NXP Designs Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Knowledge Base Articles

  Overview The NXP ®   Feature Phone reference design is designed to implement the Type 2 Feature Phone core. Includes support for on-hook GR-30 services such as Calling Number Delivery, Calling Name Delivery, Dialable Directory Number, Call Qualifier, and Visual Message Waiting Indicator Additional support for off-hook GR-30 services, such as Calling Identity Delivery on Call Waiting and Call Waiting Deluxe The Feature Phone reference design also includes a full duplex echo-cancelling speakerphone with solid sound quality; the demo is able to originate and terminate a call in full duplex speakerphone mode A HyperTerminal will be used to display the GR-30 messages Archived content is no longer updated and is made available for historical reference only.   Features DSP56858EVM and 5685X Digital Signal Controllers Telephony Daughter Card (TDC1) Microphone AKG Acoustics Type Q400Mk3, Code 2846Z003 Directional Mono Electret condenser microphone Use with Radio Shack adaptor: Stereo -to-Mono Headphone adapter number 274-374 Amplified Speaker On-Hook Data Transmission Protocol (GR-30-CORE) - CID_T1.DSP software module Adaptive Line Echo Canceller (SR-3004) - ALEC.DSP software module Off-Hook Data Transmission Protocol (SR-3004) - CIDCW_T2.DSP software module Acoustic Echo Cancellation Keypad LCD     IDE and Build Tools CodeWarrior® Development Tools for 56800/E DSC | NXP  Design Resources https://www.nxp.com/downloads/en/schematics/TDC1LD.zip
View full article
  Overview The Altimeter Barometer Reference Design is used for directly measuring the barometric pressure, determining altitude and making simple weather predictions. The barometer pressure readings are achieved using the compensated MPX2102A pressure sensor, a HCXX series of Flash microcontroller unit (MCU), and an LCD display. This reference design enables the user to evaluate a pressure sensor for barometer, personal weather station and altimeter applications. This design can be used for altimetry features in wrist watches, cell phones, GPS systems and other electronic devices. In addition, many systems require barometric pressure data to correct system response errors. This application note describes the reliability and accuracy that our sensors can provide in a barometer or altimeter system. Archived content is no longer updated and is made available for historical reference only.   Features Demonstrates barometric pressure and altitude Pressure Sensor: MPXM2102A MPAK Package Sensitivity: 0.4 mV / kPa Pressure Rating: 100kPa (Max) Microprocessor: MC68HC908QT4 4.0K Bytes of in-application reprogrammable Flash and 128 Bytes of RAM High performance, easy to use, HC08 CPU 4 Channel 8-bit analog to digital converter 8-pin DIP or SOIC packages       Design Resources
View full article
  Overview NXP ® 's wireless charging reference design uses inductive charging technology to charge high-capacity, multi-cell Li-Ion battery packs. The reference design is capable of charging four battery packs simultaneously, using a single NXP digital signal controller. The reference design consists of two main components: a transmitter that sends the requested power level to the battery packs, and a receiver embedded in the battery packs. The receiver provides a controlled charge to the battery by implementing a charging algorithm. Each transmitter channel adjusts its energy transfer independently by responding to commands from the receiver embedded in the battery pack. The intelligent charging method is software-controlled and has the ability to dynamically adjust the power transfer. Archived content is no longer updated and is made available for historical reference only.   Features 80% transfer efficiency Four charging stations to charge four battery packs simultaneously Supports Qi communications protocol Overtemp, overcurrent and overvoltage protection    
View full article
  Overview The Water Level Reference design continuously monitors water level and water flow using the temperature compensated MPXM2010GS pressure sensor in the low cost MPAK package, a dual op–amp, and the MC68HC908QT4, 8–pin microcontroller. This system uses very few components, reducing the overall system cost. This allows for a solution to compete with a mechanical switch for water level detection but also offer additional applications such as monitoring water flow for leak detection, and the other applications for smart washing machines. Archived content is no longer updated and is made available for historical reference only.   Features Demonstrate Water Level Monitor plus additional features such as water flow monitoring and leak Pressure Sensor - MPXM2010 MPAK Package Sensitivity 2.5 mV / kPa Pressure Rating 10kPa (Max) Microprocessor MC68HC908QT4 40K Bytes of in-application reprogrammable Flash and 128 Bytes of RAM High performance, easy to use, HC08 CPU 4 Channel 8-bit analog to digital converter 8-pin DIP or SOIC packages Design Considerations Media Isolate pressure sensor from water by using a head tube Accuracy To prevent overflow and control consumption of water Auto-zeroing concept can eliminate offset errors Tank/tub diameter is irrelevant, the important part is to have an accuracte look up table to correlate water height versus pressure     Printed Circuit Boards and Schematics RD1950MPXM2010SCHEM RD1950MPXM2010SCHEMATIC RD1950MPXM2010DGRBR
