NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Labels

Discussions

Sort by:
Demo This demo showcases an OpenWRT based Thread Border router running on i.MX6UL and the various options to configure and use routing, firewall and out of band commissioning for Thread networks in combination with WiFi, Ethernet and NFC. OpenWRT is an open source Linux distribution for embedded devices specifically designed for residential gateways and routers. When enhanced with the Kinetis Thread protocol it offers the perfect solutions for creating a Linux based Thread Border Router Large and dense mesh network consisting in 64+ Thread nodes Each node is router capable, network decides dynamically which nodes become active routers Multiple application functionality run in parallel: Device addressing and identification Lighting demonstration with multicast Occupancy sensing demonstration Border Router with Network management web GUI   Features: Application layer communication based on generic CoAP framework CoAP messaging aligned with current ZigBee or OIC frameworks Kinetis KW2xD and Kinetis KW41 ARM Cortex-M4/M0+ MCUs with large on-board memory (up to 512KB flash/128 KB RAM) enable multiple applications to run on a common Thread IP network fabric. 1 i.MX6UL ARM Cortex-A7 with Kinetis KW2xD Linux Border Router used for interfacing with network management GUI Network management and interoperable Thread diagnostics framework used to monitor node state Nodes are enabled for OTA Updates _____________________________________________________________________________________________ Featured NXP Products: Product Link i.MX6UltraLite Evaluation Kit i.MX6UltraLite Evaluation Kit | NXP  Freedom Development Platform for Kinetis® KW2x MCUs FRDM-KW24D512|Freedom Development Platform|Kinetis | NXP  _____________________________________________________________________________________________
View full article
This MQX demo re-uses the standard MQX web_hvac demo with the GT202 Wi-Fi module setup in SoftAP mode. This example shows MQX RTCS, DHCP server, and web server running in the Kinetis MCU with the Atheros drivers. The client will be able to connect to the Soft Access Point, receive an IP address, and then use a web browser to view the web_hvac web pages.  The User Guide is included in the ZIP file.
View full article
Demo Owner: Derek Snell   This demo combines several solutions from NXP and our partners. The demo is a thermostat application, using the Kinetis family as a communication gateway between a ZigBee network and connecting to the cloud. The demo runs on the MQX Real-Time Operating System (RTOS). It also uses the NXP PEG graphics library for the user interface displayed on an LCD. The ZigBee communication uses NXP’s BeeStack ZigBee stack, and connects with an NXP wireless development board programmed as a remote temperature sensor. The demo will also connect with an off-the-shelf ZigBee light bulb, and wirelessly controls it. The demo network connection is setup for Wi-Fi, using a Wi-Fi module from Qualcomm. The cloud connection allows the thermostat to be monitored and controlled remotely with mobile devices, and uses a solution provided by deviceCloud.io.     NXP Products Product Link Shield Adapter Module for the Tower System Shield Adapter Module for the Tower System | NXP  Kinetis® KW2x Tower System Modules TWR-KW2x|Tower System Board|Kinetis® MCUs | NXP  Kinetis K70 120 MHz Tower System Module TWR-K70F120M|Tower System Board|Kinetis MCUs | NXP  Serial (USB, Ethernet, CAN, RS232/485) Tower System Module Serial (USB, Ethernet, CAN, RS232/485) Tower System Module | NXP  Graphical LCD Tower System Module with RGB Interface Graphical LCD Tower Module with RGB Interface | NXP    Design Resources Getting Started Guide Development Tools Thermostat Demo Software Firmware updated to v1.0 on 9/9/14      - DCIO Cloud agent now uses SSL from WolfSSL.  This improves WebSocket connections to cloud server through some protected networks. Firmware updated to v0.8 on 7/15/14      - Updated to support latest GT202 shield hardware from Qualcomm.  Rev 1.3 and newer boards changed pinout of CHIP_PWD signal. Firmware updated to v0.7 on 6/20/14      - Updated to use new SNTP server.  Previous server stopped responding and prevented cloud connection. Getting Started guide updated to v0.4 on 7/15/14
View full article
Demo NXP has released the 1500 W MRF1K50H and MRF1K50N. The industry’s highest power transistors for ISM, FM broadcast and sub-GHz aerospace applications. These are pin-compatible so can be situated on the same PCB as existing solutions on the market Demo / product features MRF1K50H 1.5 kW LDMOS Transistor 1–500 MHz, 1500 W CW 74% efficiency 23.5 dB gain Extremely rugged  (65:1 VSWR) MRF1K50N 1.5 kW LDMOS Transistor 1–500 MHz, 1500 W CW 73% efficiency 23 dB gain 30% lower thermal resistance compared to ceramic package Extremely rugged  (> 65:1 VSWR) NXP Recommends MRF1K50H MRF1K50N
