yes         UUID: PnP Information           (00001200-0000-1000-8000-00805f9b34fb)         UUID: Generic Access Profile    (00001800-0000-1000-8000-00805f9b34fb)         UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)         UUID: A/V Remote Control        (0000110e-0000-1000-8000-00805f9b34fb)         UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)         UUID: Message Notification Se.. (00001133-0000-1000-8000-00805f9b34fb)         UUID: Message Access Server     (00001132-0000-1000-8000-00805f9b34fb)         UUID: Phonebook Access Server   (0000112f-0000-1000-8000-00805f9b34fb)         UUID: IrMC Sync                 (00001104-0000-1000-8000-00805f9b34fb)         UUID: OBEX File Transfer        (00001106-0000-1000-8000-00805f9b34fb)         UUID: OBEX Object Push          (00001105-0000-1000-8000-00805f9b34fb)         UUID: Vendor specific           (00005005-0000-1000-8000-0002ee000001)         UUID: Audio Source              (0000110a-0000-1000-8000-00805f9b34fb)         UUID: Audio Sink                (0000110b-0000-1000-8000-00805f9b34fb)         Modalias: usb:v1D6Bp0246d0515         Discovering: no If you can see the audio sink UUID, you are ready to enjoy the bluetooth music now.
View full article
To build Android version earlier than Lollipop from source code, you need the Sun's 1.6 SDK to be installed for ubuntu as the link Initializing a Build Environment | Android Developers. You may still cannot get the Sun's JDK  with below instruction: $ sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner" $ sudo apt-get update $ sudo apt-get install sun-java6-jdk    There are below options to help install the Sun's JDK  if you cannot find a valid source through apt-get commands: $ wget --no-cookies --header "Cookie: gpw_e24=http%3A%2F%2Fwww.oracle.com%2F" http://download.oracle.com/otn-pub/java/jdk/6u45-b06/jdk-6u45-linux-x64.bin $ chmod u+x jdk-6u45-linux-x64.bin $ ./jdk-6u45-linux-x64.bin $ sudo mv jdk1.6.0_45 /opt $ sudo update-alternatives --install /usr/bin/java java /opt/java/64/jdk1.6.0_45/bin/java 1 $ sudo update-alternatives --install /usr/bin/javac javac /opt/java/64/jdk1.6.0_45/bin/javac 1 $ sudo update-alternatives --install /usr/bin/jar jar /opt/java/64/jdk1.6.0_45/bin/jar 1 # if you have already install some other version of JDK, please export the JAVA_HOME env before your android build every time $ export JAVA_HOME=/opt/jdk1.6.0_45/ #or you can directly link the java binary to the sdk version you need as below: sudo ln -s /opt/java/64/jdk1.6.0_45/bin/jar /bin/jar sudo ln -s/opt/java/64/jdk1.6.0_45/java /bin/java sudo ln -s/opt/java/64/jdk1.6.0_45/javac /bin/javac sudo ln -s/opt/java/64/jdk1.6.0_45/javah /bin/javah sudo ln -s/opt/java/64/jdk1.6.0_45/javadoc /bin/javadoc sudo ln -s/opt/java/64/jdk1.6.0_45/javaws /bin/javaws    To built the Android version Lollipop and Marshmallow from source code, you need the OpenJDK 7 to be installed for ubuntu as the link Initializing a Build Environment | Android Developers. $ sudo apt-get update $ sudo apt-get install openjdk-7-jdk You may have both openjdk7 and SUN JDK 1.6 intalled in your ubuntu to build different Android version. If you have default java SDK to be Sun's JDK 1.6, you can just use below commands to make android build system use the openjdk7 for Lollipop built $ export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64/ $ cd myandroid $ . ./build/envsetup.sh           //be sure to resetup the envsetup, and pick the platform to be built $ lunch
View full article
