i.MXプロセッサ ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

i.MX Processors Knowledge Base

ディスカッション

ソート順:
The Linux L4.9.11_1.0.0 RFP(GA) for i.MX6 release files are now available on www.nxp.com    Files available: # Name Description 1 L4.9.11_1.0.0-ga_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 2 L4.9.11_1.0.0-ga_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 3 L4.9.11_1.0.0-ga_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 4 L4.9.11_1.0.0-ga_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 5 L4.9.11_1.0.0-ga_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  6 L4.9.11_1.0.0-ga_mfg-tools.tar.gz i.MX Manufacturing Toolkit for Linux L4.9.11_1.0.0 BSP 7 L4.9.11_1.0.0-ga_gpu-tools.tar.gz L4.9.11_1.0.0 i.MX VivanteVTK file 8 bcmdhd-1.141.100.6.tar.gz The Broadcom firmware package for i.MX Linux L4.9.11_1.0.0 BSP. 9 imx-aacpcodec-4.2.1.tar.gz Linux AAC Plus Codec for L4.9.11_1.0.0 10 fsl-yocto-L4.9.11_1.0.0.tar.gz L4.9.11_1.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide.   Target boards: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board (Beta Quality)   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes, see: README: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/README?h=imx-morty ChangeLog: https://source.codeaurora.org/external/imx/fsl-arm-yocto-bsp/tree/ChangeLog?h=imx-morty
記事全体を表示
Requirements: Host machine with Ubuntu 14.04 UDOO Quad/Dual Board uSD card with at least 8 GB Download documentation and install latest Official Udoobuntu OS (at the moment of writing: UDOObuntu 2.1.2), https://www.udoo.org/downloads/   Overview: This document describes how to install and test Keras (Open source neural network library) and Theano (numerical computation library for python ) for deep learning library usage on i.MX6QD UDOO board.  Installation: $ sudo apt-get update && sudo apt-get upgrade update your date system: e.g. $ sudo date -s “07/08/2017 12:00” First satisfy the run-time and build time dependencies: $ sudo apt-get install python-software-properties software-properties-common make unzip zlib1g-dev git pkg-config autoconf automake libtool curl  python-pip python-numpy libblas-dev liblapack-dev python-dev libatlas-base-dev gfortran libhdf5-serial-dev libhdf5-dev python-setuptools libyaml-dev libpython2.7-dev $ sudo easy_install scipy The last step is installing scipy through pip, and can take several hours. Theano First, we have a few more dependencies to get: $sudo pip install scikit-learn $sudo pip install pillow $sudo pip install h5py With these dependencies met, we can install a stable Theano release from the git source: $ git clone https://github.com/Theano/Theano $ cd Theano Numpy 1.9 cause conflicts with armv7, so we need to change the setup.py configuration: $ sudo nano setup.py Remove line    #       install_requires=['numpy>=1.9.1', 'scipy>=0.14', 'six>=1.9.0'], And add setup_requires=["numpy"], install_requires=["numpy"], Then install it: $ sudo python setup.py install Keras The installation can occur with the command: (this could take a lot of time!!!) $ cd .. $ git clone https://github.com/fchollet/keras.git $ cd keras $ sudo python setup.py install $ LC_ALL=C $sudo pip install --upgrade keras After Keras is installed, you will want to edit the Keras configuration file ~/.keras/keras.json to use Theano instead of the default TensorFlow backend. If it isn't there, you can create it. This requires changing two lines. The first change is: "image_dim_ordering": "tf"  --> "image_dim_ordering": "th" and the second: "backend": "tensorflow" --> "backend": "theano" (The final file should look like the example below) sudo nano ~/.keras/keras.json {     "image_dim_ordering": "th",     "epsilon": 1e-07,     "floatx": "float32",     "image_data_format": "channels_last",     "backend": "theano" } You can also define the environment variable KERAS_BACKEND and this will override what is defined in your config file : $ KERAS_BACKEND=theano python -c "from keras import backend" Testing Quick test: udooer@udoo:~$ python Python 2.7.6 (default, Oct 26 2016, 20:46:32) [GCC 4.8.4] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import keras Using Theano backend. >>>  Test 2: Be aware this test take some time (~1hr on udoo dual): $ curl -sSL -k https://github.com/fchollet/keras/raw/master/examples/mnist_mlp.py | python Output: For demonstration, deep-learning-models repository provided by pyimagesearch and from fchollet git, and also have three Keras models (VGG16, VGG19, and ResNet50) online — these networks are pre-trained on the ImageNet dataset, meaning that they can recognize 1,000 common