i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
Symptoms   Trying to initialize a repo, for example:  $repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -m imx-6.1.36-2.1.0.xml we have the below log: File "/home/username/bin/repo", line 51 def print(self, *args, **kwargs): ^ SyntaxError: invalid syntax   Workaround (1)   The first workaround consist in change the python alternatives (caused when you have installed two or more python versions). NOTE: in my case, the python version that i want to change as first priority is python3.8 $sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.8 1   Then we run: $sudo update-alternatives --config python    To verify if your python priority was changed successfully try: $python --version   You should see the version configured as priority number 1.     Workaround (2)   The workaround is very simple, only we need modify the repo file $ nano ~/bin/repo   and we will change the python interpreter in the first line (from python to python3): ORIGINAL FILE   EDITED FILE   After to do this change, repo will works fine again.     I hope this can helps to you!   Best regards.
View full article
Hello everyone, We have recently migrated our Source code from CAF (Codeaurora) to Github, so i.MX NXP old recipes/manifest that point to Codeaurora eventually will be modified so it points correctly to Github to avoid any issues while fetching using Yocto. Also, all repo init commands for old releases should be changed from: $ repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b <branch name> [ -m <release manifest>] To: $ repo init -u https://github.com/nxp-imx/imx-manifest -b <branch name> [ -m <release manifest>] This will also apply to all source code that was stored in Codeaurora, the new repository for all i.MX NXP source code is: https://github.com/nxp-imx For any issues regarding this, please create a community thread and/or a support ticket. Regards, Aldo.
View full article
    OpenSSL is popular software library for applications that secure communications over computer networks against eavesdropping or need to identify the party at the other end. It is widely used in internet web servers, serving a majority of all web sites. OpenSSL contains an open-source implementation of the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols, it is a robust, commercial-grade, and full-featured toolkit for the SSL and TLS protocols. OpenSSL is also a general-purpose cryptography library. Its core library, written in the C programming language, implements basic cryptographic functions and provides various utility functions. Wrappers allowing the use of the OpenSSL library in a variety of computer languages are available. More and more embeded systems, like IoT gateway, ePOS, based on i.MX use OpenSSL for their secure communications and cryptographic operations. But it's cryptography library is pure software implementation which need to occupy lots of CPU resouce and the perfermance is very weak than dedicated hardware IP (like CAAM).    CAAM is the i.MX's cryptographic acceleration and assurance module, which serves as NXP's latest cryptographic acceleration and offloading hardware. It combines functions previously implemented in separate modules to create a modular and scalable acceleration and assurance engine. It also implements block encryption algorithms, stream cipher algorithms, hashing algorithms, public key algorithms (i.MX6UL/i.MX7D/S), and a hardware random number generator.   The official Yocto release (L4.1.15_2.0.0-ga) of the i.MX only enable cryptodev for accelerating symmetric algorithms and hashing algorithms, not support asymmetric algorithms(RSA, ECC). And its engine in OpenSSL(version 1.0.2h) also miss some features which is used to support symmetric algorithms and hashing algorithms, for example, AES ECB, SHA224/256, etc. These patches in the post will close the above gaps for i.MX Linux system. The software environments as the belows: Linux kernel: imx_4.1.15_2.0.0_ga cryptodev: 1.8 OpenSSL: 1.0.2h The patches include the following key features: 1, Add public key cryptography part in CAAM driver, through protocol commands, to implement a number of public (and private) key functions. These are DSA and ECDSA sign/verify, Diffie-Hellman (DH) and ECDH key agreement, ECC key generation, DLC key generation, RSA encryption/decryption, RSA key-generation finalization. 2, Add big number operation and elliptic curve math in CAAM driver to implement addition, subtraction, multiplication, exponentiation, reduction, inversion, greatest common divisor, prime testing and point add, point double, point multiply. 3, Add API in cryptodev to support RSA encryption/decryption, DSA/ECDSA sign/verify, DH/ECDH key agreement, ECC & DLC & RSA key generation and big number operation and elliptic curve math. 4, Add public key cryptography functions, hardware rng, and missing hash symmetric algorithms in OpenSSL crytodev engine. Note: 1, You can refer to ecdhtest.c, ecdsatest.c, dhtest.c, dsatest.c, rsa_test.c for how to use crytodev engine in your applications based on libcryto.so. You can also find their executable programs in folder openssl-1.0.2h/test after compiling. 2, If you want to call crytodev API directly to accelerate public key cryptography operations, please refer to asymmetric_cipher.c in cryptodev-linux-1.8/tests. Current Limitation: 1, CAAM driver don't support AES GCM/CCM but hardware supporting. I plan to add the feature next version. 2, ECDSA sign/verify will fail on some binary curves (sect163r1, sect163r2, sect193r1, sect193r2, sect233r1, sect283r1, sect409r1, sect571r1 and X9.62 binary curves). I will try to find the root cause and fix it.   ==================================== for  some binary curves (sect163r1, sect163r2, sect193r1, sect193r2, sect233r1, sect283r1, sect409r1, sect571r1 and X9.62 binary curves)  are rarely used, so i will try to find the root cause when i'm free.  +++++++++++++++++++++++    updating for Linux-4.14.78-1.1.10 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux -4.14.78-1.1.10. The new software environments as the belows: Linux kernel: imx_4.14.78_1.1.10 cryptodev: 1.9 OpenSSL: 1.0.2p HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini, i.MX8/8X. The patches include the following new features: 1, support  RSA key generation but defaultly use openssl build-in function (BN_generate_prime_ex) to create prime p, q for higher security. If need to use CAAM accelerating,  please comment Macro USE_BUILTIN_PRIME_GENERATION, but don't confirm its security. 2, Add Manufacturing-protection feature, and you can refer to manufacturing_protection_test function in asymmetric_cipher.c. 3, Support AES GCM in cryptodev. 4, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.14.78-1.1.10 and copy meta-openssl-caam to folder <Yocto 4.14.78-1.1.10 dir>/sources/ 5, Run DISTRO=fsl-imx-wayland MACHINE=imx6ulevk source fsl-setup-release.sh -b build-imx6ulevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into /build-imx6ulevk/conf/bblayers.conf 6, bitbake fsl-image-validation-imx 7, Run the below command on your i.MX6UL EVK board. modprobe cryptodev openssl genrsa -f4 -engine cryptodev 512 -elapsed openssl speed dsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 1024 -elapsed openssl speed rsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 2048 -elapsed openssl speed ecdsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 3072 -elapsed openssl speed ecdh -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 4096 -elapsed openssl speed -evp sha256 -engine cryptodev -elapsed openssl speed -evp aes-128-cbc -engine cryptodev -elapsed openssl speed -evp aes-128-ecb -engine cryptodev -elapsed openssl speed -evp aes-128-cfb -engine cryptodev -elapsed openssl speed -evp aes-128-ofb -engine cryptodev -elapsed openssl speed -evp des-ede3 -engine cryptodev -elapsed openssl speed -evp des-cbc -engine cryptodev -elapsed openssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-4.14.98-2.3.3 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux -4.14.98-2.3.3. The new software environments as the belows: Linux kernel: imx_4.14.98-2.3.3 cryptodev: 1.9 OpenSSL: 1.0.2p HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano, i.MX8/8X. The patches include the following new features: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.14.98-2.3.3 and copy meta-openssl-caam to folder <Yocto 4.14.98-2.3.3 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source fsl-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into /build-imx8mmevk/conf/bblayers.conf 3, bitbake fsl-image-validation-imx 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl genrsa -f4 -engine cryptodev 512 -elapsed openssl speed dsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 1024 -elapsed openssl speed rsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 2048 -elapsed openssl speed ecdsa -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 3072 -elapsed openssl speed ecdh -engine cryptodev -elapsed openssl genrsa -f4 -engine cryptodev 4096 -elapsed openssl speed -evp sha256 -engine cryptodev -elapsed openssl speed -evp aes-128-cbc -engine cryptodev -elapsed openssl speed -evp aes-128-ecb -engine cryptodev -elapsed openssl speed -evp aes-128-cfb -engine cryptodev -elapsed openssl speed -evp aes-128-ofb -engine cryptodev -elapsed openssl speed -evp des-ede3 -engine cryptodev -elapsed openssl speed -evp des-cbc -engine cryptodev -elapsed openssl speed -evp des-ede3-cfb -engine cryptodev -elapsed +++++++++++++++++++++++    updating for Linux-4.19.35-1.1.2 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 4.19.35-1.1.2​​.  Software environments as the belows: Linux kernel: imx_4.19.35-1.1.2 cryptodev: 1.10 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-4.19.35-1.1.2 and copy meta-openssl-caam to folder <Yocto 4.19.35-1.1.2 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 4.19.35-1.1.2 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake fsl-image-validation-imx. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed +++++++++++++++++++++++    updating for Linux-5.4.70-2.3.4 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.4.70_2.3.4​​.  Software environments as the belows: Linux kernel: imx_5.4.70_2.3.4 cryptodev: 1.10 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.4.70-2.3.4  and copy meta-openssl-caam to folder <Yocto 5.4.70_2.3.4 dir>/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.4.70_2.3.4 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed     +++++++++++++++++++++++    updating for Linux-5.10.52-2.1.0 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.10.52_2.1.0​​.  Software environments as the belows: Linux kernel: lf-5.10.y cryptodev: 1.12 OpenSSL: 1.1.1l HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.10.52-2.1.0 and copy meta-openssl-caam to folder <Yocto 5.10.52_2.1.0 dir>/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.10.52_2.1.0 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed   +++++++++++++++++++++++    updating for Linux-5.15.71-2.2.0 ++++++++++++++++++++++++++++ This updating is for Yocto release of Linux 5.15.71-2.2.0​​.  Software environments as the belows: Linux kernel: lf-5.15.71-2.2.0 cryptodev: 1.12 OpenSSL: 3.1.0 HW platform: i.MX6UL, i.MX7D/S, i.MX8M/8M Mini/8M Nano/8M Plus, i.MX8/8X. How to build: 1, git clone https://gitee.com/zxd2021-imx/meta-openssl-caam.git, git checkout Linux-5.15.71-2.2.0 and copy meta-openssl-caam to folder <Yocto 5.15.71_2.2.0 dir>/sources/ 2, Run DISTRO=fsl-imx-xwayland MACHINE=imx8mmevk source imx-setup-release.sh -b build-imx8mmevk and add BBLAYERS += " ${BSPDIR}/sources/meta-openssl-caam " into <Yocto 5.15.71_2.2.0 dir>/build-imx8mmevk/conf/bblayers.conf. 3, Run bitbake imx-image-multimedia. 4, Run the below command on your i.MX8M Mini EVK board. modprobe cryptodev openssl speed sm2 openssl speed dsa openssl speed rsa openssl speed ecdsa openssl speed ecdh openssl genrsa -f4 -engine devcrypto 512 openssl genrsa -f4 -engine devcrypto 1024 openssl genrsa -f4 -engine devcrypto 2048 openssl genrsa -f4 -engine devcrypto 3072 openssl genrsa -f4 -engine devcrypto 4096 openssl speed -evp sha256 -engine devcrypto -elapsed openssl speed -evp aes-128-cbc -engine devcrypto -elapsed openssl speed -evp aes-128-ecb -engine devcrypto -elapsed openssl speed -evp aes-128-cfb -engine devcrypto -elapsed openssl speed -evp aes-128-ofb -engine devcrypto -elapsed openssl speed -evp des-ede3 -engine devcrypto -elapsed openssl speed -evp des-cbc -engine devcrypto -elapsed openssl speed -evp des-ede3-cfb -engine devcrypto -elapsed    
View full article
Hello there. Here is a good way to use U-boot in an efficient way with custom scripts. The bootscript is an script that is automatically executed when the boot loader starts, and before the OS auto boot process. The bootscript allows the user to execute a set of predefined U-Boot commands automatically before proceeding with normal OS boot. This is especially useful for production environments and targets which don’t have an available serial port for showing the U-Boot monitor. This information can be find in U-Boot Reference Manual.   I will take the example load a binary file in CORTEX M4 of IMX8MM-EVK. In my case, I have the binary file in MMC 2:1 called gpio.bin and I will skip those steps because that is not the goal.   First, you need the u-boot-tools installed in your Linux machine: sudo apt install u-boot-tools   That package provide to us the tool mkimage to convert a text file (.src, .txt) file to a bootscript file for U-Boot.   Now, create your custom script, in this case a simple script for load binary file in Cortex M4: nano mycustomscript.scr  and write your U-Boot commands: fatload mmc 2:1 0x80000000 gpio.bin cp.b 0x80000000 0x7e0000 0x10000 bootaux 0x7e0000   Now we can convert the text file to bootscript with mkimage. Syntax: mkimage -T script -n "Bootscript" -C none -d <input_file> <output_file> mkimage -T script -n "Bootscript" -C none -d mycustomscript.scr LCM4-bootscript   This will create a file called LCM4-bootscript (Or as your called it).   A way to load this bootscript file to U-Boot is using the UUU tool, in U-Boot set the device in fastboot with command: u-boot=> fastboot 0 Then in linux with the board connected through USB to PC run the command: sudo uuu -b fat_write LCM4-bootscript mmc 2:1 LCM4-bootscript   Now we have our bootscript in U-Boot in MMC 2:1.   Finally, we can run the bootscript in U-Boot: u-boot=> load mmc 2:1 ${loadaddr} LCM4-bootscript 158 bytes read in 2 ms (77.1 KiB/s) u-boot=> source ${loadaddr} ## Executing script at 40400000 6656 bytes read in 5 ms (1.3 MiB/s) ## No elf image at address 0x007e0000 ## Starting auxiliary core stack = 0x20020000, pc = 0x1FFE02CD...   And the Cortex M4 booted successfully:    I hope this can helps to you.   Best regards.   Salas.  
View full article
In some cases, such as mass production or preparing a demo. We need u-boot environment stored in demo sdcard mirror image.  Here is a way: HW:  i.MX8MP evk SW:  LF_v5.15.52-2.1.0_images_IMX8MPEVK.zip The idea is to use fw_setenv to set the sdcard mirror as the operation on a real emmc/sdcard. Add test=ABCD in u-boot-initial-env for test purpose. And use fw_printenv to check and use hexdump to double confirm it. The uboot env is already written into sdcard mirror(imx-image-multimedia-imx8mpevk.wic). All those operations are on the host x86/x64 PC. ./fw_setenv -c fw_env.config -f u-boot-initial-env Environment WRONG, copy 0 Cannot read environment, using default ./fw_printenv -c fw_env.config Environment OK, copy 0 jh_root_dtb=imx8mp-evk-root.dtb loadbootscript=fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${bsp_script}; mmc_boot=if mmc dev ${devnum}; then devtype=mmc; run scan_dev_for_boot_part; fi arch=arm baudrate=115200 ...... ...... ...... splashimage=0x50000000 test=ABCD usb_boot=usb start; if usb dev ${devnum}; then devtype=usb; run scan_dev_for_boot_part; fi vendor=freescale hexdump -s 0x400000 -n 2000 -C imx-image-multimedia-imx8mpevk.wic 00400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| hexdump -s 0x400000 -n 10000 -C imx-image-multimedia-imx8mpevk.wic 00400000 5f a4 9b 97 20 6a 68 5f 72 6f 6f 74 5f 64 74 62 |_... jh_root_dtb| 00400010 3d 69 6d 78 38 6d 70 2d 65 76 6b 2d 72 6f 6f 74 |=imx8mp-evk-root| 00400020 2e 64 74 62 00 20 6c 6f 61 64 62 6f 6f 74 73 63 |.dtb. loadbootsc| 00400030 72 69 70 74 3d 66 61 74 6c 6f 61 64 20 6d 6d 63 |ript=fatload mmc| 00400040 20 24 7b 6d 6d 63 64 65 76 7d 3a 24 7b 6d 6d 63 | ${mmcdev}:${mmc| 00400050 70 61 72 74 7d 20 24 7b 6c 6f 61 64 61 64 64 72 |part} ${loadaddr| 00400060 7d 20 24 7b 62 73 70 5f 73 63 72 69 70 74 7d 3b |} ${bsp_script};| 00400070 00 20 6d 6d 63 5f 62 6f 6f 74 3d 69 66 20 6d 6d |. mmc_boot=if mm| ...... ...... ...... 