1.  Software change for Certification Test Compared to standard Linux/Android release, you may need to do below software changes to implement the certification tests, it is applicable from imx_3.10.31_1.1.0 Linux BSP GA release, for the release before that, user may need to apply the related patches before doing below things, and some examples may be different for former releases, the user needs to change accordingly. See the detailed information in this document “How to do USB Compliance Test for 3.10.y kernel”. And there is also a link describes the patch for USB Certification Test: Patch to make i.MX6DQ USB to support test modes for certification test 2. I.MX6 series USB Certification Guide http://cache.freescale.com/files/microcontrollers/doc/user_guide/IMXUSBCGUG.pdf Include the descriptions of all the Certification Test requirements, equipment, procedures for I.MX6 series. For example, Host/Device High Speed Eye Diagram Test(眼图测试).   3. Description of USBCertification related Registers AN4589 Configuring USB on i.MX 6 Series Processors http://cache.freescale.com/files/32bit/doc/app_note/AN4589.pdf   4. I.MX6Q/I.MX6DL/I.MX6SL/ I.MX6SX Certification Reports, see attachments   5. Checklist and TPL, see attachments. Original Attachment has been moved to: I.MX6SX-Checklist-and-TPL.zip
View full article
The Linux L4.9.11_1.0.0 RFP(GA) for i.MX6 release files are now available on www.nxp.com    Files available: # Name Description 1 L4.9.11_1.0.0-ga_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 2 L4.9.11_1.0.0-ga_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 3 L4.9.11_1.0.0-ga_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 4 L4.9.11_1.0.0-ga_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 5 L4.9.11_1.0.0-ga_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  6 L4.9.11_1.0.0-ga_mfg-tools.tar.gz i.MX Manufacturing Toolkit for Linux L4.9.11_1.0.0 BSP 7 L4.9.11_1.0.0-ga_gpu-tools.tar.gz L4.9.11_1.0.0 i.MX VivanteVTK file 8 bcmdhd-1.141.100.6.tar.gz The Broadcom firmware package for i.MX Linux L4.9.11_1.0.0 BSP. 9 imx-aacpcodec-4.2.1.tar.gz Linux AAC Plus Codec for L4.9.11_1.0.0 10 fsl-yocto-L4.9.11_1.0.0.tar.gz L4.9.11_1.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide.   Target boards: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board (Beta Quality)   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes, see: README: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/README?h=imx-morty ChangeLog: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/ChangeLog?h=imx-morty
View full article
Host TFTP and NFS Configuration Now configure the Trivial File Transfer Protocol (TFTP) server and Networked File System (NFS) server. U-Boot will download the Linux kernel and dtb file using tftp and then the kernel will mount (via NFS) its root file system on the computer hard drive. 1. TFTP Setup   1.1.1 Prepare the TFTP Service   Get the required software if not already set up. On host for TFTP: Install TFTP on Host $ sudo apt-get install tftpd-hpa   (Note: There are a number of examples in various forums, etc, of how to automatically start the TFTP service - but not all are successful on all Linux distro's it seems! The following may work for you.)   Start the tftpd-hpa service automatically by adding a command to /etc/rc.local. $ vi /etc/rc.local   Now, just before the exit 0 line edit below command then Save and Exit. $ service tftpd-hpa start  Now, To control the TFTP service from the command line use: $ service tftpd-hpa restart    To check the status of the TFTP service from the command line use: $ service tftpd-hpa status   1.1.1 Setup the TFTP Directories Now, we have to create the directory which will contain the kernel image and the device tree blob file. $ mkdir -p /imx-boot/imx6q-sabre/tftp Then, copy the kernel image and the device tree blob file in this directory. $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/zImage /imx-boot/imx6q-sabre/tftp $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/<dtb file> /imx-boot/imx6q-sabre/tftp   OR we can use the default directory created by yocto {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/ The tftpd-hpa service looks for requested files under /imx-boot/imx6q-sabre/tftp The default tftpd-hpa directory may vary with distribution/release, but it is specified in the configuration file: /etc/default/tfptd-hpa. We have to change this default directory with our directory   Edit default tftp directory $ vi /etc/default/tftpd-hpa   Now, change the directory defined as TFTP_DIRECTORY with your host system directory which contains kernel and device tree blob file. Using created directory TFTP_DIRECTORY=”/imx-boot/imx6q-sabre/tftp” OR