object classes out-of-the-box. $ cd keras $ git clone https://github.com/fchollet/deep-learning-models $ Cd deep-learning-models $ ls -l Notice how we have four Python files. The resnet50.py , vgg16.py , and vgg19.py  files correspond to their respective network architecture definitions. The imagenet_utils  file, as the name suggests, contains a couple helper functions that allow us to prepare images for classification as well as obtain the final class label predictions from the network Classify ImageNet classes with ResNet50 ResNet50 model, with weights pre-trained on ImageNet. This model is available for both the Theano and TensorFlow backend, and can be built both with "channels_first" data format (channels, height, width) or "channels_last" data format (height, width, channels). The default input size for this model is 224x224. We are now ready to write some Python code to classify image contents utilizing  convolutional Neural Networks (CNNs) pre-trained on the ImageNet dataset. For udoo Quad/Dual use ResNet50 due to avoid space conflict. Also we are going to use ImageNet (http://image-net.org/) that is an image database organized according to the WordNet hierarchy, in which each node of the hierarchy is depicted by hundreds and thousands of images. from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np   model = ResNet50(weights='imagenet')   #for this sample I download the image from: http://i.imgur.com/wpxMwsR.jpg  img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x)   preds = model.predict(x) # decode the results into a list of tuples (class, description, probability) # (one such list for each sample in the batch) print('Predicted:', decode_predictions(preds, top=3)[0]) Save the file an run it. Results for elephant image: Top prediction was 0.8890 for African Elephant Testing with this image: http://i.imgur.com/4FIOwAN.jpg Results: Top prediction was: 0.7799 for golden_retriever. Now your Udoo is ready to use Keras and Theano as Deep Learning libraries, next time we are going to show some usage example for image classification models with OpenCV. References: GitHub - fchollet/keras: Deep Learning library for Python. Runs on TensorFlow, Theano, or CNTK.  GitHub - Theano/Theano: Theano is a Python library that allows you to define, optimize, and evaluate mathematical expres…  GitHub - fchollet/deep-learning-models: Keras code and weights files for popular deep learning models.  Installing Keras for deep learning - PyImageSearch 
記事全体を表示
The i.MX Android N7.1.1_1.0.0 release is now available on Web Site (i.MX6 BSP Updates and Releases -> Android).   Files available: # Name Description 1 android_N7.1.1_1.0.0_docs.tar.gz i.MX Android N7.1.1_1.0.0 BSP Documentation 2 android_N7.1.1_1.0.0_source.tar.gz Source Code of Android N7.1.1_1.0.0 BSP (4.1 kernel) for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo  i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_N7.1.1_1.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_N7.1.1_1.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_N7.1.1_1.0.0_image_6slevk.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_N7.1.1_1.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_N7.1.1_1.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_N7.1.1_1.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android N7.1.1_1.0.0 BSP - SABRE Board based on i.MX 7Dual 9 android_N7.1.1_1.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for N7.1.1_1.0.0   Supported Hardware SoC/Boards: MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform MX 6SoloLite EVK platform MX 6SoloX SABRE-SD board and platforms MX 6SoloX SABRE-AI board and platforms MX 7Dual SABRE-SD board and platform   Changes: Compared to the M6.0.1_2.1.0 release, this release has the following major changes: Upgraded the Android platform version to Android 7.1. Upgraded the U-Boot and Linux Kernel Code base from the L4.1.15_1.0.0 release to the L4.1.15_1.2.0-ga release. Added support for the i.MX 7Dual SABRE-SD board. Upgraded the GPU driver from 5.0.11p8 to 6.2.0.p2.   Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
記事全体を表示
When configuring i.MX6 IPU IDMAC CPMEM parameters or debugging it, it's hard to find the value of a parameter inside the 160 bits word. This web tool separates the 160 bits words into parameters making it easier to check their values. Link: i.MX Tools 
記事全体を表示
Note that this document only applies for REV2 of the SCM QWKS board Refer to the attached presentation to check how the OV5640 camera can be connected to the QWKS rev2 with a retrofit of the OV5640 camera set as in the image below Enjoy!!!
