i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
Question: Two boards are used and practically identical - one using the i.MX6Solo, the other is using a Dual. The sw settings in both cases are identical (except IOMUX addresses). On the i.MX6Solo they do not see any packet loss, on the i.MX6Dual they do. I recommended modifying the MTU size, but this also did not help. So here my two questions: 1)      is there still some hw difference between the Ethernet block on the Solo and the Dual/Quad? 2)      They run the AHB at only 100MHz. Could that be a problem? If not, why do the two chips behave so differently? To increase the AHB clock to 133 MHz.appears to solve the packet corruption issue. Is the 100 MHz AHB clock really the root cause. Answer: The DualLite/Solo and SoloLite contain different ethernet controllers. The DL/S has a 1000M controller which requires the AHB bus to be greater than 125MHz, while the SL has a 100M controller. As the question was about the Solo and the Dual and both use the Gigabit Ethernet block I assume that both will require a minimum AHB clock of 125MHz.
View full article
Hi All, The new i.MX 6 Q/D/DL/S/SL L3.0.35_4.1.0 GA release is now available on the http://www.freescale.com/site. ·         Files available                                   # Name Description 1 L3.0.35_4.1.0_LINUX_DOCS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Linux BSP   Documentation. Includes Release Notes, Reference Manual, User guide. API   Documentation 2 L3.0.35_4.1.0_LINUX_MMDOCS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Multimedia Codecs Documentation.   Includes CODECs Release Notes and User's Guide 3 L3.0.35_4.1.0_SOURCE_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Linux BSP   Source Code Files 4 L3.0.35_4.1.0_MM_CODECS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Multimedia Codecs Sources 5 L3.0.35_4.1.0_AACP_CODECS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux AAC Plus Codec 6 L3.0.35_4.1.0_DEMO_IMAGE_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Binary Demo Files 7 L3.0.35_4.1.0_UBUNTU_RFS_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux File System for the Ubuntu Images 8 i.MX_6D/Q_Vivante_VDK_146_Tools Set   of applications for the Linux L3.0.35_4.1.0 BSP, designed to be used by   graphics application developers to rapidly develop and port graphics   applications. Includes applications, GPU Driver with vprofiler enabled and   documentation. 9 IMX_6DL_6S_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6DualLite and i.MX   6Solo. 10 IMX_6DQ_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6Quad and i.MX 6Dual. 11 IMX_6SL_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6Sololite. ·         Target HW boards o   i.MX 6Quad SABRE-SDP o   i.MX 6Quad SABRE-SDB o   i.MX 6Quad SABRE-AI o   i.MX 6DualLite SABRE-SDP o   i.MX 6DualLite SABRE-AI o   i.MX 6SL EVK ·         New features o   BSP New Features on i.MX 6D/Q, i.MX 6DL/S and MX 6SL: §  HDCP §  CEC §  GPU4.6.9p12 §  Audio playback IRAM/SDMA §  V4L capture resize on MX6SL §  MX6DQ disable the double line fill feature of PL310 ·         Known issues o   For known issues and limitations please consult the release notes.
View full article
This document provide an overall guide how to get started with i.MX6 development. There are several chapters: 1. how to get necessary docs from freescale website; 2. how to setup environment and build your own images;3. Hardware design consideration;4. How to get help. I hope the doc will bring you in i.MX world more easily, and hope you all have a fun in it.