Using Yocto directory path TFTP_DIRECTORY=”{YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}” Restart the TFTP service if required $ service tftpd-hpa restart   1.2 NFS Setup 1.2.1 Prepare the NFS Service Get the required software if not already set up. On host for NFS: Install NFS on Host $ sudo apt-get install nfs-kernel-server The NFS service starts automatically. To control NFS services : $ service nfs-kernel-server restart To check the status of the NFS service from the command line : $ service nfs-kernel-server status 1.2.2 Setup the NFS Directories Now, we have to create the directory which will contain the root file system. $ mkdir -p /imx-boot/imx6q-sabre/nfs   Then, copy the rootfs in this directory. $ cp -R {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs/* /imx-boot/imx6q-sabre/nfs   OR we can use the default directory created by yocto. $ {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs 1.2.3 Update NFS Export File The NFS server requires /etc/exports to be configured correctly to access NFS filesystem directory to specific hosts. $ vi /etc/exports Then, edit below line into the opened file. <”YOUR NFS DIRECTORY”> <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex. If you created custom directory for NFS then, /imx-boot/imx6q-sabre/nfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex: /imx-boot/imx6q-sabre/nfs 192.168.*.*(rw,sync,no_root_squash,no_subtree_check) OR /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check)   Now, we need to restart the NFS service. $ service nfs-kernel-server restart   2 Target Setup   We need to set up the network IP address of our target. Power On the board and hit a key to stop the U-Boot from continuing. Set the below parameters, setenv serverip 192.168.0.206       //This must be your Host IP address The path where the rootfs is placed in our host has to be indicated in the U-Boot, Ex. // if you choose default folder created by YOCTO setenv nfsroot /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs   OR // if you create custom directory for NFS setenv nfsroot /imx-boot/imx6q-sabre/nfs Now, we have to set kernel image name and device tree blob file name in the u-boot, setenv image < zImage name > setenv fdt_file <dtb file name on host> Now, set the bootargs for the kernel boot, setenv netargs 'setenv bootargs console=${console},${baudrate} ${smp} root=/dev/nfs ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp' Use printenv command and check loadaddr and fdt_addr environment variables variables for I.MX6Q SABRE, loadaddr=0x12000000 fdt_addr=0x18000000   Also, check netboot environment variable. It should be like below, netboot=echo Booting from net ...; run netargs; if test ${ip_dyn} = yes; then setenv get_cmd dhcp; else setenv get_cmd tftp; fi; ${get_cmd} ${image}; if test ${boot_fdt} = yes || test ${boot_fdt} = try; then if ${get_cmd} ${fdt_addr} ${fdt_file}; then bootz ${loadaddr} - ${fdt_addr}; else if test ${boot_fdt} = try; then bootz; else echo WARN: Cannot load the DT; fi; fi; else bootz; fi; Now, set environment variable bootcmd to boot every time from the network, setenv bootcmd run netboot Now finally save those variable in u-boot: saveenv Reset your board; it should now boot from the network: U-Boot 2016.03-imx_v2016.03_4.1.15_2.0.0_ga+ga57b13b (Apr 17 2018 - 17:13:43 +0530)  (..) Net:   FEC [PRIME] Normal Boot Hit any key to stop autoboot:  0   Booting from net ... Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'zImage'. Load address: 0x12000000 Loading: #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         ###########################################################         2.1 MiB/s done Bytes transferred = 6578216 (646028 hex) Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'imx6q-sabresd.dtb'. Load address: 0x18000000 Loading: ####         1.8 MiB/s done Bytes transferred = 45893 (b345 hex) Kernel image @ 0x12000000 [ 0x000000 - 0x646028 ] ## Flattened Device Tree blob at 18000000   Booting using the fdt blob at 0x18000000   Using Device Tree in place at 18000000, end 1800e344 switch to ldo_bypass mode!   Starting kernel ...