記事全体を表示
The document is a master page for learning i.MX6Q SABRE. It contains several parts as following. The pdf files listed below(item 0, 1, 2) are contained in the NXP official website and others are in the community links. 0. i.MX6 SMART DEVICE SYSTEM(Schematics): SPF-27516_C5.pdf(in the iMX6Q_SABRE_SDB_DESIGNFILES) i.MX 6Quad SABRE Development Board|NXP  1. How to build an image for an i.MX NXP board by using a Yocto Project build environment: Freescale_Yocto_Project_User's_Guide.pdf(in the L4.1.15_1.1.0_LINUX_DOCS) i.MX 6Quad SABRE Development Board|NXP  2. How to build and install the NXP Linux OS BSP: i.MX_Linux_User's_Guide.pdf (in the L4.1.15_1.1.0_LINUX_DOCS) i.MX 6Quad SABRE Development Board|NXP  3. How to Use Trace32 to Run U-boot in the i.MX6Q SABRE Platform: How to Use Trace32 to Run U-boot in the i.MX6Q SABRE Platform  4. Bootloader Boot Procedure for linux OS in i.MX6Q: Bootloader Boot Procedure for linux OS in i.MX6Q  5. Kernel Loading Procedure for Linux OS in i.MX6Q: Kernel Loading Procedure for Linux OS in i.MX6Q 
記事全体を表示
THE CONTENTS •Background Knowledge −Kernel Introduction −Linux Kernel Directory Structure of the Source Code •Kernel Loading Procedure −Linux OS Boot Process −First Stage of Loading Sequence(Assembly Language) −Second Stage of Loading Sequence(C Language)
記事全体を表示
THE CONTENTS •Background Knowledge −Bootloader Introduction −U-boot Directory Structure of the Source Code •Bootloader Boot Procedure(e.g. U-boot) −i.MX6Q Introduction −Linux OS Boot Process −First Stage of Boot Sequence(Assembly Language) −Second Stage of Boot Sequence(Assembly + C Language)
記事全体を表示
The document in attachment describes how to learn System Boot Flow of Linux by code using Trace32. The hardware platform is i.MX6Q SABRE and the software in PC is Trace32. Contents 1. Introduction 2. Hardware Connection 3. Serial Connection Setup 4. U-boot Directory Setup 5. Trace32 Installation & U-boot Debugging
記事全体を表示
MIPI can support video streaming over 1, 2, 3 and 4 lanes. On i.MX6 Sabre boards, the OV5640 camera supports 1 or 2 lanes and the NXP Linux Kernel uses 2 lanes as default. In order to use only one lane, follow the steps below: 1 - Change the board Device Tree on Linux Kernel. On file <linux kernel folder>/arch/arm/boot/dts/imx6qdl-sabresd.dtsi, find the entry "&mipi_csi" and change lanes from 2 to 1. 2 - Configure OV5640 to use only one lane instead of two. On file <linux kernel folder>/drivers/media/platform/mxc/capture/ov5640_mipi.c, change the register 0x300e value from 0x45 to 0x05. This register setup is located at struct ov5640_init_setting_30fps_VGA. 3 - Build the kernel and device tree files. 4 - Test the camera. Unit test can be used to test the video capture: /unit_tests/mxc_v4l2_overlay.out -di /dev/video1 -ow 1024 -oh 768 -m 1 5 - Checking if it's really using one lane. MIPI_CSI_PHY_STATE resgister (address 0x021D_C014) provides the status of all data and clock lanes. During video streaming using 2 lanes, the register value constantly changes its value between 0x0000_0300 and 0x0000_0330. When using only one lane, this register value constantly changes its value between 0x0000_0300 and 0x0000_0310. To read the register value during the stream, run the video test with &: /unit_tests/mxc_v4l2_overlay.out -di /dev/video1 -ow 1024 -oh 768 -m 1 & Now, run the memtool: /unit_tests/memtool -32 0x021dc014 1 i.MX6DL running mxc_v4l2_overlay.out with only one lane:
記事全体を表示
From iMX 3.1x kernel, all kernel debug messages will be print to debug serial port after UART driver loaded, so if the kernel hang up before tty console driver ready, there will be no kernel boot up messages.   The attached patch can be used to enable the iMX serial debug console in early time, then kernel will not buffer the debug messages.   Note: the default patch is for UART1 (tty0) as the debug port, if you need use other debug port, please modify the code "early_console_setup()" with correct UART port base address.   L3.10.53-Add-early-console-for-debug-message.patch This patch is based on L3.10.53_GA1.1.0 release, it can support iMX6S/DL/D/Q.   L3.14.52-Add-early-console-for-debug-message.patch This patch is based on L3.14.52_GA1.1.0 release, it can support iMX6S/DL/D/Q, iMX6SL, iMX6SX, iMX6UL and iMX7.  