View full article
  Overview The Point of Sale reference design demonstrates how the control, security, and connectivity features found on the NXP ®   MCF5329 ColdFire ®   MPU and MCS908QG8 MCU work together to create a secure Industrial Point of Sale System. Complete with an Open Source Embedded Linux® Software Solution, the Point of Sale Reference Design serves as a reference for any industrial design that requires flexible connectivity options, secure communication, or a human interface at a low cost and with a fast development cycle. Archived content is no longer updated and is made available for historical reference only.   Features The Point of Sale Reference Design was designed with the following considerations: Low system cost Easy and intuitive graphical user interface Multiple connectivity solutions to accommodate various POS system connectivity requirements Secure networking communications, transactions, and memory accesses Fast development cycle The Industrial Point of Sale Reference Design also features an Open Source Software Solution: µCLinux Operating System running on the MCF5329 Microprocessor NanoX Graphical User Interface (GUI) Configuration Tool running in the µCLinux environment Communication protocol for secure ethernet transactions MySQL Server Database used to store/access sales transactions       Code Generation Tools Model-Based Design Toolbox Printed Circuit Boards and Schematics Point of Sale Reference Design Schematics Point of Sale Gerber Files (Reference Design)
View full article
  Overview Archived content is no longer updated and is made available for historical reference only. The QorIQ ®   P1020EWLAN access point/router is a complete production-ready, bill of materials optimized solution that can support single- or dual-radio 802.11 a/b/g/n/ac devices through MiniPCI or Mini PCI Express ®   interfaces. IEEE ®   802.11N WLAN radios capable of supporting wireless data rates up to 300 Mbps per and the P1020 communication processor is ideal to maximize performance while meeting power and cost budgets Can be powered over a single Ethernet cable in 3 x 3 MIMO mode using a single 802.3af Power over Ethernet (PoE) link Provides complete data and control path processing needs for multiple radio solutions and excellent throughput with best-in-class performance/watt   Features P1020 in 45nm SOI operating at 533-800MHz dual core e500 processor with 256KB L2 cache with ECC 256MB to 512MB DDR3 SDRAM 4 FXS ports 1 FXO port 1 GbE RGMII port 1 GbE SGMII port 1 GbE port connected to RGMII 5-port switch 2 mini-USB 2.0 ports 1 mini-PCI Express connector 1 PCI Express VortiQa ®   software with Stateful Packet Inspection Firewall and NAT - performance optimized IPsec Virtual Private Network (VPN) with Quality of Service (QoS) and Traffic Management (TM) D2 Technologies optimized voice G.711-Alaw G.711-MuLaw G.729AB G.726 Voice Compression G.168 Echo Cancellation Advanced telephony Full Distributed Unicast Conferencing Call forwarding Call Waiting/ Caller ID. IDE and Build Tools CodeWarrior Development Suites for Networked Applications v11.4.0 Design Resources
View full article
  Overview The NXP ®   Smart Application Blueprint for Rapid Engineering (SABRE) series of market-focused reference designs delivers the SABRE platform for eReaders based on the i.MX508 processor. The i.MX508 is the first SoC designed specifically for eReaders with a high-performance Arm® Cortex®-A8 CPU and integrated display controller certified by E Ink® for Electronic Paper Display (EPD) panels The SABRE platform provides a reference design for EPD display, touch control, audio playback as well as the ability to add WLAN, 3G modem or Bluetooth® The platform was designed to facilitate software development with faster time to market through support of both Linux® and Android™ operating systems Archived content is no longer updated and is made available for historical reference only.   