View full article
The Linux L4.9.88_2.0.0 Rocko, i.MX7ULP Linux/SDK2.4 RFP(GA) release files are now available. Linux on IMX_SW web page, Overview -> BSP Updates and Releases ->Linux L4.9.88_2.0.0 SDK on https://mcuxpresso.nxp.com/ web page.   Files available: Linux:  # Name Description 1 imx-yocto-L4.9.88_2.0.0.tar.gz L4.9.88_2.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide. 2 L4.9.88_2.0.0_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 3 L4.9.88_2.0.0_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 4 L4.9.88_2.0.0_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 5 L4.9.88_2.0.0_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 6 L4.9.88_2.0.0_images_MX8MQ.tar.gz i.MX 8MQuad EVK Linux Binary Demo files 7 L4.9.88_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  8 L4.9.88_2.0.0-ga_mfg-tools.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 iMX6,7 BSP 9 L4.9.88_2.0.0_mfg-tool_MX8MQ.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 i.MX8MQ BSP 10 imx-aacpcodec-4.3.5.tar.gz Linux AAC Plus Codec for L4.9.88_2.0.0   SDK:   On https://mcuxpresso.nxp.com/, click the Select Development Board to customize the SDK based on your configuration then download the SDK package.    Target board: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board i.MX 8MQ EVK Board   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-rocko ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-rocko
View full article
When you do long test (days or weeks) test on i.MX board and your test fails, you often wants to know what has happen with a JTAG probe. The problem is when you have 50 boards running in parallel, you don't have the budget to have 50 JTAG debug probe. If you do a "hot plug" of your JTAG probe, you have roughly one chance out 2 to reset your board... so you'll have to wait another couple of hour to resee the problem. Anyway to have a reliable JTAG plug with no reset, it is really simple... cut the RESET line on your cable! then you'll still be able to "attach" to your i.MX. On the MEK board, with a 10-pin JTAG connector, you have the cut the cable line 10 of the ribbon cable: On the cable, cut the reset line like this: With my Lauterbach JTAG  probe, when I do a "hot plug" I never have a reset of my i.MX. BR Vincent
View full article
Instrumenting A Board To instrument a board, the connection between the power supply and the target device needs to be broken, usually via a series resistor that's placed on the board. Sometimes the inductor needs to be lifted if no series resistor was included on the rail by the board's designer. In the ideal case, through-hole connections were also provided on the board for the connection of these off-board sensors. Here are three close-up photos that show several boards that have been instrumented: In all three cases, the sensors stand in place via the two outer current carrying wires. The middle and right used insulated wires where as the one on the left used bare wires. In all three cases, the sensor's + connection needs to go towards the power supply and the - connection goes to the target device. The outer wires here are 24-26 gauge. (The relatively heavy gauge wire is used to keep the series resistance of inserting a smart sensor to a minimum.) The ground connection is the middle hole of the smart sensor. In the left and middle photos, a 30 gauge wire connects to the middle hole ground connection on the  board. In the right photo, the ground wire was more conveniently added to a big cap just below the bottom of edge of the photo. Here are wider angle view photos of two of the boards above: The sensors on the left are free-standing since the current carrying wires are stiff enough to hold them upright. Care must be taken since too much flexing will cause a wire to break. Too much bending can also cause a short to the board (and that's why insulated wires were used on these boards). The board on the right has the sensors laying parallel to the board. They are not affixed to the board, but a wire is wrapped around the bundle of ribbon cables out of view past the right edge of the photo. For boards without the through hole connections, the smart sensors need to be immobilized to keep from pulling the SMT pads off the board. If there is room on the board or sides of connectors or large components, the sensors may be attached down with foam double-sticky tape (see photo below, sensor affixed on top i.MX7ULP): For boards where there are no convenient unpopulated areas or there are too many sensors, some other means needs to be devised to immoblize the smart sensors. In the left photo below, two inductors per sensor have been flipped and the two sensors inserted to instrument the two rails. The solder pads on the inductors would easily be broken off by any movement of the smart sensors, so a cage with clamps to hold the ribbon cables was 3D printed. On the back side, there is room for the aggregator to be zip tied to the bottom plate, so the instrumented board can be moved as a single unit with minimal flexing of the ribbon cables.