View full article
The i.MX6 Multi-Mode DDR Controller (MMDC) has profiling capabilities to monitor the operation of the controller. The profiling capability counts certain events related to a specified AXI-ID during a profiling period. The events that can be counted are: The number of read accesses during the profiling period (MMDCx_MADPSR2[RD_ACC_COUNT] register field) The number of write accesses during the profiling period (MMDCx_MADPSR3[WR_ACC_COUNT] register field) The number of bytes read during the profiling period (MMDCx_MADPSR4[RD_BYTES_COUNT] register field) The number of bytes written during the profiling period (MMDCx_MADPSR5[WR_BYTES_COUNT] register field) The number of MMDC clock cycles during which the MMDC state machine is busy (MMDCx_MADPSR1[BUSY_COUNT] register field) BUSY_COUNT is the number of MMDC clock cycles during the profiling period in which the MMDC state machine is not idle. So this is the time the MMDC spends doing any activity, not just read or write data transfers. The MMDC state machine is active whenever there are any read or write requests in the read and write FIFOs. The MMDC is active during many operations that are not reading or writing data such as arbitration of requests, control cycles, bank open/close, etc. So BUSY_COUNT represents the number of cycles when the controller is busy, not just the number of cycles when the external bus is busy. The number of bytes read and bytes written can be used to determine data throughput and the BUSY_COUNT can be used to determine what part of the time the controller is active/idle. Together these can be used to determine the controller efficiency for a particular application. For detailed information, see the "MMDC profiling" section of the MMDC chapter in the reference manual for the SoC being used.
View full article
Hi All, The new i.MX 6 SL L3.0.35_2.1.0 release is now available on the http://www.freescale.com/site. ·         Files available # Name Description 1 L3.0.35_2.1.0_LINUX_DOCS i.MX   6SoloLite Linux BSP Documentation. Includes Release Notes, Reference Manual,   User guide. API Documentation 2 L3.0.35_2.1.0_LINUX_MMDOCS i.MX 6SoloLite Linux Multimedia Codecs   Documentation. Includes   CODECs Release Notes and User's Guide 3 L3.0.35_2.1.0_ER_SOURCE i.MX   6SoloLite Linux BSP Source Code Files 4 L3.0.35_2.1.0_MM_CODECS i.MX   6SoloLite Linux Multimedia Codecs Sources 5 L3.0.35_2.1.0_AACP_CODECS i.MX   6SoloLite Linux AAC Plus Codec 6 L3.0.35_2.1.0_DEMO_IMAGE i.MX   6SoloLite Linux Binary Demo Files ·         Target HW boards o   i.MX6SL-EVK ·         New features o   Updated thermal equation for i.MX 6SoloLite o   Added Fuse check for all the devices o   Enabled DISPLAY power gating feature on TO1.2 ·         Known issues o   For known issues and limitations please consult the release notes.
View full article
i.MX6 Quad/6Dual/6SoloLite Errata ERR006282: ROM code uses non-reset PFDs to generate clocks which may lead to random boot failures This PDF contains information about an issue affecting i.MX 6Quad/6Dual/6SoloLite Phase Fractional Dividers (PFDs) and boot. This erratum will be included in the next update of the i.MX6x Silicon Errata documentation but is being provided here for reference until then.
View full article
Starting from $52, the VAR-SOM-MX6 sets the bar for unparalleled design flexibility. The VAR-SOM-MX6 ensures scalable and simplified development, while also extending the product lifecycle. Thanks to four CPU core assembly options, customers can apply a single System on Module in a broad range of applications to achieve short time-to-market for their current innovations, while still accommodating potential R&D directions and marketing opportunities.     VAR-SOM-MX6 CPU: Freescale iMX6 Key features include: Freescale i.MX6 1.2GHz Quad / Dual / Single core Cortex-A9       2GB DDR3, 1GB SLC NAND Flash       Full HD 1080p video encoding/decoding capability       Vivante GPU providing 2D/3D acceleration       Simultaneous multiple display support       Gigabit Ethernet       TI WiLink™ 6.0 single-chip connectivity solution (Wi-Fi, Bluetooth®)       PCI-Express 2.0, S-ATA 3.0       Camera interface       USB 2.0: Host, OTG       Audio In/Out       Dual CAN Bus This versatile solution's -40 to 85°C temperature range and Dual CAN support is ideal for industrial applications, while 1080p video and graphics accelerations make it equally suitable for intensive multimedia applications. The impressive scalability of the VAR-SOM-MX6 satisfies the needs of the most demanding future application requirements whether faster processing power, enhanced algorithms or improved graphics and video performance to name just a few. The VAR-SOM-MX6 is an all-round solution with broad connectivity and sophisticated video and acceleration graphic capabilities, delivering a range of middle to high end assembly options all from the same product. For more details, please see VAR-SOM-MX6 CPU: Freescale iMX6
View full article
Freescale's PF0100 PMIC should have VDDIO power tied to the same supply as the associated I2C supply on MX6. There is a momentary on-chip sneak path on power-up if VDDIO is wired per the i.MX6 SABRE-AI automotive development platform. As a result, I2C power rail P3V3_DELAYED rises prematurely due to backfeed from P3V3 through the I2C port. Note that on SABRE-AI, P3V3 powers up before P3V3_DELAYED. Existing SABRE-AI design: PF0100 VDDIO is wired to P3V3. Corrective action for mass production: Wire PF0100 VDDIO to P3V3_DELAYED; same supply as the associated I2C supplies on MX6 (NVCC_EIM0 and NVCC_GPIO). Laboratory results attached.