00401390 76 3d 31 00 73 6f 63 3d 69 6d 78 38 6d 00 73 70 |v=1.soc=imx8m.sp| 004013a0 6c 61 73 68 69 6d 61 67 65 3d 30 78 35 30 30 30 |lashimage=0x5000| 004013b0 30 30 30 30 00 74 65 73 74 3d 41 42 43 44 00 75 |0000.test=ABCD.u| 004013c0 73 62 5f 62 6f 6f 74 3d 75 73 62 20 73 74 61 72 |sb_boot=usb star| 004013d0 74 3b 20 69 66 20 75 73 62 20 64 65 76 20 24 7b |t; if usb dev ${| 004013e0 64 65 76 6e 75 6d 7d 3b 20 74 68 65 6e 20 64 65 |devnum}; then de| flash the sdcard mirror into i.MX8MP evk board emmc to check uuu -b emmc_all imx-boot-imx8mp-lpddr4-evk-sd.bin-flash_evk imx-image-multimedia-imx8mpevk.wic  The first time boot, the enviroment is already there.  How to achieve that: a. fw_setenv/fw_printenv: https://github.com/sbabic/libubootenv.git Note: Please do not use uboot fw_setenv/fw_printenv Compile it on the host x86/x64 PC. It is used on host. b. u-boot-initial-env Under uboot, make u-boot-initial-env Note: Yocto deploys u-boot-initial-env by default c. fw_env.config  imx-image-multimedia-imx8mpevk.wic 0x400000 0x4000 0x400000 0x4000 are from uboot-imx\configs\imx8mp_evk_defconfig CONFIG_ENV_SIZE=0x4000 CONFIG_ENV_OFFSET=0x400000 Now, you can run  ./fw_setenv -c fw_env.config -f u-boot-initial-env
View full article
We will build a remote debug environmet of Qt Creator in this user guide.   Contents 1 Change local.conf file in Yocto 2 2 Build and deploy Yocto SDK 2 2.1 Build full image SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Deploy SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Configure QT Kit 2 3.1 Setup device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Configure QT version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 Configure gcc and g++ manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Configure gdb manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.5 Configure Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.6 Very important thing!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Test result
View full article
  Question: How can we generate an ARM DS5 DStream format DDR initialization script using the DRAM Register Programming Aid?  Answer: Some RPAs include a  "DStream .ds file" tab for the ARM DS5 debugger specific commands. The i.MX6UL/ULL/ULZ DRAM Register Programming Aids for example already has this supported. However, the user can easily create  the .ds format from the existing .inc format. The basic steps to convert .inc files to .ds format are as follows: 1)  Replace the one instance of setmem /16 with mem set 2)  In that same line, replace 0x020bc000 = with 0x020bc000 16 3)  Use a Replace All command to change setmem /32 with mem set 4)  Use a Replace All command to change = with 32 5)  Use a Replace All command to change // with # 6)  Save as a .ds file.   Question: When using a 528MHz DRAM Controller interface with a DDR memory of a faster speed bin, which speed bin timing options should one use? Answer: For example, let’s assume our MX6DQ design is using a DDR3 memory from a DDR3-1600 speed bin.  However, the maximum speed of the MMDC interface for the MX6DQ using DDR3 is 528MHz.  Should we use the 1600 speed bin (800MHz clock speed) or the 1066 speed bin (533MHz clock speed)?  In short, the user should use the timings rated for the maximum speed (frequency) with which you are running, in this case DDR3-1066 (533MHz).  In some cases, like when using the MX6DL, the maximum DDR frequency is 400MHz.  In this case, you would want to try and use 800 timings found in the AC timing parameters table.  However, most DDR3 devices have speed bin tables that may go only as low as 1066, in which case you would use the closest speed bin to your operational frequency (i.e. the 1066 speed bin table).     Question: Some timing parameters may specify a min and max number, which should I use? Answer: In most cases, you will want to choose the minimum timings.  Some DRAM controllers may have a tRAS_MAX timing parameter, in which case you would obviously use the maximum tRAS parameter given in the DRAM data sheet. Also, for timing parameters tAONPD and tAOFPD, we also want to use the maximum values given in the DDR3 data sheet. These represent the maximum amount of time the DDR3 device takes to turn on or off the RTT (termination), therefore, we should wait at least this amount of time before issuing any commands or accesses.   Question: Some timing parameters state things like “Greater of 3CK or 7.5ns”; which should I use? Answer: This depends on your clock speed.  Say you are running at 533MHz.  At 533MHz, 7.5ns equates to 4CKs.  In this case, 7.5ns at 533MHz is GREATER than 3CK, so we would use the 7.5ns number, or 4CKs. At 400MHz, 7.5ns equates to 3CKs.  In this case, we’d simply use 3CKs.   Question: I have a design that will throttle the DDR frequency (dynamic frequency scaling).  At full speed, I plan to run at 533MHz, and then I plan to throttle down to say 400MHz whenever possible.  Do I need to re-calculate my 400 MHz timing parameters that were initially set for 533MHz? Answer: It is not necessary to re-calculate timing parameters for 400MHz, and you can re-use the ones for 533MHz.  The timings at 533 MHz are much tighter than 400 MHz, and the key here is to NOT violate timings.  Also, it may be a bit of a hassle maintaining two sets of timing parameters, especially if later in the design, you swap DDR vendors that might require you to re-calculate some timing parameters.  It’s easier to do it once and to come up with a combined worse-case timing parameters for 533MHz, which you know will work at 400MHz.  But, if you don’t mind maintaining two sets of timing parameters, and really want to optimize timings down to the last pico-second for 400MHz, then knock yourself out.   Question: Can I use these Register programming aids for both Fly by and T- Topology ? Answer Yes The DDR register programming aid is agnostic to the DDR layout. The same spreadsheet works for both topologies. We recommend running write leveling calibration for both topologies and the values returned by the Write Leveling routine from the Freescale DDR stress test should be incorporated back to the customer specific initialization script. The DDR stress test also has a feature whereby it evaluates the write leveling values returned from calibration and increments WALAT to 1 if the values exceed a defined limit. The DDR stress test informs the user when the Write Additional latency (WALAT) exceeds the limit and should be increased by 1, and reminds the user to add it back in the customer specific initialization script if required.   WALAT - 0 00000000 WALAT: Write Additional latency. Recommend to clear these bits. Proper board design should ensure that the DDR3 devices are placed close enough to the MMDC to ensure the skew between CLK and DQS is less than 1 cycle.     Question: Can I use the DEFAULT Register programming aid values for MDOR when using an Internal OSC instead of the recommended 32.768 KHZ XTAL ? Answer No, NXP recommends reprogramming these values based on the worse case frequency (Max clock) of the internal OSC of the device to guarantee JEDEC timings are met. Please refer to Internal Oscillator Accuracy considerations for the i.MX 6 Series for more details  
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. This is a detailed programming aid for the registers associated with MMDC initialization. The last sheet formats the register settings for use with ARM RealView ICE. It can also be used with the windows executable for the DDR Stress Test. This programming aid was used for internal NXP validation boards.