Features CPU Complex Up to 800 MHz Arm Cortex-A8 32 KB instruction and data caches Unified 256 KB L2 cache NEON SIMD media accelerator Vector floating point coprocessor Multimedia OpenVG™ 1.1 hardware accelerator 32-bit primary display support up to SXGA+ resolution 16-bit secondary display support EPD Controller supporting beyond 2048 × 1536 at 106 Hz refresh (or 4096 × 4096 at 20 Hz) Pixel Processing Pipeline (PxP) supporting CSC, Combine, Rotate, Gamma Mapping Display 6”Electronic Paper Display Panel daughter card powered by E-Ink External Memory Interface Up to 2 GB LP-DDR2, DDR2 and LP-DDR1(mDDR), 16/32-bit SLC/MLC NAND flash, 8/16-bit with 32-bit ECC Advanced Power Management Multiple independent power domains State Retention Power Gating (SRPG) Dynamic voltage and frequency scaling (DVFS) Connectivity High-Speed USB 2.0 OTG with PHY High-Speed USB 2.0 Host with PHY Controllers Wide array of serial interfaces, including SDIO, SPI, I2C and UART I2S audio interface 10/100 Ethernet controller   Design Resources  
View full article
  Overview   The Freescale Airbag Reference Platform (ARP) is an application demonstrator system which provides an airbag Electronic Control Unit (ECU) implementation example using complete Freescale standard products for the growing automotive safety segment. The GUI firmware does not constitute a true airbag application but is intended to demonstrate features and capabilities of Freescale's standard products aimed at the airbag market.     Features   Device Description Features MPC560xP|32-bit MCU|Chassis-Safety | NXP  Qorivva 32-bit Microcontroller Scalable MCU family for safety applications e200z0 Power Architecture 32-bit core up to 64 MHz Scalable memory, up to 512 KB flash MC33789 | Airbag Power Supply and PSI5 Sensor Interface | NXP  Airbag System Basis Chip (PSI5) Power supply for complete ECU Up to four Satellite Sensor interfaces (PSI5) Up to nine configurable switch input monitors for simple switch, resistive and Hall-effect sensor interface Safing block and watchdog LIN 2.1 physical layer interface MMA68xx ECU Local X/Y Accelerometer ±20 g to ±120 g full-scale range, independently specified for each axis SPI-compatible serial interface 10-bit digital signed or unsigned SPI data output Independent programmable arming functions for each axis 12 low-pass filter options, ranging from 50 Hz to 1000 Hz MC33797 | Four Channel Squib Driver IC | NXP  Four Channel Squib Driver Four channel high-side and low-side 2.0 A FET switches Externally adjustable FET current limiting Adjustable current limit range: 0.8 to 2.0 A Diagnostics for high-side safing sensor status Resistance and voltage diagnostics for squibs 8-bit SPI for diagnostics and FET switch activation MC33901 High Speed CAN Physical Layer ISO11898-2 and -5 compatible Standby mode with remote CAN wake-up on some versions Very low current consumption in standby mode, typ. 8 μA Excellent EMC performance supports CAN FD up to 2 Mbps MMA52xx MMA51xx High G Collision Satellite Sensor ±60 g to ±480 g full-scale range PSI5 Version 1.3 Compatible (PSI5-P10P-500/3L) Selectable 400 Hz, 3 pole, or 4 pole low-pass Filter X-axis (MMA52xx) and Z-axis (MMA51xx) available
View full article
  Overview The USB Type-C allows multi-function signaling over the same connector. Our active cable application supports the connectivity of data, video, security, and power over a single connector. The active cables system for Type-C supports up to 10 Gbps. The MCU provides fundamental signal processing and management duties. It communicates with both the signal conditioner and USB PD PHY to organize signal traffic and power flow. Interactive Block Diagram Recommended Products Category Products MCU Kinetis® K Series: High-Performance Microcontrollers (MCUs) based on Arm® Cortex®-M4 Core | NXP    LPC800 Series: Low-Cost Microcontrollers (MCUs) based on Arm® Cortex®-M0+ Cores | NXP  Authentication A1006 | Secure Authenticator IC: Embedded Security Platform | NXP  Signal Conditioners SuperSpeed USB 3.0 redriver | NXP    PTN36043A: USB Type-C SuperSpeed active switch | NXP  USB PD PHY PTN5100 | NXP    PTN5100D | NXP    PTN5150 | NXP    Featured Videos Link NXP USB Type C | NXP  USB Type C Shield Board | NXP  NXP® End to End Secure USB Type-C Solution | NXP  Documentation Link Features Paving The Way for USB Type-C Connectors  Delivering data, video, security, and power in one small, easy-to-insert connector, the new USB Type-C connector. PTN5110N PD PHY application programming guide  PTN5110N is a 1-port TCPC (Type-C Port controller) compliant USB Power Delivery (PD) PHY IC   Training Link USB Type-C Overview - Part 1| Introduction to USB Type-C | NXP  Authentication for USB Type-C - Part 1 | Introduction to NXP Identification & Security | NXP  NXP USB Type-C Solution - Part 1| Overview of NXP Secure Interfaces & Power Solutions | NXP    Community Links Link Other NXP Products  Secure Authentication  Introduction to USB Type-C and Type-C Solutions from NXP  USB Type-C Overview  MHW-N1910 Authentication for USB Type-C 
