Wireless Connectivity Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
This document describes the implementation of the Connected Home Gateway for the Internet of Things (IoT) and its controller implemented in a Smart device (tablet) running Android OS. The gateway is intended to serve as a communication bridge between WiFi/Ethernet and ZigBee Protocol, making every ZigBee-enabled device accessible and controllable from any smart device with Wi-Fi capabilities such as a smart phone or tablet. This will remove the need of having a ZigBee transceiver in every mobile device attempting to control the house appliances. In general, users will be able to: Remote control of Home Appliances using ZigBee protocol Any WiFi-enabled device could control the appliances without a ZigBee transceiver Achieve bi-directional communication between users and appliances Real system implementation would require a powerful MCU to manage all WiFi/Ethernet communication and a second MCU to manage all ZigBee communications. The Kinetis K60 and KW24 were selected among the different options available.
View full article
Sniffing is the process of capturing any information from the surrounding environment. In this process, addressing or any other information is ignored, and no interpretation is given to the received data. Freescale provides both means and hardware to create devices capable of performing this kind of operation. For example, a KW01 board can be easily turned into a Sub-GHz sniffer using Test Tool 12.2.0 which can be found at https://www.freescale.com/webapp/sps/download/license.jsp?colCode=TESTTOOL_SETUP&appType=file2&location=null&DOWNLOAD_ID=null After downloading and installing Test Tool 12.2.0 there are several easy steps to create your own sniffer for Sub-GHz bands. 1) How to download the sniffer image file onto KW01.      a) Connect KW01 to PC using the mini-usb cable      b) Connect the J-Link to the PC      c) Open Test Tool 12.2 and go to the Firmware Loaders tab      d) Select Kinetis Firmware Loader. A new tab will pop-up.      e) J-Link will appear under the J-Link devices tab.      f) Select the KW01Z128_Sniffer.srec file and press the upload button.     g) From the Development Board Option menu select KW01Z128.      h) Follow the on-screen instruction and unplug the board. Then plug it back in.      i) Close the Kinetis Firmware Loader tab and open the Protocol Analyzer Tab 2) How to use the Protocol Analyzer feature. Basics.     a) The Protocol Analyzer should automatically detect the KW01 sniffer. If not, close the tab, unplug the board, plug it back and re-open the tab. If this doesn’t work, try restarting Test Tool.     b) To start “sniffing” the desired channel, click the arrow down button from Devices: KW01 (COMx) Off and select the desired mode and channel.     c) The tab will change to ON meaning that KW01 will "sniff" on the specified channel. To select another channel, click the tab again and it will switch back to Off. Then select a new channel.      d) Regarding other configurations, please note that you can specify what decoding will be applied to the received data. Additional information: The sniffer image found in Test Tool is compiled for the 920-928MHz frequency band. Because of this, the present document will have attached to it two sniffer images, for the 863-870MHz and the 902-928MHz frequency bands. To upload a custom image perform the steps described at the beginning of this document, but instead of selecting a *.srec file from the list in Kinetis Firmware Loader click the Browse button and locate the file on disk. After selecting it, redo the steps for uploading an image file. A potential outcome: sometimes, if you load a different frequency band sniffer image, the Protocol Analyzer will display the previously used frequency band. To fix this, close Test Tool, re-open it and go to the Protocol Analyzer tab again. The new frequency band should be displayed. More information on this topic can be found in Test Tool User Guide (..\Freescale\Test Tool 12\Documentation\TTUG.pdf), under Chapter 5 (Protocol Analyzer, page 87).