記事全体を表示
The patches are based on iMX6 L3.10.53 and 3.14.52 GA BSP.   In default linux BSP, the followed two pathes were supported in kernel driver mxc_v4l2_capture.c: CSI->IC->MEM CSI->MEM   After appied these patches, it can support the followed path: CSI->VDI->IC->MEM CSI->VDI->MEM In this mode, the VDI de-interlace will be handled on the fly, so the whole system bandwidth will be reduced.   Limitations: 1. Since the IC can only output resolution up to 1024*1024, so this is the limation on output. 2. Only VDI motion mode 2 was supported.   mxc_v4l2_tvin.zip: It is the test aplication, test command for CSI->VDI->IC->MEM ("-i 2" means CSI->VDI->IC->MEM path.): ./mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 800 -oh 480 -i 2 -g2d"   test command for CSI->VDI->MEM ("-i 3" means CSI->VDI->MEM path.): ./mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 800 -oh 480 -i 3 -g2d"  
記事全体を表示
Some Chinese customers using i.MX series SoC maybe encounter some issues when they download android , u-boot & kernel source code by 'git' command, the following steps will show customer how to get them: 1. Getting repo --No.1 methord # cd ~ # mkdir myandroid # mkdir bin # cd bin # git clone git://aosp.tuna.tsinghua.edu.cn/android/git-repo.git/ <if git failed, use : git clone https://aosp.tuna.tsinghua.edu.cn/android/git-repo.git/> # cd git-repo # cp ./repo ../ --No.2 methord # cd ~ # mkdir bin # curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo # chmod a+x ~/bin/repo [Note]Customers can select one of above to get "repo" 2. Modifying repo File Open ~/bin/repo file with 'gedit' and Change google address From        REPO_URL = 'https://gerrit.googlesource.com/git-repo' To        REPO_URL = 'git://aosp.tuna.tsinghua.edu.cn/android/git-repo'        like following: ## repo default configuration ## REPO_URL = 'git://aosp.tuna.tsinghua.edu.cn/android/git-repo' REPO_REV = 'stable' 3、Setting email address # cd ~/myandroid # git config --global user.email "weidong.sun@nxp.com" # git config --global user.name "weidong.sun" [ Email & Name should be yours] 4、Getting manifest # ~/bin/repo init -u https://aosp.tuna.tsinghua.edu.cn/android/platform/manifest -b android-5.1.1_r1 # cd ~/myandroid/.repo # gedit manifest.xml        Then change the value of fetch to " git://aosp.tuna.tsinghua.edu.cn/android/ ", like following: <manifest>   <remote name="aosp"            fetch="git://aosp.tuna.tsinghua.edu.cn/android/" />   <default revision="refs/tags/android-5.1.1_r1" ...... [Note] android-5.1.1_r1 is version of branch,customer can change it to another. 5、# ~/bin/repo sync          [Note] During runing repo sync, maybe errors will occur like the following: ...... * [new tag]         studio-1.4 -> studio-1.4 error: Exited sync due to fetch errors          Then 'repo sync' exits. But don't worry about it, continue to run the command please ! " ~/bin/repo sync", downloading source code will be continous. 6、Getting Cross Compiler # cd ~/myandroid/prebuilts/gcc/linux-x86/arm # git clone https://aosp.tuna.tsinghua.edu.cn/android/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6 # cd arm-eabi-4.6 # git checkout android-4.4.3_r1 7、Getting linux kernel source code        Probably, customer can't normally get linux kernel by using "git clone" command, she can download it directly from the following weblink:        http://git.freescale.com/git/cgit.cgi/imx/linux-2.6-imx.git/        At first, create a temperary directory, then download kernel into the directory. see following steps: # cd ~ /Downloads # mkdir linux-kernel   Atfer downloading l5.1.1_2.1.0-ga.tar.gz, use 'tar zxvf l5.1.1_2.1.0-ga.tar.gz' command to decompress it.        Then you can find a subdirectory name " l5.1.1_2.1.0-ga" is created, linux source code is in the directory, we should copy all files in the directory to ~/myandroid/kernel_imx/ # cd ~/myandroid # mkdir kernel_imx # cd kernel_imx # cp -a ~ /Downloads/linux-kernel/l5.1.1_2.1.0-ga ./ 8、Getting uboot source code               Probably, customer can't normally get linux kernel by using "git clone" command, she can download it directly from the following weblink:       http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/        We can use similar way to that of linux kernel to get u-boot source code: # cd ~ /Downloads # mkdir u-boot        Download l5.1.1_2.1.0-ga.tar.gz file, and save it in ~ /Downloads/ u-boot, then decompress it, then u-boot source code will be in ~ /Downloads/ u-boot / l5.1.1_2.1.0-ga/, we should copy all file in the path to ~/myandroid/bootable/bootloader/uboot-imx/ # cd ~/myandroid/bootable/bootloader # mkdir uboot-imx # cd uboot-imx # cp -a ~ /Downloads/u-boot/l5.1.1_2.1.0-ga/* ./ 9、Patch android BSP source code        android_L5.1.1_2.1.0_consolidated-ga_core_source.gz is the name of patch. Run following command to patch android. # copy android_L5.1.1_2.1.0_consolidated-ga_core_source.gz /opt/ # tar zxvf android_L5.1.1_2.1.0_consolidated-ga_core_source.gz # cd /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ # tar zxvf L5.1.1_2.1.0_consolidated-ga.tar.gz # cd ~/myandroid # source /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ L5.1.1_2.1.0_consolidated-ga/ and_patch.sh # help # c_patch /opt/ android_L5.1.1_2.1.0_consolidated-ga_core_source/code/ L5.1.1_2.1.0_consolidated-ga/ imx_L5.1.1_2.1.0-ga        If everything is OK, the following logs will display on console:               **************************************************************        Success: Now you can build the Android code for FSL i.MX platform               ************************************************************** 10、Patch Freescale extended feathures code        Please refer to chapter 3.3 of Android_User's_Guide.pdf to patch another 2 files:        (1) android_L5.1.1_2.1.0_consolidated-ga_omxplayer_source.gz        (2) android_L5.1.1_2.1.0_consolidated-ga_wfdsink_source.gz [Note]       As for other steps, such as compiling etc, please refer to Android_User's_Guide.pdf that released by NXP. TICS team Weidong Sun 04/01/2016