View full article
  Overview The IoT Low Power Sensor Node reference design is a compact form factor, open source design. It enables low power nodes based on IEEE 802.15.4 protocols such as Thread and ZigBee to communicate data to a wireless sensor network. NXP supplements the Kinetis KW2xD with tools and software that include hardware evaluation and development boards, software development IDE and demo applications and drivers.   Features   MKW24D512 802.15.4 Kinetis MCU Full IEEE 802.15.4 compliant wireless node for Thread network Reference design area with small footprint, low-cost RF node Integrated PCB meander horizontal antenna 2 Interrupt push button switches (LLWU) 1 FXOS87000CQ Combo sensor   Block Diagram Board Design Resources
View full article
Overview The 3-phase PMSM Vector Control using Quadrature Encoder on based on Kinetis® K40 MCUs reference design demonstrates the ability of the Kinetis K40 Arm® Cortex®-M4 MCU to drive the advanced motor control application. Targeted at the NXP® Tower® rapid prototyping system as a hardware development platform. Together with available embedded source code, you can quickly build own industrial drive application. For the successful execution of the vector control algorithm, the information on the motor shaft position is critical. The quadrature encoder position information is known in the entire motor speed range, allowing the motor start with full torque at zero speed. Features Vector control of the PMSM using the quadrature encoder as a position sensor Targeted at the Tower ®   rapid prototyping system (K40 tower board, Tower 3-phase low voltage power stage) Vector control with a speed closed loop Rotation in both directions Application speed range from 0% to 100% of nominal speed (no field weakening) Operation via the user buttons on the Kinetis ®   K40 Tower board or via FreeMASTER software Block Diagram Design Resources
View full article
Overview The LCD reference design is developed using the Kinetis KL28Z through the standalone peripheral module FlexIO. The polling method is used to copy data from SRAM or flash to FlexIO's shifter buffer. Image Kinetis board is powered by an Arm ®   Cortex ® -M0, providing up to 96 MHz CPU performance besides supporting ultra-low power. KL28Z's FlexIO emulates 8080 interface, and drives a 320x240 TFT LCD module. DAM or displaying applications, such as HMI, can be built based on this demo. The refresh rate is up to 128 fps with 16-bit width data bus and 48MHz core clock. Features Features the Kinetis KL2828Z512 Board, the interaction between a LCD display by FlexIO, a highly configurable module capable of emulating a wide range of different communication protocols. The important feature of this peripheral is that it enables the user to build their own peripheral directly in the MCU. Developed using Kinetis Software Development Kit (SDK), comprehensive software support for Kinetis MCUs and drivers for each MCU peripheral, middleware, real-time OS and example applications designed to simplify and accelerate application development on Kinetis MCUs. Block Diagram Board Design Resources
View full article
Overview The Bluetooth® Low Energy heart rate monitor reference design demonstrates the implementation of a wireless electrocardiogram (ECG) acquisition system. It features the Kinetis® KW40Z system on chip (SoC) which includes an Arm® Cortex® M0+ processor together with a 2.4 GHz radio for Bluetooth Low Energy and 802.15.4. The ECG signal is obtained from the finger tips and processed by the Kinetis KW40Z SoC. Then, the user’s heart rate is calculated and transmitted to a smartphone application using Bluetooth Low Energy. The reference design can be powered by a Li-Ion coin-cell battery. Due to the low-power features of Kinetis KW40Z MCU, a 3.6V 200mA/h Li-Ion coin-cell rechargeable battery can provide the power of up to 40 hours of continuous use. The NXP® MC34671 is in used as a battery charger solution for the device. Features Includes the NXP ®   ultra-low-power Kinetis ®   KW40Z SoC Bluetooth Low Energy/ZigBee platform. The low-power features of this solution allow up to 40 hours of continuous operation using a small coin-cell battery. Fully compliant Bluetooth v4.1 Low Energy Differential input/output port used with external balun for single port operation Block Diagram Board Design Resources
View full article