View full article
Product Family Features The i.MX6 series unleashes the industry’s first truly scalable multicore platform that includes single-, dual- and quad-core families based on the ARM® Cortex™-A9 architecture. Together with a robust ecosystem, i.MX6 series provides the ideal platform to develop a portfolio of end devices based on a single hardware design. With high-performance multimedia processing, pin*- and software- compatible product families and integrated power management, i.MX6 series is purpose built for the new era of smart devices. *4 of 5 families are pin-compatible The i.MX6 applications processor is a Energy-Efficient Solutions products. Automotive As drivers adopt personal and home-based smart devices, automotive manufacturers are bringing a similar experience in-vehicle. Able to meet demands of connectivity, real time data delivery, digital instrumentation, audio and multi-stream video, i.MX 6 series enables auto infotainment and instrument cluster designers to re-create today’s consumer technology experience in the car. Smart Devices The market for intelligent, multimedia centric, touch based devices is increasing exponentially. Not just for tablets or smartphones anymore, tomorrow's battery powered Smart Devices, Aero Infotainment systems, medical systems, enterprise-class intelligent control and data systems all must present data and user interface choices to the end user primarily through rich sound, video, voice, pictures and touch, rather than keyboards and mice. i.MX 6 series enables developers to deliver a more seamless natural user interface (NUI) experience, plus save time and costs by leveraging one design across a portfolio of devices. i.MX 6 Series Portfolio View the complete i.MX 6 Series; compare features and performance   Product Information i.MX6DL: i.MX 6DualLite Family of Applications Processors i.MX6S: i.MX 6Solo Family of Applications Processors i.MX6D: i.MX 6Dual Family of Applications Processors i.MX6Q: i.MX 6Quad Family of Applications Processors i.MX6SL: i.MX 6SoloLite Family of Applications Processors Design Resources i.MX 6 Series Software and Development Tools i.MX 6SoloLite Evaluation Kit SABRE Platform for Smart Devices SABRE Board for Smart Devices SABRE for Automotive Infotainment i.MX 6 Family Ecosystem Partners Partners / 3rd-Party Development Tools Development platform for i.MX 6Quad - Built to SABRE Lite design from Element 14 Element14's SabreLite Board Officially Supported by Adeneo Embedded's i.MX6 WEC7 BSP Emtrion's i.MX6 DIMM Modules and Kits i.Core M6 : i.Mx6 based SOM Industry-First Pico-ITX SBC based on i.MX6 from iWave Systems i.MX6 Q7 Development Kit by iWave Systems New PMIC to Support the i.MX6 Processor Family NovPek i.MX6Q/D by NovTech Video- iWave Launches Industry's first i.MX6 Solo/Dual Lite Based Pico-ITX Single Board Computer i.MX6 Q7 Development Kit by iWave Systems The Wandboard - ultra lowcost development board with i.MX6 Cortex-A9 processor SABRE Lite by Boundary Devices Nitrogen6X by Boundary Devices Additional Resources i.MX6 (All) Tips & Tricks Android data partition encryption on i.MX6 Android Graphic UI with GPU Hardware Acceleration Auto Insmod Kernel Modules Through Modprobe with Extra Parameter A Patch to Fix i.MX6 GPU Startup Issue Due to Memory Connection Qt Landing page De-interlace Capture Device Enabling MMU and Caches on i.MX6 Series Platform SDK Errata_ERR006282_Description_IMX_Community.pdf Fast GPU Image Processing in the i.MX 6x Freescale Yocto Project main page Gstreamer HW Design Checklist for i.MX6 How to Add Ethernet UI Support in ICS How to Support New WiFi Card in Android How to Support Recovery Mode for POR Reboot Based on i.MX6 Android R13.4.1 How to Trace the Low-Level Malloc i.MX6 Crystal Drive Level (24 MHz) EB830 i.MX6 Android 13.4.1.03 Patch Release i.MX6 Dual/6 Quad Power Consumption Measurement Scripts i.MX6 IPU Output Timing Generation Counters and Interrupts i.MX6 Platform SDK 1.1 Release i.MX6 VDD_SNVS_CAP Component Recommendation