View full article
This document describes how to sniff ZigBee packets to identify messages and layers from the ZigBee stack using the MC1322x USB dongle and Wireshark protocol analyzer. --------------------------------------------------------------------------------------------------------- Pre-Requisites If not done yet, download & Install Wireshark protocol analyzer http://www.wireshark.org/download.html Download the Wireshark ZigBee Utility Zip file from Sourceforge http://sourceforge.net/projects/wiresharkzigbee/ Unzip the file in a known location -------------------------------------------------------------------------------------------------------- 1. Install MC1322x dongle Plug-in MC1322xUSB dongle and wait for Windows to install the driver. If the driver was not found, steer Windows manually to the directory         C:\Program Files\Freescale\Drivers If BeeKit is not installed, be aware of the following: The 1322x USB Dongle uses the FTDI serial to USB converter, Virtual COM Port (VCP) driver for Windows, available at www.ftdichip.com/ftdrivers.htm. The FTDI web site offers drivers for other platforms including Windows® (98 through Vista x64 and CE), MAC OS (8 through X) and Linux. Download the appropriate driver and follow the instructions to complete driver installation. 2. Check COM port Once installed, the MC1322xUSB dongle should be listed in the available COM ports in Widows device manager. Verify the board’s drivers were successfully installed and take note of the COM port assigned      3. Run the ZigBee Utility Open a command console and navigate to the directory where Wireshark Zigbee utility files were unzipped. c:\<path> Then start the .exe utility and set the serial port and ZigBee channel to monitor, for instance:     4. Setting Wireshark Start Wireshark and open Capture>Options Dialog Click on “Manage Interfaces” and add a new pipe with ‘\\.\pipe\wireshark’. Save it and start capture. 5. Start sniffing
View full article
When having several ZigBee Networks in the same area, and therefore several potential parents, it may become necessary to join one of them and discard the rest. While having a mechanism to only accept joining devices when desired is the best method (like using a button to trigger the joining), it might not always be possible since the parent nodes could be commercial devices or another vendor’s product without this feature. Below are some mechanisms that could be used for this purpose. In general, when searching for suitable parents, the process is as follows: ZDO of device to join sends a MAC scan request. The MAC layer starts scan. For every beacon it receives, it sends a beacon notify indication that is processed in ParseBeaconNotifincaiton() function from AppStackImpl.c The ParseBeaconNotifincaiton() function will add the relevant information in the discovery table and for this it needs a free entry, so it calls GetFreeEntryInDiscoveryTable() function with reuse parameter as FALSE. If the table is full, it will call GetFreeEntryInDiscoveryTable() with reuse set to TRUE to literally re-use low priority entries. When the MAC scan has finished, it will send a MAC scan confirm. When this reaches ZDO, the SearchForSuitableParent() function is called. At this point, there are several approaches that could be used: Use a specific Extended PAN ID to search only for a specific parent node Use a specific PAN ID to prioritize the network’s ID Search in a specific Channel where network is supposed to be operating in All these parameters are configurable in ApplicationConf.h file of the project’s Configure Folder and used in SearchForSuitableParent() function to filter Discovery table entries. Nevertheless, those solutions are not always the best for all applications since it may require hard-coding the network’s parameters. Fortunately, BeeStack leaves all this open for any modification in case it is necessary. In brief, if the discovery table gets full with suitable parents that you DO NOT want to use, you should update the "if(reuse)" statement of the GetFreeEntryInDiscoveryTable() function to replace an entry. In other words, if you think that the desired parent is not present in the discovery table (due to its size limitation or other reason), you should update the GetFreeEntryInDiscoveryTable() function to make sure discovery table contains only devices that are of interest to your node. Please note that the criteria used to select the desired parents is totally application specific. As mentioned, it is always best having a way to trigger the joining such as a button so the rest of parents have permit join set to FALSE and therefore join only to the desired parent without having to implement custom code. Anyway, you may select the solution that meets your application’s requirements the most.