View full article
Important: If you have any questions or would like to report any issues with the DDR tools or supporting documents please create a support ticket in the i.MX community. Please note that any private messages or direct emails are not monitored and will not receive a response. i.MX 6/7 Series Family DDR Tools Overview This page contains the latest releases for the i.MX 6/7 series DDR Tools. The tools described on this page cover the following i.MX 6/7 series SoCs: i.MX 6DQP (Dual/Quad Plus) i.MX 6DQ (Dual/Quad) i.MX 6DL/S (Dual Lite/Solo) i.MX 6SoloX i.MX 6SL i.MX 6SLL i.MX 6UL i.MX 6ULL/ULZ i.MX 7D/S i.MX 7ULP The purpose of the i.MX 6/7 series DDR Tools is to enable users to generate and test a custom DRAM initialization based on their device configuration (density, number of chip selects, etc.) and board layout (data bus bit swizzling, etc.). This process equips the user to then proceed with the bring-up of a boot loader and an OS. Once the OS is brought up, it is recommended to run an OS-based memory test (like Linux memtester) to further verify and test the DDR memory interface. The i.MX 6/7 series DDR Tools consist of: DDR Register Programming Aid (RPA) DDR Stress test _________________________________________________________ i.MX 6/7 Series DDR Stress Test The i.MX 6/7 Series DDR stress test tool is a Windows-based software tool that is used as a mechanism to verify that the DDR initialization is operational prior for use in u-boot and OS bring-up. The DDR Stress Test tool can be found here: i.MX 6/7 DDR Stress Test Tool Note that the DDR Stress test tool supports all of the above i.MX SoCs, however, some of the supported i.MX SoCs named in the tool support multiple i.MX SoCs as follows: MX6DQ – when selected, this supports both i.MX 6DQ and i.MX 6DQP (Plus) MX6DL – when selected, this supports both i.MX 6DL and i.MX 6S (i.MX 6DLS family) MX6ULL – when selected, this supports both i.MX 6ULL and i.MX6 ULZ MX7D – when selected, this supports both i.MX 7D and i.MX 7S _____________________________________________________________________________ i.MX 6/7 Series DDR Register Programming Aid (RPA) The i.MX 6/7 series DDR RPA (or simply RPA) is an Excel spreadsheet tool used to develop DDR initialization for a user’s specific DDR configuration (DDR device type, density, etc.). The RPA generates the DDR initialization script for use with the DDR Stress Test tool. For a history of the previous versions of an RPA, refer to the Revision History tab of the respective RPA. To obtain the latest RPAs, please refer to the following links: i.MX 6DQP i.MX6DQP Register Programming Aids i.MX 6DQ i.MX6DQ Register Programming Aids i.MX 6DL/S i.MX6DL Register Programming Aids i.MX 6SoloX i.MX6SX Register Programming Aids i.MX 6SL i.MX6SL Register Programming Aids  i.MX6SLL i.MX6SLL Register Programming Aids i.MX 6UL/ULL/ULZ i.MX6UL/ULL/ULZ DRAM Register Programming Aids i.MX7D i.MX7D DRAM Register Programming Aids i.MX 7ULP i.MX7ULP DRAM Register Programming Aids _____________________________________________________________________________ DRAM Register Programming Aids FAQ    
View full article
      The i.MX6UL/LL/LZ processor supports 2 USB OTG interfaces, USB OTG1 and USB OTG2, and each USB interface can be configured as a device, host or dual role mode. On the EVK board of i.MX6UL/LL, USB OTG1 is designed as dual role mode, and USB OTG2 is designed as HOST mode. This is sufficient for most customers.       However, in actual applications, we may need 2 USB HOSTs, and at the same time, we don’t want to use MicroUSB to USB TYPE-AF cable for Host-Device mode conversion. Therefore, the design of the USB circuit needs to meet such requirements: 1. USB device mode We need a USB device to download the linux image to the flash or SD card on the board. 2. 2 USB HOSTs When the system is working normally, we need the board to support 2 USB HOST. i.MX6UL/LL/LZ has only 2 USB ports. How to design to meet this requirement without increasing the USB HUB? The following scheme is used as a reference, and I hope it will be helpful to customers with similar requirement:        The logic and application description of this Diagram:: Default—device mode In the process of debugging the software, we need to use the USB OTG interface to download the linux image, so it must work in device mode. What we need to do is: (1). Pull USB OTG ID up to 3.3V (2). The USB OTG D+/D- signal is switched to the MicroUSB connector. (3). The USB OTG VBUS is provided with 5V power from the external PC USB HOST. Usage:        -Use a jumper for Pin 1 and Pin2, USB OTG ID pin will be pulled up to High.        With the operation, SEL pin of USB Muxer is High, and USB signals are switched to port B, and USB differential signals are connected to MicroUSB connector. At the same time, MIC2026-1YM output is disabled. The USB OTG1 VBUS pin of CPU is supplied by VBUS of MicroUSB connector, that is to say, supplied by PC USB HOST.        In this mode, software engineer can use it to download images to flash on board. Normal Work—Host mode After the software debugging is completed, two HOSTs are needed on the board. At this time, we need to switch the USB OTG1 from device to HOST mode. What we need to do is: (1). Pull USB OTG1 ID down to LOW (2). The USB OTG D+/D- signal is switched to the USB Type-AF connector. (3). Board should supply 5V power for USB device connected USB Type-AF connector. Usage:        -Use a jumper for Pin 2 and Pin3, USB OTG ID pin will be pulled down to Low.        With the operation, USB OTG1 ID pin is pulled down to Low, SEL pin of USB Muxer is also LOW, USB signals are switched to Port A, and connected to USB type-AF connector. At the same time, MIC2026-1YM is enabled , OUTA will output 5V , which will supply USB device connected on USB type-AF connector.   [Note] Users need to pay attention to. When using the jumper with PIN1/2/3, the board needs to be powered off. In other words, when switching between device and host, you need to switch off the power, then power on, and restart the board. The solution can also be used for i.MX processors with USB 2.0 interface.   NXP CAS team Wedong Sun 01/15/2021
View full article
Host TFTP and NFS Configuration Now configure the Trivial File Transfer Protocol (TFTP) server and Networked File System (NFS) server. U-Boot will download the Linux kernel and dtb file using tftp and then the kernel will mount (via NFS) its root file system on the computer hard drive. 1. TFTP Setup   1.1.1 Prepare the TFTP Service   Get the required software if not already set up. On host for TFTP: Install TFTP on Host $ sudo apt-get install tftpd-hpa   (Note: There are a number of examples in various forums, etc, of how to automatically start the TFTP service - but not all are successful on all Linux distro's it seems! The following may work for you.)   Start the tftpd-hpa service automatically by adding a command to /etc/rc.local. $ vi /etc/rc.local   Now, just before the exit 0 line edit below command then Save and Exit. $ service tftpd-hpa start  Now, To control the TFTP service from the command line use: $ service tftpd-hpa restart    To check the status of the TFTP service from the command line use: $ service tftpd-hpa status   1.1.1 Setup the TFTP Directories Now, we have to create the directory which will contain the kernel image and the device tree blob file. $ mkdir -p /imx-boot/imx6q-sabre/tftp Then, copy the kernel image and the device tree blob file in this directory. $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/zImage /imx-boot/imx6q-sabre/tftp $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/<dtb file> /imx-boot/imx6q-sabre/tftp   OR we can use the default directory created by yocto {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/ The tftpd-hpa service looks for requested files under /imx-boot/imx6q-sabre/tftp The default tftpd-hpa directory may vary with distribution/release, but it is specified in the configuration file: /etc/default/tfptd-hpa. We have to change this default directory with our directory   Edit default tftp directory $ vi /etc/default/tftpd-hpa   Now, change the directory defined as TFTP_DIRECTORY with your host system directory which contains kernel and device tree blob file. Using created directory TFTP_DIRECTORY=”/imx-boot/imx6q-sabre/tftp” OR Using Yocto directory path TFTP_DIRECTORY=”{YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}” Restart the TFTP service if required $ service tftpd-hpa restart   1.2 NFS Setup 1.2.1 Prepare the NFS Service Get the required software if not already set up. On host for NFS: Install NFS on Host $ sudo apt-get install nfs-kernel-server The NFS service starts automatically. To control NFS services : $ service nfs-kernel-server restart To check the status of the NFS service from the command line : $ service nfs-kernel-server status 1.2.2 Setup the NFS Directories Now, we have to create the directory which will contain the root file system. $ mkdir -p /imx-boot/imx6q-sabre/nfs   Then, copy the rootfs in this directory. $ cp -R {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs/* /imx-boot/imx6q-sabre/nfs   OR we can use the default directory created by yocto. $ {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs 1.2.3 Update NFS Export File The NFS server requires /etc/exports to be configured correctly to access NFS filesystem directory to specific hosts. $ vi /etc/exports Then, edit below line into the opened file. <”YOUR NFS DIRECTORY”> <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex. If you created custom directory for NFS then, /imx-boot/imx6q-sabre/nfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex: /imx-boot/imx6q-sabre/nfs 192.168.*.*(rw,sync,no_root_squash,no_subtree_check) OR /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check)   Now, we need to restart the NFS service. $ service nfs-kernel-server restart   2 Target Setup   We need to set up the network IP address of our target. Power On the board and hit a key to stop the U-Boot from continuing. Set the below parameters, setenv serverip 192.168.0.206       //This must be your Host IP address The path where the rootfs is placed in our host has to be indicated in the U-Boot, Ex. // if you choose default folder created by YOCTO setenv nfsroot /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs   OR // if you create custom directory for NFS setenv nfsroot /imx-boot/imx6q-sabre/nfs Now, we have to set kernel image name and device tree blob file name in the u-boot, setenv image < zImage name > setenv fdt_file <dtb file name on host> Now, set the bootargs for the kernel boot, setenv netargs 'setenv bootargs console=${console},${baudrate} ${smp} root=/dev/nfs ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp' Use printenv command and check loadaddr and fdt_addr environment variables variables for I.MX6Q SABRE, loadaddr=0x12000000 fdt_addr=0x18000000   Also, check netboot environment variable. It should be like below, netboot=echo Booting from net ...; run netargs; if test ${ip_dyn} = yes; then setenv get_cmd dhcp; else setenv get_cmd tftp; fi; ${get_cmd} ${image}; if test ${boot_fdt} = yes || test ${boot_fdt} = try; then if ${get_cmd} ${fdt_addr} ${fdt_file}; then bootz ${loadaddr} - ${fdt_addr}; else if test ${boot_fdt} = try; then bootz; else echo WARN: Cannot load the DT; fi; fi; else bootz; fi; Now, set environment variable bootcmd to boot every time from the network, setenv bootcmd run netboot Now finally save those variable in u-boot: saveenv Reset your board; it should now boot from the network: U-Boot 2016.03-imx_v2016.03_4.1.15_2.0.0_ga+ga57b13b (Apr 17 2018 - 17:13:43 +0530)  (..) Net:   FEC [PRIME] Normal Boot Hit any key to stop autoboot:  0   Booting from net ... Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'zImage'. Load address: 0x12000000 Loading: #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         ###########################################################         2.1 MiB/s done Bytes transferred = 6578216 (646028 hex) Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'imx6q-sabresd.dtb'. Load address: 0x18000000 Loading: ####         1.8 MiB/s done Bytes transferred = 45893 (b345 hex) Kernel image @ 0x12000000 [ 0x000000 - 0x646028 ] ## Flattened Device Tree blob at 18000000   Booting using the fdt blob at 0x18000000   Using Device Tree in place at 18000000, end 1800e344 switch to ldo_bypass mode!   Starting kernel ...