記事全体を表示
The default FSL android BSP support 1 SD card slot. If customer need to support more sd slot in android.Please reference below steps. There are two steps need to set up. 1 device/fsl.git NOTE: 1  change the fstab. 2194000 is the address of usdhc2.             2  change the mount point in storage_list.xml diff --git a/sabresd_6dq/fstab.freescale b/sabresd_6dq/fstab.freescale index 7f23edb..1529a27 100644 --- a/sabresd_6dq/fstab.freescale +++ b/sabresd_6dq/fstab.freescale @@ -4,6 +4,7 @@ # specify MF_CHECK, and must come before any filesystems that do specify MF_CHECK /devices/soc0/soc.0/2100000.aips-bus/2198000.usdhc/mmc_host /mnt/media_rw/extsd vfat defaults voldmanaged=extsd:auto +/devices/soc0/soc.0/2100000.aips-bus/2194000.usdhc/mmc_host /mnt/media_rw/extsd_expand vfat defaults voldmanaged=extsd_expand:auto /devices/soc0/soc.0/2100000.aips-bus/2184000.usb/ci_hdrc.0  /mnt/media_rw/udisk vfat defaults voldmanaged=udisk:auto /dev/block/mmcblk3p5    /system      ext4    ro,barrier=1                                                                               wait,verify /dev/block/mmcblk3p4    /data        ext4    nosuid,nodev,nodiratime,noatime,nomblk_io_submit,noauto_da_alloc,errors=panic    wait,encryptable=/dev/block/mmcblk3p9 diff --git a/sabresd_6dq/overlay/frameworks/base/core/res/res/xml/storage_list.xml b/sabresd_6dq/overlay/frameworks/base/core/res/res/xml/storage_list.xml index 3639bdc..c3f5105 100644 --- a/sabresd_6dq/overlay/frameworks/base/core/res/res/xml/storage_list.xml +++ b/sabresd_6dq/overlay/frameworks/base/core/res/res/xml/storage_list.xml @@ -41,6 +41,10 @@               android:storageDescription="@string/storage_sd_card"               android:primary="false"               android:removable="true" /> +    <storage android:mountPoint="/storage/extsd_expand" +             android:storageDescription="@string/storage_sd_card" +             android:primary="false" +             android:removable="true" />      <storage android:mountPoint="/storage/udisk" 2  system/core.git NOTE: mkdir the mount point. build@scmbld2:~/maddev_lp5.1_consolidate_ga_10_30/system/core/rootdir$ git diff diff --git a/rootdir/init.rc b/rootdir/init.rc index 2211cc2..fac37c2 100644 --- a/rootdir/init.rc +++ b/rootdir/init.rc @@ -72,7 +72,9 @@ on init      mkdir /storage 0751 root sdcard_r      mkdir /mnt/media_rw/extsd 0755 system system +    mkdir /mnt/media_rw/extsd_expand 0755 system system      symlink /mnt/media_rw/extsd /storage/extsd +    symlink /mnt/media_rw/extsd_expand /storage/extsd_expand      mkdir /mnt/media_rw/udisk 0755 system system
記事全体を表示
The vbs file is a script file in mfgtool. In fsl android lollipop consolidate and later MFGTOOL version, You just need add a new vbs item for new board and have not need to change the ucl2.xml. The below is the example struct. Set wshShell = CreateObject("WScript.shell") wshShell.run "mfgtool2.exe -c ""linux"" -l ""SDCard-Android"" -s ""board=sabresd"" -s ""folder=sabresd"" -s ""soc=6dl"" -s ""mmc=2"" -s ""data_type=-f2fs""" Set wshShell = Nothing Explain for each option: -l: storage type      There three type for android: Nand-Android\eMMC-Android\SDCard-Android -s: extend variable      board: It is used to download uboot and dts in init system.      folder: there are three type: sabresd sabreauto evk                the android image is located in: files/android/%folder%/      soc: Used to define android image name. types: 6q, 6dl, 6sx, 6sl.      mmc: define the storage idex.      data_type: if the type of data partition is f2fs, need define data_type=-f2fs      ldo: if the board is 1.2G, need to define it to -ldo      plus: if the board is 6qp, need too define it to p
記事全体を表示
1) rtsp gst-launch-1.0 rtspsrc location=rtsp://192.168.0.105:10000 name=source ! queue ! rtph264depay ! vpudec ! overlaysink source. ! queue ! rtpmp4gdepay ! aacparse ! beepdec ! alsasink pc side: open vlc, choose media , then choose stream and rtsp, then choose the port to 10000 2)udp imx side: gstream 0.1 version: gst-launch udpsrc do-timestamp=false uri=udp://192.168.0.255:10000 caps="video/mpegts" ! aiurdemux streaming_latency=400 name=d d. ! queue ! vpudec low-latency=true ! queue ! mfw_v4lsink sync=true d. ! queue ! beepdec ! alsasink sync=true gstream 1.0 version: gst-launch-1.0 udpsrc do-timestamp=false uri=udp://192.168.0.255:10000 caps="video/mpegts" ! aiurdemux streaming-latency=400 name=d d. ! queue ! vpudec ! queue ! overlaysink sync=true d. ! queue ! beepdec ! pulsesink sync=true pc side: open vlc , then choose media, then choose stream and add the ts file, then choose dup(legacy) in the destinationsetup, then set the same broadcasting address as the gstreamer command set, then streaming.