Overview NXP® and Tongji University jointly developed the anti-pinch window lift reference design featuring the MagniV® S12VR MCU, ideal for the development of power windows and sun roof systems. Includes hardware for real door/window in-vehicle applications, as well as software including anti-pinch algorithms and low-level S12VR drivers Aimed at reducing time to market, this design leverages unique features of the MagniV S12VR MCU Reduces unnecessary external components, lowers the total bill of material (BOM), improves system quality and saves space in automotive applications through a smaller PCB Features Window manual/automatic up/down, automatic up/down with stop function Anti-pinch in both manual/automatic mode, anti-pinch region and force can be adjusted Stuck detection out of anti-pinch region, motor overload protection Soft stop when window is close to the top/bottom Fault diagnosis, indicating low voltage, over voltage/current/temperature etc. Low power mode (leveraging S12VR low power mode) to reduce power consumption Self learning, calibration by updating the window/motor parameters stored in EEPROM Use hall sensor as well as current sense to judge anti-pinch in algorithm Easy-to-control Graphics User Interface (GUI), set the parameters and get the status Window lift can be controlled either by multiple LIN salve nodes or LIN master node (through GUI) Able to comply with relevant content in US Federal Motor Vehicle Safety Standard (FMVSS No. 118) Block Diagram Design Resources
View full article
Overview The Sub-GHz Remote Control Dimmer reference design based on the MKW01Z128 MCU operates in a custom IEEE 802.15.4 star network for home automation applications. Users can control various RGB bulbs connected to a network using the KW01-RCD-RD board as a remote control. Controlled devices are USB-KW019032 boards, and each board simulates an RGB bulb in a GUI. Features Low-cost MKW01Z128 sub-1GHz wireless node solution with an FSK, GFSK, MSK or OOK modulation-capable transceiver Reference design area with small footprint, low-cost RF node Unbalanced input/output port Flexible RF-Front End for different bands operation Programmable output power from -18 dBm to +13 dBm in 1dB steps (RFIO output) Integrated dual band chip antenna for 800MHz and 900MHz ISM bands Micro-miniature coaxial connector (MMCX) for conducted RF measurements Block Diagram Board Design Resources
View full article
Overview The Occupancy Sensor Node reference design is a compact form factor, open source design. It enables low power nodes based on IEEE 802.15.4 protocols such as Thread and ZigBee to communicate data to a wireless sensor network. NXP supplements the Kinetis KW2xD with tools and software that include hardware evaluation and development boards, software development IDE and demo applications and drivers. Features MKW24D512 802.15.4 Kinetis MCU Full IEEE 802.15.4 compliant wireless node for Thread network Integrated PCB meander horizontal antenna 2 Interrupt push button switches (LLWU) 1 FXOS87000CQ Combo sensor 1 Coin cell battery holder 1 EEPROM 1 Battery charger Block Diagram Board Design Resources
View full article
Overview The NXP Quick Charge 4+ power bank with 15-watt Qi-certified wireless power output supports all of the latest wired and wireless technologies. Equipped with Qualcomm™ Quick Charge 4+ technology, our power bank provides lightning-fast simultaneous multichannel charging of smartphones, watches, tablets, 2-in-1 products, notebooks and other devices featuring Qualcomm Snapdragon™ mobile platforms and processors. A mere 5 minutes of charging on the NXP power bank delivers 5 hours of battery life. New Power Delivery (PD 3.0) technology combines with a programmable power supply (PPS) in the NXP power bank to support Quick Charge 4+ devices and provide backward compatibility with Quick Charge 2.0 and 3.0 technologies. NXP power bank system software integration also includes wireless power and battery management, PD stacks and more programmable APIs for a fully customizable application. This new power solution leverages the many advantages and standards of USB-C with dual-way USB power delivery for input and output with Quick Charge. Anti-counterfeit and OEM-specific authentication, as well as accurate voltage, current and temperature protection deliver enhanced safety and security. Features Dual-way USB Type-C supports input & output Quick Charge for input and output, PD+PPS, QC2, QC3,QC4 2S battery supported (capability~10,000 mAh), output > 50 W Integrated wireless 15W transmitter supports fast charging for Samsung ®   and Apple ®   devices Digital control buck-boost converter One control IC controls buck-boost converter, charge, Qualcomm algorithm, PD communication and wireless power management Board
View full article