View full article
Android Power Debug and Optimization Introduction Android Power Management on i.MX Overview How to do power optimization for Android on i.MX How to check high power consumption on i.MX How to debug suspend/resume problems on i.MX Introduction This document describes i.MX Android power issues debug and power consumption optimization. Android Power Management on i.MX Overview What Power Manager introduced by Android • Early Suspend    It is allow drivers like LCD, keypad backlight, touch-screen, gsensor, to be notified when user-space writes to /sys/power/request_state to indicate that the user visible sleep state should change. These drivers will act as like Linux stand suspend() to let these devices entry in suspend for better battery life. •Late Resume    Late resume is matching with early suspend. It will resume the devices suspended during early suspend after the Stand Linux resume finished •Wake Locks     Wake locks are used by applications, services, kernel drivers to request CPU resources. A locked wakelock, depending on its type, prevents the system from entering suspend or other low-power states. It as a core member in android power management architecture from framework to kernel What introduced by i.MX to enhance the power framework BusFreq Support High bus, Low power audio bus and Low bus totally 3 system bus working points. Switching between these 3 bus mode according clock flags automatically. DDR running frequency will change according bus mode changing (highest 528/400MHz and lowest at 24MHz for MX6DQ/DL). CPUFreq The CPU frequency scaling device driver allows the clock speed of the CPUs to be changed on the fly. Once the CPU frequency is changed, the GP voltage will be changed to the voltage value. Enhance the default interactive governor for better performance on SDHC/GPU etc. System Power Profile Service and App (just for MX6DQ/DL) Support 3 profiles currently: Normal mode, Power Saving Mode and Performance Mode to get much better balance between performance and power consumption. Profiles can be customized according customers’ HW /MD design, including: CPU running max freq, trigger temperature, CPU running minimal freq, running cpu LDO bypass mode           i.MX6X has built-in LDO module, but also allows you to use external LDO suppliers. SW will provide the configuration using external LDO or internal LDO. How to do power optimization for Android on i.MX Suspend Mode All devices enter in suspend or low power Config GPIO PADs as High Z or input mode (depending on HW design,FSL provide Ref code) Cut off LDOs which no modules need (depending on HW design, FSL provide Ref code) DDR enter in self-refresh mode (FSL done) Config DDR IO Float pin to reduce the DDR IO consumption (FSL done) ARM core entry stop mode (WFI) (FSL done) All PLLs will cut off, just 32KHZ sleep clock living (FSL done) Notify the PMIC entry in standby to save some power (FSL done) User Idle Mode Optimization on device driver for WiFi, 3G, BT, screen brightness modules, etc., to save some power Let some device/GPIOs entry in suspend mode/low power mode Active power saving profile to reduce some system power loading. GPU 2D/3D auto entry in Stop/Standby mode if no activity needs update. (FSL done) Enable CPUFreq reduce ARM CORE power consumption (FSL done) Busfreq scanning to let system work at lower Freq to save power (FSL done) Audio/Video Playback Mode Optimization on device driver for WiFi, 3G, BT, screen brightness modules, etc., to save some power Let some device/GPIOs entry in suspend mode/low power mode Disable HW 3D acceleration for some Apps such as System UI, Music Player, etc., to save some power when System in IDLE or music playing mode. Enable CPUFreq and SOC WAIT mode, decrease CPU Freq/Voltage to save power for ARM CORE when no there is no task need cpu to handle(FSL done) Busfreq scanning will set bus work at low power audio bus mode to save some power (FSL done for audio case) DDR enter in self-refresh mode (FSL done for audio case) Reduce the screen brightness will save some power (for video case) VPU clock auto-gating to save power on SOC domain (for video case, FSL done) GPU 2D/3D auto-gating to save some power on SOC domain (FSL done) Try VDOA+IPU to bypass GPU in video playback(not comment for Android platform, pure Linux environment using this method, for it has some limitation such as the input/output size limit), this can save some power on DDR domain. How to check high power consumption on i.MX Idle Audio/Video Playback high power consumption Check the CPUFreq and  Bus_freq is enabled           cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor           cat /sys/devices/platform/imx_busfreq.0/enable Check whether the system bus working poing   For MX6Q:           cat /sys/kernel/debug/clock/osc_clk/pll2_528_bus_main_clk/periph_clk/mmdc_ch0_axi_clk/rate   For MX6DL/SL:           cat /sys/kernel/debug/clock/osc_clk/pll2_528_bus_main_clk/pll2_pfd_400M/periph_clk/mmdc_ch0_axi_clk/rate Check CPU Loading and Interrupt(cat /proc/interrupts) Check clock tree carefully to see which clocks arenot gated off  but no any modules need them.            powerdebug –d  -c SUSPEND MODE high power consumption Make sure all device entries are in suspend mode Make sure the system entry in DSM(measure the voltage &current of VDDARM_CAP, VDDSOC_CAP,DDR_1V5, VDD_HIGH…)      Some tips help to locate the problems Add debug message in device drivers which may lead high power consumption Enable PM debug in kernel Catch the waveform from these modules which may impact the high power consumption Remove devices from the board or do H/W rework to exclude some H/W problems How to debug suspend/resume problems on i.MX System could not entry in suspend mode Check below settings has been disabled: GPS has been disabled Don't connect USB cable to the board (adb will hold a wake lock) RIL will hold a wake lock if RIL failed to initialize (logcat -b radio) Setting->Application->Developer options->stay awake (stay awake not set) Check all wake locks which holed by kernel have been released          echo 15 > /sys/module/wakelock/parameters/debug_mask Check all user wake locks have been releaed          echo 15 > /sys/module/userwakelock/parameters/debug_mask System hang when resume or suspend Enable PM debug system to get more info about PM in kernel     make menuconfig  enable the PM debug sys [*] Power Management support                                                           [*]   Power Management Debug Support                                                           [*]     Verbose Power Management debugging Add no_console_suspend to the boot option for kernel         This makes the system print more useful info before entry in suspend Check the PMIC_STBY_REQ signal. Measure the VDDARM_IN Using Trace32 or ICE to locate the problem. Using RAMCONSOLE to dump the kernel log after reboot. Kernel resume back from suspend  but Android not    This is usually because of the wrong key layout file Use tool to get power key scan code        getevent  Correct the Keylayout         system/usr/keylayout/****.kl Correct the scandcode with your power key report value to Match the POWE key