View full article
  Overview With the expansion of IoT technologies, it is required to count with special devices that allow, to the users, to count with the necessary tools to develop IoT-related projects in order to acquire an edge that allows improvement and optimization in the execution of any task. Use Cases IoT Gateway / Communication HUB devices can be used to work with: Cloud Services Network commissioning Encrypted Data Storage Block Diagram Product Category MCU Product URL LPC540XX: Power-Efficient Microcontrollers (MCUs) with Advanced Peripherals Based on Arm® Cortex®-M4 Core  Product Description Offering flashless design and security integration, the LPC540xx family of MCUs combines a 180 MHz Arm® Cortex®-M4 core with a power-efficient and unique architecture, advanced HMI and flexible communication peripherals for real-time performance in the next-generation IoT.   Category NFC Product URL CLRC663 plus family: High-performance NFC frontends  Product Description If you need high NFC performance or the lowest power consumption, use this remarkably efficient yet highly flexible frontend family to push your design further.   Category Secure Product URL A71CH: Plug and Trust - The fast, easy way to deploy secure IoT connections  Product Description A71CH is a ready-to-use secure element for IoT devices providing a root of trust at the IC level and delivers, chip-to-cloud security right out of the box, so you can safely connect to IoT clouds and services, including AWS, IBM Watson IoT™ Platform, and Google Cloud™ IoT Core without writing security code or exposing keys.   Category Wireless Product URL JN5169: ZigBee and IEEE802.15.4 wireless microcontroller with 512 kB Flash, 32 kB RAM  Product Description The JN5169 is an ultra low power, high performance wireless microcontroller suitable for ZigBee applications.
View full article
  Overview NXP has a broad portfolio of software and processors for security. Regarding software, NXP has complete Turnkey solutions or optimized software components; Regarding processors, NXP has scalable solution from 1xA53 to 16xA72. LS1043A is a good candidate for Low-end UTM, it comes with the option for 5 Gbps single pass cryptographic offload and 10 Gbps data path parse, classification and distribution which helps in delivering flows to cores for additional security processing. Use Cases Network security is a large, growing market. UTM Key System Features are as following: Enterprise FW features Antivirus Content filtering Spam filtering Block Diagram Products Category MPU Product URL Layerscape LS1043A Reference Design Board  Product Description The LS1043A reference design board (RDB) is a computing, evaluation, and development platform that supports the Layerscape LS1043A architecture processor.   Category Wi-Fi Product URL 88W8997: 2.4/5 GHz Dual-Band 2x2 Wi-Fi® 5 (802.11ac) + Bluetooth® 5 Solution  Product Description The 88W8997 is the industry’s first 28nm, 802.11ac wave-2, 2x2 MU-MIMO combo solution with full support for Bluetooth 5.   Category Temperature Sensor Product URL SA56004X: SMBus-Compatible, 8-Pin, Remote/Local Digital Temperature Sensor  Product Description The NXP Semiconductors SA56004X is an SMBus compatible, 11-bit remote/local digital temperature sensor with over-temperature alarms.   Category Power Management Product URL MC34VR500: Multi-Output DC/DC Regulator  Product Description The NXP® MC34VR500 power management solution for network processor systems is a high-efficiency, quad buck regulator with up to 4.5 A output and five user-programmable LDOs.   Category RTC Product URL PCF85063TP: Tiny Real-Time Clock/calendar  Product Description The PCF85063TP is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption. An offset register allows fine-tuning of the clock.   Category Transceiver Product URL 1 NTS0101: Dual supply translating transceiver; open drain; auto direction sensing  Product Description 1 The NTS0101 is a 1-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation. Product URL 2 NTS0302JK: 2-bit dual supply translating transceiver; open drain; auto direction sensing  Product Description 2 The NTS0302 is a 2-bit, dual supply translating transceiver family with auto direction sensing, that enables bidirectional voltage level translation. Product URL 3 NTS0304E: 4-bit dual supply translating transceiver; open drain; auto-direction sensing  Product Description 3 The NTS0304E is a 4-bit, dual supply translating transceiver family with auto-direction sensing, that enables bidirectional voltage level translation.