Overview This drive application allows vector control of an AC Induction Motor (ACIM) running in a closed-speed loop without a speed/position sensor at a low cost and serves as an example of AC induction vector control drive design using an NXP ®   56F8013 with Processor Expert ®   software support. ACIM is ideal for appliance and industrial applications This design uses sensorless FOC to control an ACIM using the 56F8013 device, which can accommodate the sensorless FOC algorithm The motor control system is flexible enough to implement complex motion protocols while it drives a variable load. The system illustrates the features of the 56F8013 in motor control Features General: The motor control algorithm employs Stator-Flux-Oriented Control (SFOC) Power stage switches are controlled by Space Vector Pulse Width Modulation (SVPWM) No position information devices or stator flux measurement are used, a sensorless speed method is employed The motor is capable of forward and reverse rotation and has a speed range from 50rpm to 3000rpm The user controls motion profiles, rotation direction, and speed. The RS-232 communication supports further R&D by enabling the easy tuning of control parameters The motor drive system is designed to create minimal acoustic noise Active power factor correction which reduces the negative effects of the load on the power grid in conducted noise and imaginary power Design is low cost General Benefits: Improved End System Performance Energy savings Quieter operation Improved EMI performance System Cost savings Enhanced Reliability Performance: Input voltage: 85 ~265VAC Input frequency: 45 ~65HZ Rating bus voltage: 350V Rating output power: 500W Switch frequency of PFC switch: 100KHZ Switch frequency of inverter: 10KHZ Power factor: >95% Efficiency: >90% Communications: RS232 port for communication with optoisolation Visual Interface: Multi-segment LED indicators Block Diagram Board Design Resources
View full article
Overview NXP brings a broad portfolio of proven PowerQUICC ®   network communications products, firmware and reference designs that support multiple network interfaces. These reference designs have the flexibility to integrate new features and are adaptable across product lines to protect your investment and maintain an edge over the competition. The NXP ®   MPC8323E-RDB is a turnkey hardware/software reference platform designed to rapidly provide the core elements of tomorrow's multiservice gateway products. Built on Power Architecture technology, the MPC8323E-RDB leverages the processing power of the MPC8323E PowerQUICC II Pro integrated communications processor. Features MPC8323E Integrated Multiservice Gateway features: Flexible WAN interfaces RJ45 100BT Ethernet and connectors for ADSL2+/VDSL2, WiMAX IPv4 Router with VPN capability RJ45 100BT Ethernet and connectors for ADSL2+/VDSL2, WiMAX Up to 640 DMIPS e300 CPU QUICC Engine ®   technology acceleration, 200 MHz Bridging/Routing with NAP/NAPT Firewall support (ACL) QoS for IPTV, VoIP and high-speed data VPN termination and pass-through Board Interfaces: Flexible network interfaces 10/100 Ethernet ADSL2+/VDSL2 WiMAX FXS ports (2) for analog phones 4-port 10/100 Ethernet LAN Two USB 2.0 host (480 Mbps) type A MiniPCI slots (2) Development Environment Our well established vertical ecosystem provides customers with the exact development flow they desire. The MPC8323E-RDB is kitted with: Encased CPE form factor board Linux ®   2.6 (LTIB) Design Resources
View full article
Overview The NXP ®   S12G automotive HVAC platform reference solution uses the scalable S12G 16-bit MCU family with MC33905, MC33932 and MC33937 analog devices to drive stepper, DC and BLDC motors and provide a feature-rich solution for automotive HVAC applications. Consists of a central control board with (HMI, a motor control board, flap and blower motors Enables basic functions of an auto HVAC using temperature, light, humidity and air quality sensing interfaces with configurable automatic climate control software algorithm to efficiently control vehicle climate Reduces overall design effort, shortens time to market and can be tailored for both 12V and 24V systems Features Three types of motor control sensorless BLDC DC stepper motor Automatic climate control Supports multiple temperature zones Ultra low power mode, can be woken up by HMI or LIN CAN bus CAN and LIN communication interfaces 3x3 matrix keypad and two encoder knob inputs 4x37 segment LCD and adjustable backlighting Sensor interfaces for temperature, light, humidity and air quality available Two logic relay interfaces to compressor defrost module Real-time clock and date display, adjustment for calendar Extensible with touch keyboard or touchscreen board Suitable for both 12 volt and 24 volt HVAC systems Block Diagram Design Resources
View full article