View full article
meta-avs-demos Yocto layer meta-avs-demos is a Yocto meta layer (complementary to the NXP BSP release for i.MX) published on CodeAurora that includes the additional required packages to support  Amazon's Alexa Voice Services SDK (AVS_SDK) applications. The build procedure is the described on the README.md of the corresponding branch. We have 2 fuctional branches now: imx-alexa-sdk: Support for Morty based i.mx releases imx7d-pico-avs-sdk_4.1.15-1.0.0: legacy support for Jethro releases The master branch is only used to collect manifest files, that used with repo init/sync commands will fetch the whole environment for the 2 special supported boards: i.MX7D Pico Pi and i.MX8M EVK. However the meta-avs-demos can be used with any i.MX board either. Recipes to include Amazon's Alexa Voice Services in your applications. The meta-avs-demos provides the required recipes to build an i.MX image with the support for running Alexa SDK. The imx-alexa-sdk branch is based on Morty and kernel 4.9.X and it supports the next builds: i.MX7D Pico Pi i.MX8M EVK Generic i.MX board For the i.MX7D Pico Pi and i.MX8M EVK there is an extended support for additional (external) Sound Cards like: TechNexion VoiceHat: 2Mic Array board with DSPConcepts SW support Synaptics Card: 2 Mic with Sensory WakeWord support The Generic i.MX is for any other regular i.MX board supported on the official NXP BSP releases. Only the default soundcard (embedded) on the board is supported. Sensory wakeword is currently only enabled for those with ARMV7 architecture. To support any external board like the VoiceHat or Synaptics is up to the user to include the additional patches/changes required. Build Instructions Follow the corresponding README file to follow the steps to build an image with Alexa SDK support README-IMX7D-PICOPI.md README-IMX8M-EVK.md README-IMX-GENERIC.md
View full article
Q: Q&A: Where to find IBIS Models on the web? A: In the first figure (FSL driving 100 ohm), the processor is DC coupled to a transmission line and terminated at the far end with a 100-ohm resistor. The results look pretty normal for this. In the other figure, the processor is dc coupled to a transmission line, then ac coupled to another transmission line segment (0.1u) with 50-ohm resistors to ground, and then drives the inputs of an HCSL clock buffer. The results are pretty un remarkable. The top red signal in the trace is one of the IMX6 clock outputs, the first green signal is the other clock output, and the last green signal (from top to bottom that is) is the differential signal seen by the clock buffer. The customer is concerned about the asymmetrical drive of the processor. It looks like LVDS clock outputs do not like to be AC coupled. This simulation resembles the way the clock is handled in the Smart Device schematics where the clock is AC coupled to the reference clock inputs on the PCIE connector. The ibis files were downloaded from the web (21x21_imx6q, consumer variant). So a few updates: I had the customer download the latest duallite IBIS models. Previously they were apparently using the quad/dual models. They are going to update HyperLynx and are going to run a simulation and let me know if they still see the same issue. He said he's using "linesim". Meanwhile he noticed a different problem with the duallite/solo IBIS models. Although the datasheet says LVDDR3 (1.35V) is supported, there is no model for DDR3_L either as input or output. The same model existed in the quad/dual models. Do you know why this option is not in the duallite IBIS models? Thanks! A ctm of mine would like to get the IBIS model with LVDDR3 support on the i.MX6 DL. For mx6-duallite IBIS models for DDR3L memory (1.35V). It'd be great if the models matched the quad version. Please find the new updated IBIS file in website. http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX6DL&nodeId=018rH3ZrDRB24A&fpsp=1&tab=Design_Tools_Tab
View full article
         This document will describe how to add open JDK to i.MX yocto BSP. It will take two versions of Linux BSP as an example, one is the lower version of L4.1.15-2.0.0, the other is the latest version of L4.19.35-1.1.0. Adding openjdk-8 to L4.1.15-2.0.0(Ubuntu 16.04 LTS platform) Before adding an open JDK, you must download L4.1.15-2.0.0 BSP according to the i.MX_Yocto_Project_User's_Guide.pdf, and ensure that it can pass the compilation normally, that is to say, there is no error in the compilation. In this example, BSP is compiled using the following command. # DISTRO=fsl-imx-wayland MACHINE=imx6sxsabresd source fsl-setup-release.sh -b build-wayland # bitbake fsl-image-qt5          Then follow the steps below to add openjdk to the yocto layer:   Fetching openjdk-8 from Yocto website # cd ~/imx-release-bsp # cd sources # git clone git://git.yoctoproject.org/meta-java # cd meta-java # git checkout -b krogoth origin/krogoth  [Comment]    Yocto’s version is described in i.MX_Yocto_Project_User's_Guide.pdf 2. Modifying related configurations (1) build-wayland/conf/local.conf Add following lines to the file: # Possible provider: cacao-initial-native and jamvm-initial-native PREFERRED_PROVIDER_virtual/java-initial-native = "cacao-initial-native" # Possible provider: cacao-native and jamvm-native PREFERRED_PROVIDER_virtual/java-native = "cacao-native" # Optional since there is only one provider for now PREFERRED_PROVIDER_virtual/javac-native = "ecj-bootstrap-native" IMAGE_INSTALL_append = " openjdk-8" Save it and exit (2)build-wayland/conf/bblayers.conf Add java layer to the file, like below: BBLAYERS = " \   ${BSPDIR}/sources/poky/meta \   ${BSPDIR}/sources/poky/meta-poky \   \   ${BSPDIR}/sources/meta-openembedded/meta-oe \   ${BSPDIR}/sources/meta-openembedded/meta-multimedia \   \   ${BSPDIR}/sources/meta-fsl-arm \   ${BSPDIR}/sources/meta-fsl-arm-extra \   ${BSPDIR}/sources/meta-fsl-demos \   ${BSPDIR}/sources/meta-java \ "…… Save it and exit. 3. Build openjdk-8 # cd ~/imx-release-bsp # source setup-environment build-wayland #bitbake openjdk-8 -c fetchall          Fetch all packages related to openjdk-8. [error handling]          During downloading packages, you may encounter errors like the following. (1)Fetch fastjar-0.98.tar.gz errors          The error is caused by invalid web address, we can download it from another link, see below: http://savannah.c3sl.ufpr.br/fastjar/fastjar-0.98.tar.gz copy the link to firefox in Ubuntu platform, and it will be downloaded into ~/Downloads # cd ~/imx-release-bsp/downloads # cp ~/Downloads/ fastjar-0.98.tar.gz ./ # touch fastjar-0.98.tar.gz.done   (2)Fetch “classpath-0.93.tar.gz” error          Download it from : http://mirror.nbtelecom.com.br/gnu/classpath/classpath-0.93.tar.gz And copy it to ~/imx-release-bsp/downloads, and create a file named classpath-0.93.tar.gz.done in the directory. # cd ~/imx-release-bsp/downloads # cp ~/Downloads/ classpath-0.93.tar.gz ./ # touch classpath-0.93.tar.gz.done (3) 8 files with tar.bz2 (hotspot-Java jvm)          These similar errors are very likely to be encountered.          