記事全体を表示
1) rtp linux side: gst-launch mfw_v4lsrc fps-n=30 ! vpuenc codec=6 ! queue ! rtph264pay ! udpsink host=192.168.0.105 port=5000 –v pc side: open the attached H264.sdp file using VLC. Then you can find the picture from camera on mx6 board, pls don’t forget to load camera module 2) Receive Pipeline from Board to PC: gst-launch -v gstrtpbin name=rtpbin udpsrc caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=96' port=5000 ! rtpbin.recv_rtp_sink_0 rtpbin. ! rtph264depay ! queue ! ffdec_h264 ! queue ! autovideosink sync=false  udpsrc port=5001 ! rtpbin.recv_rtcp_sink_0 sync=false rtpbin.send_rtcp_src_0 ! udpsink port=5005 sync=false async=false Output: Setting pipeline to PAUSED ... Pipeline is live and does not need PREROLL ... Setting pipeline to PLAYING ... New clock: GstSystemClock /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:send_rtcp_src_0: caps = application/x-rtcp /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:send_rtcp_src: caps = application/x-rtcp /GstPipeline:pipeline0/GstUDPSink:udpsink0.GstPad:sink: caps = application/x-rtcp /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:send_rtcp_src_0.GstProxyPad:proxypad2: caps = application/x-rtcp /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:recv_rtp_sink: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:recv_rtp_sink_0: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:recv_rtp_sink_0.GstProxyPad:proxypad1: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:recv_rtp_src: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSsrcDemux:rtpssrcdemux0.GstPad:sink: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpJitterBuffer:rtpjitterbuffer0.GstPad:src: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpJitterBuffer:rtpjitterbuffer0.GstPad:sink: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpPtDemux:rtpptdemux0.GstPad:sink: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpH264Depay:rtph264depay0.GstPad:src: caps = video/x-h264, stream-format=(string)byte-stream, alignment=(string)nal /GstPipeline:pipeline0/GstRtpH264Depay:rtph264depay0.GstPad:sink: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:recv_rtp_src_0_2621786612_96.GstProxyPad:proxypad4: caps = application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96 /GstPipeline:pipeline0/GstQueue:queue0.GstPad:sink: caps = video/x-h264, stream-format=(string)byte-stream, alignment=(string)nal /GstPipeline:pipeline0/GstQueue:queue0.GstPad:src: caps = video/x-h264, stream-format=(string)byte-stream, alignment=(string)nal /GstPipeline:pipeline0/ffdec_h264:ffdec_h2640.GstPad:sink: caps = video/x-h264, stream-format=(string)byte-stream, alignment=(string)nal /GstPipeline:pipeline0/ffdec_h264:ffdec_h2640.GstPad:src: caps = video/x-raw-yuv, width=(int)352, height=(int)288, framerate=(fraction)25/1, format=(fourcc)I420, interlaced=(boolean)false /GstPipeline:pipeline0/GstQueue:queue1.GstPad:sink: caps = video/x-raw-yuv, width=(int)352, height=(int)288, framerate=(fraction)25/1, format=(fourcc)I420, interlaced=(boolean)false /GstPipeline:pipeline0/GstQueue:queue1.GstPad:src: caps = video/x-raw-yuv, width=(int)352, height=(int)288, framerate=(fraction)25/1, format=(fourcc)I420, interlaced=(boolean)false /GstPipeline:pipeline0/GstAutoVideoSink:autovideosink0/GstXvImageSink:autovideosink0-actual-sink-xvimage.GstPad:sink: caps = video/x-raw-yuv, width=(int)352, height=(int)288, framerate=(fraction)25/1, format=(fourcc)I420, interlaced=(boolean)false /GstPipeline:pipeline0/GstAutoVideoSink:autovideosink0.GstGhostPad:sink: caps = video/x-raw-yuv, width=(int)352, height=(int)288, framerate=(fraction)25/1, format=(fourcc)I420, interlaced=(boolean)false /GstPipeline:pipeline0/GstAutoVideoSink:autovideosink0.GstGhostPad:sink.GstProxyPad:proxypad0: caps = video/x-raw-yuv, width=(int)352, height=(int)288, framerate=(fraction)25/1, format=(fourcc)I420, interlaced=(boolean)false /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:sync_src: caps = application/x-rtcp /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSsrcDemux:rtpssrcdemux0.GstPad:rtcp_sink: caps = application/x-rtcp /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSsrcDemux:rtpssrcdemux0.GstPad:rtcp_src_-1673180684: caps = application/x-rtcp /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpJitterBuffer:rtpjitterbuffer0.GstPad:sink_rtcp: caps = application/x-rtcp ^CCaught interrupt -- handling interrupt. Interrupt: Stopping pipeline ... Execution ended after 26282965149 ns. Setting pipeline to PAUSED ... Setting pipeline to READY ... /GstPipeline:pipeline0/GstUDPSink:udpsink0.