Linux Fast Boot on i.MX6 Sabresd Board LMbench Benchmarks on i.MX New PMIC to Support the i.MX6 Processor Family Memory Management on i.MX6 Android Patch to Support BT656 and BT1120 Output For i.MX6 BSP Prevent PMIC PF0100 Backfeed on i.MX6 Designs Using a USB Camera with GStreamer VAR-SOM-MX6, $52 i.MX6 System on Module i.MX6D/6Q (Dual/Quad) Tips & Tricks De-interlace Capture Device Android Power Management on i.MX6DQ/DL Android Graphic UI with GPU Hardware Acceleration Memory Management on i.MX6 Android iMX6QD How to add 24-bit LVDS support in Android i.MX6 D/Q L3.035_1.0.2 Patch Release i.MX6 D/Q L3.0.35_1.0.3 patch release i.MX6 D/Q L3.035_1.1.3 patch release i.MX6Q Ubuntu Fluxbox Multimedia with VPU & IPU HW Acceleration in Android Let Ubuntu NetworkManager Recognize BCM4330 Wireless Interface Auto Insmod Kernel Modules Through Modprobe with Extra Parameter Video Playback Performance Evaluation on i.MX6DQ Board Linux Fast Boot on i.MX6 Sabresd Board Linux Fast Boot on i.MX6Q Board: Building Steps New Ubuntu SD Card Demo Image for the i.MX6Q SABRE AI SDMA ap_to_ap Fixed Scripts (i.MX6DQ) Surround View Demo With Linux Fast Boot Review Surround View (D1) Demo on i.MX6 Test Digital Zoom of Camera Preview Using i.MX6Q to Build a Palm-Sized Heterogeneous Mini-HPC i.MX6DL (DualLite)  Tips & Tricks Android Power Management on i.MX6DQ/DL i.MX6 DL/S L3.035_3.0.4 patch release i.MX6SL (SoloLite)  Tips & Tricks Dithering Implementation for Eink Display Panel
View full article
Dithering Implementation for Eink Display Panel by Daiyu Ko, Freescale Dithering a.          Dithering in digital image processing Dithering is a technique used in computer graphics to create the illusion of color depth in images with a limited color palette (color quantization). In a dithered image, colors not available in the palette are approximated by a diffusion of colored pixels from within the available palette. The human eye perceives the diffusion as a mixture of the colors within it (see color vision). Dithered images, particularly those with relatively few colors, can often be distinguished by a characteristic graininess, or speckled appearance. Figure 1. Original photo; note the smoothness in the detail http://en.wikipedia.org/wiki/File:Dithering_example_undithered_web_palette.png Figure 2.Original image using the web-safe color palette with no dithering applied. Note the large flat areas and loss of detail. http://en.wikipedia.org/wiki/File:Dithering_example_dithered_web_palette.png Figure 3.Original image using the web-safe color palette with Floyd–Steinberg dithering. Note that even though the same palette is used, the application of dithering gives a better representation of the original b.         Applications Display hardware, including early computer video adapters and many modern LCDs used in mobile phonesand inexpensive digital cameras, show a much smaller color range than more advanced displays. One common application of dithering is to more accurately display graphics containing a greater range of colors than the hardware is capable of showing. For example, dithering might be used in order to display a photographic image containing millions of colors on video hardware that is only capable of showing 256 colors at a time. The 256 available colors would be used to generate a dithered approximation of the original image. Without dithering, the colors in the original image might simply be "rounded off" to the closest available color, resulting in a new image that is a poor representation of the original. Dithering takes advantage of the human eye's tendency to "mix" two colors in close proximity to one another. For Eink panel, since it is grayscale image only, we can use the dithering algorism to reduce the grayscale level even to black/white only but still get better visual results. c.          