These errors are caused by the bad network environment. You can download these packages manually. These are Java virtual machine source packages, i.e. hotspot JVM [Solution] # mkdir ~/temp # cd temp # wget http://www.multitech.net/mlinux/sources/56b133772ec1.tar.bz2 # wget http://www.multitech.net/mlinux/sources/ac29c9c1193a.tar.bz2 # wget http://www.multitech.net/mlinux/sources/1f032000ff4b.tar.bz2 # wget http://www.multitech.net/mlinux/sources/81f2d81a48d7.tar.bz2 # wget http://www.multitech.net/mlinux/sources/0549bf2f507d.tar.bz2 # wget http://www.multitech.net/mlinux/sources/0948e61a3722.tar.bz2 # wget http://www.multitech.net/mlinux/sources/48c99b423839.tar.bz2 # wget http://www.multitech.net/mlinux/sources/bf0932d3e0f8.tar.bz2          Then create .tar.bz2.done files for each package via touch command   # touch 56b133772ec1.tar.bz2.done # touch ac29c9c1193a.tar.bz2.done # touch 1f032000ff4b.tar.bz2.done # touch 81f2d81a48d7.tar.bz2.done # touch 0549bf2f507d.tar.bz2.done # touch 0948e61a3722.tar.bz2.done # touch 48c99b423839.tar.bz2.done # touch bf0932d3e0f8.tar.bz2.done          Like below:          Then copy these files to ~/ fsl-release-bsp/downloads/ # bitbake openjdk-8 -c compile          After openjdk compilation, you will be prompted as follows:          At last , install openjdk-8 to images # bitbake fsl-image-qt5          Done: [Additional description]          The above method of adding openjdk-8 is the steps after BSP compilation. Users can also add openjdk-8 before BSP compilation, and then compile it with BSP          According to steps in i.MX_Yocto_Project_User's_Guide.pdf, After running the following two commands, users can modify bblayers.conf and local.conf directly.          For example, steps below have been validated: … … # repo sync # cd ~/fsl-release-bsp # DISTRO=fsl-imx-x11 MACHINE=imx6qsabresd source fsl-setup-release.sh -b build-x11 # gedit ./conf/bblayers.conf          Add the same contents as above. # gedit ./conf/local.conf          Add the same contents as above. # bitbake fsl-image-gui          During compilation, users may encounter some errors, which can be handled by referring to the methods described above Adding openjdk-8 to L4.19.35-1.1.0(Ubuntu 18.04 LTS Platform) In fact, the steps to add openjdk-8 to l4.19.35 are the same as those described above, and the following steps have been verified. Before adding openjdk-8, i.mx8qxp full image has been compiled with 2 commands below, so we only need to add openjdk-8 here. # DISTRO=fsl-imx-xwayland MACHINE=imx8qxpmek source fsl-setup-release.sh -b build-xwayland # bitbake imx-image-full # cd sources # git clone git://git.yoctoproject.org/meta-java # cd meta-java # git checkout -b warrior origin/warrior          Release L4.19.35_1.1.0 is released for Yocto Project 2.7 (Warrior). # cd ~/imx-release-bsp-l4.19.35 # source setup-environment build-xwayland-imx8qxpmek # gedit ./conf/bblayers.conf          Add meta-java to it.          ……            ${BSPDIR}/sources/meta-java \          ……          Save and exit. # gedit ./conf/local.conf          Add these lines to it.          # Possible provider: cacao-initial-native and jamvm-initial-native PREFERRED_PROVIDER_virtual/java-initial-native = "cacao-initial-native" # Possible provider: cacao-native and jamvm-native PREFERRED_PROVIDER_virtual/java-native = "cacao-native" # Optional since there is only one provider for now PREFERRED_PROVIDER_virtual/javac-native = "ecj-bootstrap-native" IMAGE_INSTALL_append = " openjdk-8" Save and exit.   # cd ~/imx-release-bsp-l4.19.35/build-xwayland-imx8qxpmek # bitbake openjdk-8 -c fetch # bitbake openjdk-8 -c compile [Errors] [Solution] # gedit ./ tmp/work/x86_64-linux/openjdk-8-native/172b11-r0/jdk8u-33d274a7dda0/hotspot/make/linux/Makefile Comment the following lines: ----------------------------------------- check_os_version: #ifeq ($(DISABLE_HOTSPOT_OS_VERSION_CHECK)$(EMPTY_IF_NOT_SUPPORTED),) #       $(QUIETLY) >&2 echo "*** This OS is not supported:" `uname -a`; exit 1; #endif -----------------------------------------          Then continue # cd ~/imx-release-bsp-l4.19.35/build-xwayland-imx8qxpmek # bitbake openjdk-8 -c compile [comment]          Probably similar errors will be encountered during compiling other packages, we can use the same way like above to solve it, see bellow, please! Done:          At last, install openjdk-8 to images. # bitbake imx-image-full          Installation is done. NXP TIC Team  Weidong Sun 12/31/2019
View full article
ccache is a C compiler cache. ccache can save a large amount of compilation time on recurring builds and builds restarted from a clean repository after make clean or git clean. It is well suited for e.g. u-boot and Linux compilation. Caching the host compiler Caching "native" builds is easily done by adding in the beginning of your $PATH a special directory, which contains links to ccache to override the usual compiler. On e.g. Debian this directory is readily available as /usr/lib/ccache, So you can do:   $ export PATH="/usr/lib/ccache:$PATH" Typical links found in this folder are:   c++ -> ../../bin/ccache   cc -> ../../bin/ccache   g++ -> ../../bin/ccache   gcc -> ../../bin/ccache etc... Caching the cross compiler Caching cross-compiled builds can be done in the same way as native builds, provided you create links of the form e.g. arm-linux-gnueabihf-gcc pointing to ccache. But there is an even more convenient way for those projects, which rely on a $CROSS_COMPILE environment variable (as is the case for e.g. u-boot and Linux). You can prefix the cross compiler with ccache there in e.g. the following way:   $ export CROSS_COMPILE="ccache arm-linux-gnueabihf-" Monitoring efficiency Now that your builds are cached, you might want to see how much is "spared" with this technique. ccache -s will tell you all sorts of statistics, such as:   cache directory                     /home/vstehle/.ccache   cache hit (direct)                 10852   cache hit (preprocessed)            3225   cache miss                         19000   called for link                    33267   called for preprocessing            9463   compile failed                         3   preprocessor error                     1   couldn't find the compiler           117   unsupported source language          921   unsupported compiler option         2167   no input file                      31681   files in cache                     51694   cache size                           1.3 Gbytes   max cache size                       4.0 Gbytes Here you see a somewhat typical 50%/50% hit/miss ratio. Enjoy! See Also ccache is usually supported natively by build systems, such as Buildroot or Yocto.
View full article
After upgrading Ubuntu 11.04 to 11.10, I encountered several building failures such as the following: error:"_FORTIFY_SOURCE" redefined [-Werror] To fix this building issue: 1. Following guides in Initializing a Build Environment | Android Open Source, to get build env ready for Ubuntu 11.10; 2. Edit build/core/combo/HOST_linux-x86.mk and replace:     "HOST_GLOBAL_CFLAGS += -D_FORTIFY_SOURCE=0"     with     "HOST_GLOBAL_CFLAGS += -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=0" Based on further Internet research, I found a Google Groups that summarizes all modifications to fix the building failure encountering in Ubuntu 11.10.