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstAutoVideoSink:autovideosink0/GstXvImageSink:autovideosink0-actual-sink-xvimage.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstAutoVideoSink:autovideosink0.GstGhostPad:sink: caps = NULL /GstPipeline:pipeline0/GstQueue:queue1.GstPad:src: caps = NULL /GstPipeline:pipeline0/GstQueue:queue1.GstPad:sink: caps = NULL /GstPipeline:pipeline0/ffdec_h264:ffdec_h2640.GstPad:src: caps = NULL /GstPipeline:pipeline0/ffdec_h264:ffdec_h2640.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstQueue:queue0.GstPad:src: caps = NULL /GstPipeline:pipeline0/GstQueue:queue0.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstRtpH264Depay:rtph264depay0.GstPad:src: caps = NULL /GstPipeline:pipeline0/GstRtpH264Depay:rtph264depay0.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:recv_rtp_src_0_2621786612_96: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:send_rtcp_src_0: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpPtDemux:rtpptdemux0.GstPad:src_96: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpPtDemux:rtpptdemux0.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpJitterBuffer:rtpjitterbuffer0.GstPad:sink_rtcp: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpJitterBuffer:rtpjitterbuffer0.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpJitterBuffer:rtpjitterbuffer0.GstPad:src: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSsrcDemux:rtpssrcdemux0.GstPad:rtcp_src_-1673180684: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSsrcDemux:rtpssrcdemux0.GstPad:src_-1673180684: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSsrcDemux:rtpssrcdemux0.GstPad:rtcp_sink: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSsrcDemux:rtpssrcdemux0.GstPad:sink: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:sync_src: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:send_rtcp_src: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:recv_rtp_src: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin/GstRtpSession:rtpsession0.GstPad:recv_rtp_sink: caps = NULL /GstPipeline:pipeline0/GstRtpBin:rtpbin.GstGhostPad:recv_rtp_sink_0: caps = NULL /GstPipeline:pipeline0/GstUDPSrc:udpsrc0.GstPad:src: caps = NULL Setting pipeline to NULL ... Freeing pipeline ...
記事全体を表示
It is based on L3.0.35_GA4.1.0 BSP.   In default Linux BSP, there are 3 kinds of de-interlace mode, motion =0,1,2 mode, motion mode 0 and 1 will use three fields for de-interlace, and motion mode 2 wil use one field for de-interlace, so the whole fps is 30. In this mode, for motion mode 0 and 1, field 1,2,3 was used for first VDI output frame of display; and field 3,4,5 was used for second VDI output frame of display; field 5,6,7 was used for third VDI output frame of display. One field data (such as 2,4,6) was used only once, so there is data lost.   After applied these patches, the VDI de-interlace output will be 60fps: for motion mode 0 and 1, field 0,1,2 was used for first VDI output frame of display; and field 1,2,3 was used for second VDI output frame of display; field 2,3,4 was used for third VDI output frame of display. So all field data will be used twice, there is no video data lost, the VDI quality was improved.   Kernel patches: 0001-Add-MEM-to-VDI-to-MEM-support-for-IPU.patch 0002-Add-IPU-IC-memcpy-support.patch 0003-IPU-VDI-support-switch-odd-and-even-field-in-motion-.patch 0004-IPU-VDI-correct-vdi-top-field-setting.patch   mxc_v4l2_tvin_imx6_vdi_60fps.zip: this is the test application sample code.   Test commands, parameter "-vd" means double fps VDI: ./mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 720 -oh 480 -m 0 -vd  
記事全体を表示
The document includes the following contents: (1)document how to port ov5646 to android jb4.2.2 (2) ov5645 driver for Linux 3.0.35 (3) ov5645 schematic based on i.MX6Q/DL (4)ov5645 for android camera HAL   [Note:]      P5V29A-0JG is a camera module based on OV5645, and PAO532-0JG is based on OV5640, both manufactured by NINGBO SUNNY OPOTECH CO.LTD (China), If customer wants to use them on i.MX6 platform, can send me email to ask for datasheets of P5V29A & PAO532 , or discuss corresponding questions on porting.   Email: weidong.sun@freescale.com
記事全体を表示