View full article
Dithering Implementation for Eink Display Panel by Daiyu Ko, Freescale Dithering a.          Dithering in digital image processing Dithering is a technique used in computer graphics to create the illusion of color depth in images with a limited color palette (color quantization). In a dithered image, colors not available in the palette are approximated by a diffusion of colored pixels from within the available palette. The human eye perceives the diffusion as a mixture of the colors within it (see color vision). Dithered images, particularly those with relatively few colors, can often be distinguished by a characteristic graininess, or speckled appearance. Figure 1. Original photo; note the smoothness in the detail http://en.wikipedia.org/wiki/File:Dithering_example_undithered_web_palette.png Figure 2.Original image using the web-safe color palette with no dithering applied. Note the large flat areas and loss of detail. http://en.wikipedia.org/wiki/File:Dithering_example_dithered_web_palette.png Figure 3.Original image using the web-safe color palette with Floyd–Steinberg dithering. Note that even though the same palette is used, the application of dithering gives a better representation of the original b.         Applications Display hardware, including early computer video adapters and many modern LCDs used in mobile phonesand inexpensive digital cameras, show a much smaller color range than more advanced displays. One common application of dithering is to more accurately display graphics containing a greater range of colors than the hardware is capable of showing. For example, dithering might be used in order to display a photographic image containing millions of colors on video hardware that is only capable of showing 256 colors at a time. The 256 available colors would be used to generate a dithered approximation of the original image. Without dithering, the colors in the original image might simply be "rounded off" to the closest available color, resulting in a new image that is a poor representation of the original. Dithering takes advantage of the human eye's tendency to "mix" two colors in close proximity to one another. For Eink panel, since it is grayscale image only, we can use the dithering algorism to reduce the grayscale level even to black/white only but still get better visual results. c.          Algorithm There are several algorithms designed to perform dithering. One of the earliest, and still one of the most popular, is the Floyd–Steinberg dithering algorithm, developed in 1975. One of the strengths of this algorithm is that it minimizes visual artifacts through an error-diffusion process; error-diffusion algorithms typically produce images that more closely represent the original than simpler dithering algorithms. (Original) Threshold Bayer   (ordered)                                     Example (Error-diffusion): Error-diffusion dithering is a feedback process that diffuses the quantization error to neighboring pixels. Floyd–Steinberg dithering only diffuses the error to neighboring pixels. This results in very fine-grained dithering. Jarvis, Judice, and Ninke dithering diffuses the error also to pixels one step further away. The dithering is coarser, but has fewer visual artifacts. It is slower than Floyd–Steinberg dithering because it distributes errors among 12 nearby pixels instead of 4 nearby pixels for Floyd–Steinberg. Stucki dithering is based on the above, but is slightly faster. Its output tends to be clean and sharp. Floyd–Steinberg Jarvis,   Judice & Ninke Stucki                         Error-diffusion dithering (continued): Sierra dithering is based on Jarvis dithering, but it's faster while giving similar results. Filter Lite is an algorithm by Sierra that is much simpler and faster than Floyd–Steinberg, while still yielding similar (according to Sierra, better) results. Atkinson dithering, developed by Apple programmer Bill Atkinson, resembles Jarvis dithering and Sierra dithering, but it's faster. Another difference is that it doesn't diffuse the entire quantization error, but only three quarters. It tends to preserve detail well, but very light and dark areas may appear blown out. Sierra Sierra   Lite Atkinson                              2.     Eink display panel characteristic a.       Low resolution Eink only has couple resolution modes for display      DU                  (1bit, Black/White)      GC4                (2bit, Gray scale)      GC16              (4bit, Gray scale)      A2                   (1bit, Black/White, fast update mode) b.      Slow update time For 800x600 panel size (per frame)      DU                  300ms                              GC4                450ms                              GC16              600ms                               A2                   125ms 3.       3.     Effect by doing dithering for Eink display panel a.       Low resolution with better visual quality By doing dithering to the original grayscale image, we can get better visual looking result. Even if the image becomes black and white image, with the dithering algorism, you will still get the feeling of grayscale image. b.      Faster update with Eink’s animation waveform Since the DU/A2 mode could update the Eink panel faster than grayscale mode, with dithering, we can get no only the better visual looking result, but also we can use DU/A2 fast update mode to show animation or even normal video files. 4.       4.     Our current dithering implementation a.       Choose a simple and effective algorism Considering Eink panel’s characteristics, we compared couple dithering algorism and decide to use Atkinson dithering algorism. It is simple and the result is better especially for Einkblack/white display case. b.      Made a lot of optimization so that it will not affect update time too much With the simplicity of the Atkinson dithering algorism, we can also put a lot of effort to do the optimization in order to reduce the dithering processing time and make it practical for actual use. c.       Current algorism performance and result Currently, with Atkinson dithering algorism, our processing time is about 70ms. 5.       5.     Availability a.       We implemented both Y8->Y1 and Y8->Y4 dithering with the same dithering algorism. b.      Implemented into our EPDC driver with i.MX6SL Linux 3.0.35 version release. c.       Also implemented in our Video for Eink demo 6.       6.     References a.       Part of dithering introduction from www.wikipedia.org