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343372 
View full article
1. User Case: Demo Architecture: Demo Description: A, B, C and Speaker all are i.MX6DQ SabreSD board and running Ubuntu system. A is media server which send out broadcast 30Mbps h264 video and audio stream and running iperf to send out tcp packets via best efforts lane to PC. B and C are clients to get video data only and play in screen.  Speaker is a client to receive audio data only and play to speaker. PC which install ubuntu system is used to received best efforts data from A. Demo Goal: Use Gstreamer playback 30Mbps streaming  "H264_AVC_1080p_30fps_27Mbps_mp3.avi", while running iperf TCP streaming under the following two case: 1. Running the non-CBS kernel 2. Enable the FIQ kernel Validate the Qav (Queue and Forwarding Protocol) which is developed by SW. 2. Resource: FIQ Patch: 0001-GIC-FIQ-EPIT-implement.patch 0002-set-EPIT-priority-to-highest.patch 0003-GIC-support-SMP-4-cores-of-FIQ.patch CBS &Shaper Patch: 0004-Implement-credit-base-shaper-alogrithim-to-schdule-A.patch 0005-enet-avb-CBS-SIRQ-rum-mode-pass-performance-stress-t.patch Others Patch: 0006-Fix-the-61883-sub-type-protocol-check.patch 0007-Add-hrtimer-for-the-sirq.-Talker-transmit-packets-nu.patch 0008-1.-Fix-memory-map-size-issue.patch 0009-Increase-BD-entries-to-reduce-the-full-times.patch 0010-Add-sys-interface-to-log-out-the-video-packet-number.patch 0011-Add-AVB-timestamp-support.patch 0012-GIC-support-SMP-4-cores-of-FIQ.patch Gstreamer UDPAVB Plug-in Library and Source: Library: udp/output/libgstudp.so Source: udp/* 3. Setup the Patch:       - Low level:  kernel enet driver implement CBS and traffic shaper:              1. Apply all the patches in the patch_whole.tar.gz in the attachment               2. Rebuild kernel 3.0.35: Enable "CONFIG_ENET_IMX6_AVB" to support AVB.                        Enable "CONFIG_RUN_IN_FIQ"  in kernel:            let CBS run in FIQ mode.                3. make uImage.                You can also use the uImage-avb-fig in the attachment directly.  Flash to the SD card use dd command, the user gudie refer to the  i.MX_6Dual6Quad SABRE_SD_Linux_User_Guide.pdf.                Note: the uImage_org_nonavb in the attachment is the kernel image without QAV and FIQ. - High level: use Gstreamer as the media input/output interface, encapsulation with IEEE1722 format:         Before the below action, you should already have seutp the Ubuntu Rootfs,  copied all the Freescale *.deb files that come alone with the Release BSP demo image package and copied all the MM codec *.deb files (IMX_MMCODEC_3.0.7.tar) that from Freescale offical website, the user gudie refer to the  i.MX_6Dual6Quad SABRE_SD_Linux_User_Guide.pdf. 1. Add gstreamer setup version as following: - gstreamer core version: 0.10.35 - gst-plugins-good version: 0.10.30 - gst-plugins-bad version: 0.10.11 2. Setup: - tar xvzf udp.tar.gz - cd gst-plugins-good-0.10.30 - ./configure - make - make install - cp ~/udp/* gst/udp/ - cd gst/udp - make - cp  libgstudp.so /usr/lib/gstreamer-0.10/ - gst-inspect | grep avb         //Check whether the avb plugin is installed successfully. If the three avb plugin is printed out in the terminal, the avb plugins are proved to install properly. 4. Run the Demo:       1.  Start the iperf server in PC linux machine by inputting " iperf -s -i 1&".              2.  Power on the A board, ensure the board can get the DHCP IP address, Start the iperf client on the demo board which sends outgoing Audio-Video streaming in the background. Input "iperf -c <iperf server ip> - t 6000&". If the connection is  successful, the iperf log should be able to be seen in the linux machine terminal.              3.  Power on the B and C board, inputting the following command to receive video data:            Run "./startRxVideoAVB.sh"  to start gstreamer video receive process on video display board       4.  Power on the speaker board, inputting the following command to receive audio data:             Run "./startRxAudioAVB.sh" to start gstream audio receive process on audio  playback board 5.  Inputting the following command to send video/audio data to client at the A board terminal windowns:                              Run "./startTxAVB.sh" to start the 1722 streaming traffic                                      (note: H264_AVC_1080p_30fps_27Mbps_mp3.avi located at current directory)               6.  Change to the kernel with QAV and follow the steps 1~5 above 5. Result: Without FIQ Qav,  video play at client B and C serious freeze. It takes 3 minutes to play 1min 40s h264 stream.  iperf speed over 80Mbps. With FIQ Qav, video play at client B and  C is smooth and same as without iperf in background. Iperf show speed is less than 70Mbps.  FIQ Qav correctly reserve necessary bandwidth to AV stream 6. Know issues Failed to request the IP from DHCP         [Solution]  For FIQ, after kernel up, you must run the command: echo 1 > /sys/devices/platform/imx_wfi_issue.0/enable   2.   Kernel is halted or crashed [Solution] In bootloader parameter, add 'nosmp' in bootargs_mmc.
View full article
Here we show how to generate a minimal root filesystem fairly quickly with BusyBox, for the i.MX6 sabre sd platform. This document assumes you are able to boot a Linux kernel on your platform already. See this post for details on how to do it. This implies you already have a "working" Linux development environment with some ARM cross-compilers at hand (e.g. Debian + Emdebian). busybox is so small that we will go for a ramdisk as our main root filesystem. Get busybox sources We will use git to fetch busybox sources:   $ git clone git://git.busybox.net/busybox This should create a busybox directory with all the latest sources. Note that for more stability you might want to checkout a release instead of the latest version; to do so, list the available release tags with e.g. git tag -l, and git checkout <the-desired-tag>. Compile Assuming your cross compiler is called e.g. arm-linux-gnueabihf-gcc, you can compile by doing:   $ cd busybox   $ export ARCH=arm   $ export CROSS_COMPILE=arm-linux-gnueabihf-   $ make defconfig   $ sed -i.orig 's/^#.*CONFIG_STATIC.*/CONFIG_STATIC=y/' .config   $ make   $ make install This should create an _install folder hierarchy containing binaries and links. Note that we force the build of a static binary with the sed command. Configure the root filesystem We need to add some more configuration into the _install folder before we can call it a minimal filesystem. Create some folders We need to create some mountpoints and folders:   $ mkdir _install/dev   $ mkdir _install/proc   $ mkdir _install/sys   $ mkdir -p _install/etc/init.d Add some configuration files and scripts We need to prepare the main init configuration file, _install/etc/inittab, with this contents:   ::sysinit:/etc/init.d/rcS   ::askfirst:/bin/sh   ::ctrlaltdel:/sbin/reboot   ::shutdown:/sbin/swapoff -a   ::shutdown:/bin/umount -a -r   ::restart:/sbin/init This is very close to the default behavior busybox init has with no inittab file. It just suppresses some warnings about missing tty. We need to add some more configuration to mount a few filesystems at boot for convenience. This is done with an _install/etc/fstab file containing:   proc     /proc proc     defaults 0 0   sysfs    /sys  sysfs    defaults 0 0   devtmpfs /dev  devtmpfs defaults 0 0 We also need to actually trigger the mount in the _install/etc/init.d/rcS script, which is called from the inittab. It should contain:   #!/bin/sh   mount -a And we need to make it executable:   $ chmod +x _install/etc/init.d/rcS Generate the ramdisk contents Now that we have adapted the root filesystem contents, we can generate a busybox ramdisk image for u-boot with the following commands:   $ (cd _install ; find |cpio -o -H newc |gzip -c > ../initramfs.cpio.gz)   $ mkimage -A arm -T ramdisk -d initramfs.cpio.gz uInitrd This results in a uInitrd file, suitable for u-boot. Prepare a boot script The default u-boot commands are not sufficient to boot our system, so we need to edit a boot.txt file with the following contents:   run loaduimage   run loadfdt   setenv rdaddr 0x13000000   fatload mmc ${mmcdev}:$mmcpart $rdaddr uInitrd   setenv bootargs console=${console},${baudrate} rdinit=/sbin/init   bootm $loadaddr $rdaddr $fdt_addr Then we generate a boot.scr script, which can be loaded by u-boot with:   $ mkimage -A arm -T script -d boot.txt boot.scr Put on SD card Assuming you have prepared your SD card with u-boot and Linux as explained in this post, you have a single FAT partition on your card with your kernel and dtb. Our boot script and ramdisk image should be copied alongside:   $ mount /dev/<your-sd-card-first-partition> /mnt   $ cp uInitrd boot.scr /mnt/   $ umount /mnt Your SD card first partition is typically something in /dev/sd<X>1 or /dev/mmcblk<X>p1. Note that you need write permissions on the SD card for the command to succeed, so you might need to su - as root, or use sudo, or do achmod a+w as root on the SD card device node to grant permissions to users. Boot! Your SD card is ready for booting. Insert it in the SD card slot of your i.MX6 sabre sd platform, connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data and power up the platform. Your busybox system should boot to a prompt:   ...   Freeing unused kernel memory: 292K (806d5000 - 8071e000)   Please press Enter to activate this console. After pressing enter you should have a functional busybox shell on the target. Enjoy! See also... For a more featured root filesystem you might want to try a Debian filesystem in a second SD card partition, as explained in this post, or generate your filesystem with Buildroot. If you plan to compile busybox often, you might want to use a C compiler cache; see this post.
View full article