For iMX6DQ, there are two IPUs, so they can support up to 4 cameras at the same time. But the default BSP can only support up to two cameras at the same time.     The attached patch can make the BSP support up to 4 cameras based on 3.10.53 GA 1.1.0 BSP.   The 4 cameras can be: - 1xCSI, 3xMIPI - 2xCSI, 2xMIPI - 4xMIPI   For 4xMIPI case, the four cameras should be combined on the single MIPI CSI2 interface, and each camera data should be transfered on a mipi virtual channel.   In this patch, we given the example driver for Intersil ISL79985. The input to ISL79985 is four CVBS camera. There are four patches: 0001-IPU-update-IPU-capture-driver-to-support-up-to-four-.patch      Updated IPU common code to support up to four cameras.   0002-Add-Intersil-ISL79985-MIPI-Video-Decoder-Driver-for-.patch      ISL79985 driver, which can support both 1 lanes and 2 lanes mode.   0003-Remove-the-page-size-align-requirement-for-v4l2-capt.patch      With this patch, the mxc_v4l2_tvin test application can use overlay framebuffer as V4l2 capture buffer directly.   0004-IPU-CSI-Drop-1-2-frame-on-MIPI-interface-for-interla.patch      This patch is option, it will drop one field data, so for each camera, the input will be 720*240 30 FPS.   For 720P HD solution, it is based on Maxim MAX9286: iMX6DQ MAX9286 MIPI CSI2 720P camera surround view solution for Linux BSP   How to builld the kernel with ISL79985 support:       make imx_v7_defconfig       make menuconfig (In this command, you should select the ISL79985 driver:             Device Drivers  --->                   <*> Multimedia support  --->                         [*]   V4L platform devices  --->                               <*>   MXC Video For Linux Video Capture                                       MXC Camera/V4L2 PRP Features support  --->                                           <*>Intersil ISL79985 Video Decoder support                                           <*>mxc VADC support                                           <*>Select Overlay Rounting (Queue ipu device for overlay library)                                           <*>Pre-processor Encoder library                                           <*>IPU CSI Encoder library)       make zImage       make dtbs   The built out image file:       arch/arm/boot/dts/imx6q-sabresd.dtb       arch/arm/boot/zImage   "mxc_v4l2_tvin.zip" is the test application, test command to capture the four cameras and render on 1080P HDMI display: /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -g2d & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -g2d &   2015-10-10 Update: Updated the test application "mxc_v4l2_tvin_isl79985.tar.gz" to fix the Yocto build errors. Updated ISL79985 register setting "page5, isl79985_write_reg(0x07, 0x46)" in patch "0002-Add-Intersil-ISL79985-MIPI-Video-Decoder-Driver-for-.patch", which can fix the green line issue.   2016-01-25 Update: Added de-interlace support, L3.10.53_ISL79985_Surroundview_Patch_20160125.tar.gz New test capplication for de-interlance: mxc_v4l2_tvin_isl79985_vdi_20160125.tar.gz New test commands: /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -g2d -m & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -g2d -m & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -g2d -m & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -g2d -m &   Note:  with the 0005-Add-interlaced-mode-capture-for-ISL79985.patch, the V4l2 capture driver will return 720x480 video size, but only odd lines have the video data, they are filled in line skip line mode.     2016-11-21 Update: Added ISL79987 support, L3.10.53_ISL7998x_Surroundview_Patch_20161121.zip New test capplication for de-interlance support: mxc_v4l2_tvin_isl7998x.tar.gz   Test commands (without de-interlace): /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -g2d & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -g2d &   Test commands (with de-interlace, for ISL79987 only): /mxc_v4l2_tvin.out -ol 0 -ot 0 -ow 960 -oh 540 -d 1 -x 0 -m 1 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 0 -ow 960 -oh 540 -d 1 -x 1 -m 1 -g2d & /mxc_v4l2_tvin.out -ol 0 -ot 540 -ow 960 -oh 540 -d 1 -x 2 -m 1 -g2d & /mxc_v4l2_tvin.out -ol 960 -ot 540 -ow 960 -oh 540 -d 1 -x 3 -m 1 -g2d &     Now the same patch can support both ISL79985 and ISL79987, with NTSC CVBS camera, for ISL79985, it captures 60fps 720*240; for ISL79987, it captures 30fps 720*480.   2016-11-22 Update: Added patch for L4.1.15 BSP, it supports both ISL79985 and ISL79987, L4.1.15_ISL7998x_Surroundview_Patch_20161122.zip Test capplication mxc_v4l2_tvin_isl7998x.tar.gz is re-used.
記事全体を表示