View full article
The i.MX Android N7.1.1_1.0.0 release is now available on Web Site (i.MX6 BSP Updates and Releases -> Android).   Files available: # Name Description 1 android_N7.1.1_1.0.0_docs.tar.gz i.MX Android N7.1.1_1.0.0 BSP Documentation 2 android_N7.1.1_1.0.0_source.tar.gz Source Code of Android N7.1.1_1.0.0 BSP (4.1 kernel) for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo  i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_N7.1.1_1.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_N7.1.1_1.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_N7.1.1_1.0.0_image_6slevk.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_N7.1.1_1.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_N7.1.1_1.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_N7.1.1_1.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Board based on i.MX 7Dual 9 android_N7.1.1_1.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for N7.1.1_1.0.0   Supported Hardware SoC/Boards: MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform MX 6SoloLite EVK platform MX 6SoloX SABRE-SD board and platforms MX 6SoloX SABRE-AI board and platforms MX 7Dual SABRE-SD board and platform   Changes: Compared to the M6.0.1_2.1.0 release, this release has the following major changes: Upgraded the Android platform version to Android 7.1. Upgraded the U-Boot and Linux Kernel Code base from the L4.1.15_1.0.0 release to the L4.1.15_1.2.0-ga release. Added support for the i.MX 7Dual SABRE-SD board. Upgraded the GPU driver from 5.0.11p8 to 6.2.0.p2.   Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
Some Chinese customers using i.MX series SoC maybe encounter some issues when they download android , u-boot & kernel source code by 'git' command, the following steps will show customer how to get them: 1. Getting repo --No.1 methord # cd ~ # mkdir myandroid # mkdir bin # cd bin # git clone git://aosp.tuna.tsinghua.edu.cn/android/git-repo.git/ <if git failed, use : git clone https://aosp.tuna.tsinghua.edu.cn/android/git-repo.git/> # cd git-repo # cp ./repo ../ --No.2 methord # cd ~ # mkdir bin # curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo # chmod a+x ~/bin/repo [Note]Customers can select one of above to get "repo" 2. Modifying repo File Open ~/bin/repo file with 'gedit' and Change google address From        REPO_URL = 'https://gerrit.googlesource.com/git-repo' To        REPO_URL = 'git://aosp.tuna.tsinghua.edu.cn/android/git-repo'        like following: ## repo default configuration ## REPO_URL = 'git://aosp.tuna.tsinghua.edu.cn/android/git-repo' REPO_REV = 'stable' 3、Setting email address # cd ~/myandroid # git config --global user.email "weidong.sun@nxp.com" # git config --global user.name "weidong.sun" [ Email & Name should be yours] 4、Getting manifest # ~/bin/repo init -u https://aosp.tuna.tsinghua.edu.cn/android/platform/manifest -b android-5.1.1_r1 # cd ~/myandroid/.repo # gedit manifest.xml        Then change the value of fetch to " git://aosp.tuna.tsinghua.edu.cn/android/ ", like following: <manifest>   <remote name="aosp"            fetch="git://aosp.tuna.tsinghua.edu.cn/android/" />   <default revision="refs/tags/android-5.1.1_r1" ...... [Note] android-5.1.1_r1 is version of branch,customer can change it to another. 5、# ~/bin/repo sync          [Note] During runing repo sync, maybe errors will occur like the following: ...... * [new tag]         studio-1.4 -> studio-1.4 error: Exited sync due to fetch errors          Then 'repo sync' exits. But don't worry about it, continue to run the command please ! " ~/bin/repo sync", downloading source code will be continous. 6、Getting Cross Compiler # cd ~/myandroid/prebuilts/gcc/linux-x86/arm # git clone https://aosp.tuna.tsinghua.edu.cn/android/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6 # cd arm-eabi-4.6 # git checkout android-4.4.3_r1 7、Getting linux kernel source code        Probably, customer can't normally get linux kernel by using "git clone" command, she can download it directly from the following weblink:        http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/        At first, create a temperary directory, then download kernel into the directory. see following steps: # cd ~ /Downloads # mkdir linux-kernel   Atfer downloading l5.1.1_2.1.0-ga.tar.gz, use 'tar zxvf l5.1.1_2.1.0-ga.tar.gz' command to decompress it.        