View full article
This video shows how to load the Open SDA software from PE micro to the TWR-KW2x in order to debug applications using USB port and without needing external JTAG debuggers. Required downloads: TWR-KW2x Board Support Package:Kinetis KW2x Tower System Modules|Freescale PE Micro - Open SDA: P&E Microcomputer Systems
View full article
This document is a supplement for USB MSC device bootloader revision for FRDM-KL25Z (IAR) written by Kai Liu and describes the bootloader support for FRDM-K64F. FTFE support, board specific and MCU specific code was added to the initial software. This porting work was done for connectivity purposes but it can be used as support for FRDM-K64F board. Please refer to USB-KW24D512  MSD Bootloader to find out how to use this bootloader, binary files upload and other restrictions. The bootloader has conditional jump to user application. The condition is the state of the SW2 button (PTC6). If the button is pressed (PTC6 grounded) during reset, the bootloader sequence will start, installing BOOTLOADER drive. Else if the button is released during reset, the SP and PC will be updated from address 0xC000. This means, the user application has to be designed so as to have 0xC000 application start address. If a valid SP and PC value is found at address 0xC000, the user application is launched. The bootloader application is located in the flash memory of the MK64FN1M0VLL12 microcontroller, from address 0x0000 to 0xBFFF, so the user application should not access this memory region. The bootloader software was tested under Microsoft Windows 10, Microsoft Windows 8, Microsoft Windows 7 and Ubuntu 14.04 operating systems. Attached files: USB_MSD_Bootloader.bin – boolader binary file for FRDM-K64; Pflash_1024KB_0xC000.icf – IAR linker file for user application development; Demos.7z - user application demo S record files for FRDM-K64F (got from Kinetis SDK demo list).
View full article
Hello All, I designed a ultra low low cost evaluation board (ULC-Zigbee) based in Kinetis wireless MCUs, take a look at the attached PDF for the brief description.  I was able to build three of them at ~$10USD each. The ULC-Zigbee is covered under the GNU General Public License. The required files to build the board are attached, it measures 30 x 50mm. My partner AngelC   wrote a sample code. The software basically communicates wirelessly the ULC-Zigbee board with a USB-KW24D512. An FXOS8700 is externally connected through the prototype board connector and the magnetic and acceleration values are then wirelessly transmitted to the USB stick, then the values can be printed in a HyperTerminal. The attached zip file contains the following files: File name Description ULC-Zigbee-EBV_V10.pdf Brief description of the ULC-Zigbee board MKW2x_Eagle_library.lbr  Required EAGLE CADSOFT LIBRARY ULC-Zigbee-EBV_V10.brd EAGLE v6.5 Board ULC-Zigbee-EBV_V10.sch EAGLE v6.5 Schematic ULC-Zigbee-EBV_V10_SCH.pdf ULC-Zigbee board schematic ULC-Zigbee-EBV_V10_BOM.xlsx Bill of materials ULC-Zigbee-EBV_V10_GERBER_FILES.zip Gerber files WirelessUART_MKW2x_v1.3_eCompass_TX_v1.zip ULC-Zigbee board sample software WirelessUART_MKW2x_v1.3_eCompass_RX_v1.zip USB-KW24D512 sample software     Hope it helps!   -Josh   Este documento fue generado desde la siguiente discusión:Ultra Low Cost Zigbee Evaluation Board
View full article
This document and the attached files are maintained up to date in collaboration with Dragos Musoiu. This document is a supplement for USB MSC device bootloader revision for FRDM-KL25Z (IAR) written by Kai Liu and describes the bootloader support for USB-KW24D512. How to use 1) Connect the USB-KW24D512 to the PC USB port; 2) Download the attached file ‘USB_KW24D512_MSD_Bootloader.bin’ to the flash memory of the MKW24D512 SiP following the next steps: Connect a J-Link programmer to the PC USB port (other than the one used for the USB-KW24D512 dongle); Navigate to your J-Link driver folder using a command console and type ‘jlink.exe’ followed by enter; After the apparition of the J-Link prompter, type ‘unlock kinetis’ followed by enter; Wait for the unlock command confirmation and after, type ‘device mkw24d512xxx5’ followed by enter; After the J-Link prompter appears type ‘loadbin USB_KW24D512_MSD_Bootloader.bin 0’ followed by enter; (Be sure you copied the ‘USB_KW24D512_MSD_Bootloader.bin’ file in the same directory with jlink.exe otherwise, type the command specifying the full path of the binary file); After the flashing process successfully finished type ‘exit’ followed by enter. 