Algorithm There are several algorithms designed to perform dithering. One of the earliest, and still one of the most popular, is the Floyd–Steinberg dithering algorithm, developed in 1975. One of the strengths of this algorithm is that it minimizes visual artifacts through an error-diffusion process; error-diffusion algorithms typically produce images that more closely represent the original than simpler dithering algorithms. (Original) Threshold Bayer   (ordered)                                     Example (Error-diffusion): Error-diffusion dithering is a feedback process that diffuses the quantization error to neighboring pixels. Floyd–Steinberg dithering only diffuses the error to neighboring pixels. This results in very fine-grained dithering. Jarvis, Judice, and Ninke dithering diffuses the error also to pixels one step further away. The dithering is coarser, but has fewer visual artifacts. It is slower than Floyd–Steinberg dithering because it distributes errors among 12 nearby pixels instead of 4 nearby pixels for Floyd–Steinberg. Stucki dithering is based on the above, but is slightly faster. Its output tends to be clean and sharp. Floyd–Steinberg Jarvis,   Judice & Ninke Stucki                         Error-diffusion dithering (continued): Sierra dithering is based on Jarvis dithering, but it's faster while giving similar results. Filter Lite is an algorithm by Sierra that is much simpler and faster than Floyd–Steinberg, while still yielding similar (according to Sierra, better) results. Atkinson dithering, developed by Apple programmer Bill Atkinson, resembles Jarvis dithering and Sierra dithering, but it's faster. Another difference is that it doesn't diffuse the entire quantization error, but only three quarters. It tends to preserve detail well, but very light and dark areas may appear blown out. Sierra Sierra   Lite Atkinson                              2.     Eink display panel characteristic a.       Low resolution Eink only has couple resolution modes for display      DU                  (1bit, Black/White)      GC4                (2bit, Gray scale)      GC16              (4bit, Gray scale)      A2                   (1bit, Black/White, fast update mode) b.      Slow update time For 800x600 panel size (per frame)      DU                  300ms                              GC4                450ms                              GC16              600ms                               A2                   125ms 3.       3.     Effect by doing dithering for Eink display panel a.       Low resolution with better visual quality By doing dithering to the original grayscale image, we can get better visual looking result. Even if the image becomes black and white image, with the dithering algorism, you will still get the feeling of grayscale image. b.      Faster update with Eink’s animation waveform Since the DU/A2 mode could update the Eink panel faster than grayscale mode, with dithering, we can get no only the better visual looking result, but also we can use DU/A2 fast update mode to show animation or even normal video files. 4.       4.     Our current dithering implementation a.       Choose a simple and effective algorism Considering Eink panel’s characteristics, we compared couple dithering algorism and decide to use Atkinson dithering algorism. It is simple and the result is better especially for Einkblack/white display case. b.      Made a lot of optimization so that it will not affect update time too much With the simplicity of the Atkinson dithering algorism, we can also put a lot of effort to do the optimization in order to reduce the dithering processing time and make it practical for actual use. c.       Current algorism performance and result Currently, with Atkinson dithering algorism, our processing time is about 70ms. 5.       5.     Availability a.       We implemented both Y8->Y1 and Y8->Y4 dithering with the same dithering algorism. b.      Implemented into our EPDC driver with i.MX6SL Linux 3.0.35 version release. c.       Also implemented in our Video for Eink demo 6.       6.     References a.       Part of dithering introduction from www.wikipedia.org
View full article