Then you can find a subdirectory name " l5.1.1_2.1.0-ga" is created, linux source code is in the directory, we should copy all files in the directory to ~/myandroid/kernel_imx/ # cd ~/myandroid # mkdir kernel_imx # cd kernel_imx # cp -a ~ /Downloads/linux-kernel/l5.1.1_2.1.0-ga ./ 8、Getting uboot source code               Probably, customer can't normally get linux kernel by using "git clone" command, she can download it directly from the following weblink:       http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/        We can use similar way to that of linux kernel to get u-boot source code: # cd ~ /Downloads # mkdir u-boot        Download l5.1.1_2.1.0-ga.tar.gz file, and save it in ~ /Downloads/ u-boot, then decompress it, then u-boot source code will be in ~ /Downloads/ u-boot / l5.1.1_2.1.0-ga/, we should copy all file in the path to ~/myandroid/bootable/bootloader/uboot-imx/ # cd ~/myandroid/bootable/bootloader # mkdir uboot-imx # cd uboot-imx # cp -a ~ /Downloads/u-boot/l5.1.1_2.1.0-ga/* ./ 9、Patch android BSP source code        android_L5.1.1_2.1.0_consolidated-ga_core_source.gz is the name of patch. Run following command to patch android. # copy android_L5.1.1_2.1.0_consolidated-ga_core_source.gz /opt/ # tar zxvf android_L5.1.1_2.1.0_consolidated-ga_core_source.gz # cd /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ # tar zxvf L5.1.1_2.1.0_consolidated-ga.tar.gz # cd ~/myandroid # source /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ L5.1.1_2.1.0_consolidated-ga/ and_patch.sh # help # c_patch /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ L5.1.1_2.1.0_consolidated-ga/ imx_L5.1.1_2.1.0-ga        If everything is OK, the following logs will display on console:               **************************************************************        Success: Now you can build the Android code for FSL i.MX platform               ************************************************************** 10、Patch Freescale extended feathures code        Please refer to chapter 3.3 of Android_User's_Guide.pdf to patch another 2 files:        (1) android_L5.1.1_2.1.0_consolidated-ga_omxplayer_source.gz        (2) android_L5.1.1_2.1.0_consolidated-ga_wfdsink_source.gz [Note]       As for other steps, such as compiling etc, please refer to Android_User's_Guide.pdf that released by NXP. TICS team Weidong Sun 04/01/2016
View full article
A new version of the Pins Tool for i.MX Application Processors has been released and is available for download as desktop tool from Pins Tool for i.MX Application Processors|NXP. The pins Tool for i.MX Application Processors is used for pin routing configuration, validation and code generation, including pin functional/electrical properties, power rails, run-time configurations, with the following main features: Desktop application Muxing and pin configuration with consistency checking Multicore support ANSI-C initialization code Graphical processor package view Multiple configuration blocks/functions Easy-to-use device configuration Selection of Pins and Peripherals Package with IP blocks Routed pins with electrical characteristics Registers with configured and reset values Power Groups with assigned voltage levels Source code for C/C++ applications Documented and easy to understand source code CSV Report and Device Tree File Localized for English and Simplified Chinese Mostly Connected: On-Demand device data download Integrates with any compiler and IDE What's New Added Label support to give signals a name Added ‘Log’ and ‘Problems’ view to report conflicts between settings Added support for templates to store user configurations as starting point for new configurations Added ability to download and share data for devices, especially for off-network host machines i.MX header files are now automatically part of the device data Import of legacy Processor Expert .pe files Export of register defines Various bug fixes and documentation improvements The release notes of the desktop application are attached to this article. Import Processor Expert Files A new importer has been added to import legacy Processor Expert for i.MX files: Labels Signals can now have user defined labels: Templates, Kits, Boards and Processors When creating a new configuration, it offers Templates, Boards and Processors. Custom configurations can be stored as templates and then used for new configurations. Board Specific Functions With the provided board and kit configurations, there are now pre-configured initialization functions for major blocks on the board: Export Data To simplify downloading the device specific data for the desktop tool, the 'Export' function can be used to download and export the data. The data can be copied that way to another machine or all data for a set of devices can be loaded. Export Registers With the Export command the registers can be exported as text/source: This is used to store the register values: /*FUNCTION********************************************************************** * * Function Name : init_audmux_pins * Description   : Configures pin routing and optionally pin electrical features. * *END**************************************************************************/ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT_VALUE            0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_DA_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT_VALUE         0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXCLK_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT_VALUE          0x00000000   /*!< Register name: IOMUXC_AUD5_INPUT_TXFS_AMX_SELECT_INPUT */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN02 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN03 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN04 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15_VALUE                  0x00000002   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DI0_PIN15 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA16 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA18 */ #define INIT_AUDMUX_PINS_IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19_VALUE               0x00000003   /*!< Register name: IOMUXC_SW_MUX_CTL_PAD_DISP0_DATA19 */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ We hope you will find this new release useful. Thanks for designing with NXP! 