3) Reset or reconnect the USB-KW24D512; 4) The OS will prompt MSD device connecting and then BOOTLOADER drive will appear. The bootloader software was tested on Microsoft Windows 10, Microsoft Windows 8.1, Microsoft Windows 7, Ubuntu 14.04 and MAC operating systems. 5) Copy and paste any user application .SREC or .bin file into BOOTLOADER drive; 6) If a valid .SREC or .bin file was given, the board restarts and starts to run the user application. Please refer to the Notes section in order to create valid .SREC or .bin files. Note:            The bootloader has conditional jump to user application. The condition is the state of the SW1 button (PTC4). If the button is pressed (PTC4 grounded) during reset, the bootloader sequence will start, installing BOOTLOADER drive, as described before. Else if the button is released during reset, the SP and PC will be updated from address 0xC000. This means, the user application has to use a linker file which forces the application start address to 0xC000. If a valid SP and PC value is found at address 0xC000, the user application is launched. The bootloader application is located in the flash memory of the MKW24D512 SiP, from address 0x0000 to 0xBFFF, so the user application should not put any code in this memory region. Avoid using .SREC or .bin files having program bytes or fill patterns in the bootloader section. Attached files: USB_KW24D512_MSD_Bootloader.bin – bootloader binary file for USB-KW24D512; Pflash_512KB_0xC000.icf – IAR linker file for user application development; 802.15.4SnifferOnUSB.bin – user application demo binary file for KW24D512-USB. Be aware that the file ‘802.15.4SnifferOnUSB.srec’ is linked according to the above memory restrictions and is working only with the bootloader presented in this document.
View full article
1. Introduction of ZigBee and popular solutions in the market. 2. Introduction of Freescale ZigBee solution
View full article
MyWirelessAPP Demo Beacon(End device) code for RTS development
View full article
This project is for Kinets L MCU Brazil challenge.Actually we don´t know if the project was registered. The goal of this project is to make Bluetooth communication between an android and  Freescale Freedom development kit FRDM-KL25Z. We will show the FRDM-KL25Z accelerometer status and the internal temperature sensor on android app. The android app requires version 4.x or above. Bluetooth module is connected to UART1.The embeddec code was created on CodeWarrior and exported to Keil MDK ARM.   http://youtu.be/-waEkfIuZCw
View full article
This patch fix the issue in hdmi dongle JB4.2.2_1.1.0-GA release that wifi((STA+P2P)/AP) cann't be enabled properly. In the root directory of Android Source Code, use the following command to apply the patch: $ git apply hdmi_dongle_wifi_jb4.2.2_1.1.0.patch
View full article
Development environment Hardware: i.MX6Q SabreSD connecting rtl8188cus or rtl8192cus wifi dongle Software: FSL JB 4.2.2-1.1.0-GA release   Advantage brought by JB4.2.2 As we may know that in JB4.0.x, Wifi-Direct is exclusive to normal Wifi access AP, so means that you have to turn off  Wifi normal AP access, then turn on Wifi-Direct. But in JB4.2.x, it can support the following topologies in use scene as following: So that means you can keep p2p connection meanwhile access internet throught AP.     Feature verified 1. Wifi connection support internet surf, and DLNA. 2. Wifi-Direct can support files transmission like Gallery sharing based on Wifi-Direct Demo.apk from FSL. 3. Particial support Wifi-Display, but due to unavailability of Wifi-Display sink module, so cannot be verified fully.   Usage: untar the attached file, then "patch -p1 <" in corresponding subdirectories. It would be better to untar the file in an empty directory, so you can understand which subdirectories are newly created (ex. hardware/realtek is newly created), then within these newly created subdirectoies, you need to "git init" first, then do "patch -p1<" to adopt all newly added files and subdirectories. Original Attachment has been moved to: WiFiDirectDemo.apk.zip Original Attachment has been moved to: patch4rtl8188_8192_on_jb4_2_2-ga.tar.gz
View full article
There are two patches for HDMI Dongle JB4.2, one is remove the warning message, the other is fix to that sleep will not recover. Jack Mao
View full article