View full article
Starting from $52, the VAR-SOM-MX6 sets the bar for unparalleled design flexibility. The VAR-SOM-MX6 ensures scalable and simplified development, while also extending the product lifecycle. Thanks to four CPU core assembly options, customers can apply a single System on Module in a broad range of applications to achieve short time-to-market for their current innovations, while still accommodating potential R&D directions and marketing opportunities.     VAR-SOM-MX6 CPU: Freescale iMX6 Key features include: Freescale i.MX6 1.2GHz Quad / Dual / Single core Cortex-A9       2GB DDR3, 1GB SLC NAND Flash       Full HD 1080p video encoding/decoding capability       Vivante GPU providing 2D/3D acceleration       Simultaneous multiple display support       Gigabit Ethernet       TI WiLink™ 6.0 single-chip connectivity solution (Wi-Fi, Bluetooth®)       PCI-Express 2.0, S-ATA 3.0       Camera interface       USB 2.0: Host, OTG       Audio In/Out       Dual CAN Bus This versatile solution's -40 to 85°C temperature range and Dual CAN support is ideal for industrial applications, while 1080p video and graphics accelerations make it equally suitable for intensive multimedia applications. The impressive scalability of the VAR-SOM-MX6 satisfies the needs of the most demanding future application requirements whether faster processing power, enhanced algorithms or improved graphics and video performance to name just a few. The VAR-SOM-MX6 is an all-round solution with broad connectivity and sophisticated video and acceleration graphic capabilities, delivering a range of middle to high end assembly options all from the same product. For more details, please see VAR-SOM-MX6 CPU: Freescale iMX6
View full article
Hi All, The new i.MX 6 Q/D/DL/S/SL L3.0.35_4.1.0 GA release is now available on the http://www.freescale.com/site. ·         Files available                                   # Name Description 1 L3.0.35_4.1.0_LINUX_DOCS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Linux BSP   Documentation. Includes Release Notes, Reference Manual, User guide. API   Documentation 2 L3.0.35_4.1.0_LINUX_MMDOCS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Multimedia Codecs Documentation.   Includes CODECs Release Notes and User's Guide 3 L3.0.35_4.1.0_SOURCE_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Linux BSP   Source Code Files 4 L3.0.35_4.1.0_MM_CODECS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Multimedia Codecs Sources 5 L3.0.35_4.1.0_AACP_CODECS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux AAC Plus Codec 6 L3.0.35_4.1.0_DEMO_IMAGE_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Binary Demo Files 7 L3.0.35_4.1.0_UBUNTU_RFS_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux File System for the Ubuntu Images 8 i.MX_6D/Q_Vivante_VDK_146_Tools Set   of applications for the Linux L3.0.35_4.1.0 BSP, designed to be used by   graphics application developers to rapidly develop and port graphics   applications. Includes applications, GPU Driver with vprofiler enabled and   documentation. 9 IMX_6DL_6S_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6DualLite and i.MX   6Solo. 10 IMX_6DQ_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6Quad and i.MX 6Dual. 11 IMX_6SL_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6Sololite. ·         Target HW boards o   i.MX 6Quad SABRE-SDP o   i.MX 6Quad SABRE-SDB o   i.MX 6Quad SABRE-AI o   i.MX 6DualLite SABRE-SDP o   i.MX 6DualLite SABRE-AI o   i.MX 6SL EVK ·         New features o   BSP New Features on i.MX 6D/Q, i.MX 6DL/S and MX 6SL: §  HDCP §  CEC §  GPU4.6.9p12 §  Audio playback IRAM/SDMA §  V4L capture resize on MX6SL §  MX6DQ disable the double line fill feature of PL310 ·         Known issues o   For known issues and limitations please consult the release notes.
View full article