View full article
This demo consists of the Pico 6UL evaluation SOM and Hobbit carrier board from TechNexion running Brillo OS and the Weave application protocol.  An air sensor module from MicroElecronica is attached to the board via the MicroE Clicks expansion header.  The Air Quality sensor module monitors the surrounding environment and an alert is triggered if the quality of the air falls below a predetermined level.  The data is transferred from the board to an external device utilizing the weave protocol that is present on both the Pico6UL and the corresponding android device. The alert is shown via an app on android build on the Weave API.   Features:   Hardware: 1)      Pico i.MX6UL SOM and Hobbit carrier board from TechNexion 2)      Air Quality Click from Mikore http://www.mikroe.com/click/air-quality/       3)       An Android based tablet   Software: 1)      Brillo OS 2)      Weave application protocol 3)      APK file showing UX based on Weave API   _________________________________________________________________________________________________________________   Featured Products: Hardware partners page Google Brillo developers portal Weave
View full article
Teensy Prop Shield : Motion activated Light This demo shows a basic gesture controlled light sequence using NXP motion sensors available in the Teensy Prop Shield LED lights can be found on the following link: https://www.adafruit.com/product/2238 <script src="https://players.brightcove.net/6153537070001/default_default/index.min.js"></script>(view in My Videos) Features The Teensy Prop Shield is an add-on sensor shield board for the Teensy 3.1 which is an USB based microcontroller development platform. The Teensy 3.1 has a 32 bit ARM Cortex M4 processor from NXP -MK20DX256. The board can be programmed using Arduino IDE + Teensyduino plugin. The prop shield consists of the following devices: Motion Sensors - Allows motion interactive light & sound. Audio Amplifier - Clear quality audio output to a small speaker. Fast LED Driver - Drive APA102 / Dotstar LEDs for colorful lighting with rapid response. Flash Memory - 8 Mbyte storage for images, sound clips, and data logging\ Featured NXP products FXOS8700CQ - 6 Axis Linear Accelerometer & Magnetometer FXAS21002C   - 3 Axis Digital Angular Rate Gyroscope MPL3115A2     - Precision Pressure/Altitude & Temperature sensor MK20DX256   - 32 bit ARM Cortex M4 processor Demo Setup: Wiring[1] : Software: After setup, Download Arduino IDE and Teensyduino add on and follow the instructions as defined in the page below http://www.pjrc.com/teensy/td_download.html Note: Arduino version used for this demo:  1.6.8. Run the “Teensy_RGB_Led_Strip.ino” sketch attached. Sample Code: // Full orientation sensing using NXP's advanced sensor fusion algorithm.  //  // You *must* perform a magnetic calibration before this code will work.  //  // To view this data, use the Arduino Serial Monitor to watch the  // scrolling angles, or run the OrientationVisualiser example in Processing.      #include <NXPMotionSense.h>  #include <Wire.h>  #include <EEPROM.h>  #include <FastLED.h>      #define NUM_LEDS 60  CRGB leds[NUM_LEDS];      NXPMotionSense imu;  NXPSensorFusion filter;  int a;  int acc_rms;  void setup() {    Serial.begin(9600);    imu.begin();    filter.begin(100);    delay(2000);         FastLED.addLeds<APA102,11,13,BGR,DATA_RATE_MHZ(1)>(leds, NUM_LEDS);     pinMode(7, OUTPUT);    digitalWrite(7, HIGH);  // enable access to LEDs  }      void loop() {    float ax, ay, az;    float gx, gy, gz;    float mx, my, mz;    float roll, pitch, heading;        if (imu.available()) {      // Read the motion sensors      imu.readMotionSensor(ax, ay, az, gx, gy, gz, mx, my, mz);          // Update the SensorFusion filter      filter.update(gx, gy, gz, ax, ay, az, mx, my, mz);          // print the heading, pitch and roll      roll = filter.getRoll();      pitch = filter.getPitch();      heading = filter.getYaw();      Serial.print("Orientation: ");      Serial.print(heading);      Serial.print(" ");      Serial.print(pitch);      Serial.print(" ");      Serial.println(roll);      a=abs(roll/3);      Serial.print(" ");            acc_rms=sqrt(ax*ax+ay*ay+az*az)/3;      Serial.println(acc_rms);            //flash red if a violent shake event is detected            if(acc_rms==1)      {         for(int n = 0; n < NUM_LEDS; n++)          {             leds[n] = CRGB::Red;             FastLED.show();             delay(8);             leds[n] = CRGB::Black;        }      }            // Move a single white led as per rotation      for(int n = 0; n < NUM_LEDS; n++)       {         if(a==n)         {            leds[n] = CRGB::White;            FastLED.show();            delay(8);          }         else          {             leds[n] = CRGB::Black;          }      }    }  } PJRC Store Sample Code: // Full orientation sensing using NXP's advanced sensor fusion algorithm.  //  // You *must* perform a magnetic calibration before this code will work.  //  // To view this data, use the Arduino Serial Monitor to watch the  // scrolling angles, or run the OrientationVisualiser example in Processing.      #include <NXPMotionSense.h>  #include <Wire.h>  #include <EEPROM.h>  #include <FastLED.h>      #define NUM_LEDS 60  CRGB leds[NUM_LEDS];      NXPMotionSense imu;  NXPSensorFusion filter;  int a;  int acc_rms;  void setup() {    Serial.begin(9600);    imu.begin();    filter.begin(100);    delay(2000);         FastLED.addLeds<APA102,11,13,BGR,DATA_RATE_MHZ(1)>(leds, NUM_LEDS);     pinMode(7, OUTPUT);    digitalWrite(7, HIGH);  // enable access to LEDs  }      void loop() {    float ax, ay, az;    float gx, gy, gz;    float mx, my, mz;    float roll, pitch, heading;        if (imu.available()) {      // Read the motion sensors      imu.readMotionSensor(ax, ay, az, gx, gy, gz, mx, my, mz);          // Update the SensorFusion filter      filter.update(gx, gy, gz, ax, ay, az, mx, my, mz);          // print the heading, pitch and roll      roll = filter.getRoll();      pitch = filter.getPitch();      heading = filter.getYaw();      Serial.print("Orientation: ");      Serial.print(heading);      Serial.print(" ");       Serial.print(pitch);      Serial.print(" ");      Serial.println(roll);      a=abs(roll/3);      Serial.print(" ");            acc_rms=sqrt(ax*ax+ay*ay+az*az)/3;      Serial.println(acc_rms);            //flash red if a violent shake event is detected            if(acc_rms==1)      {         for(int n = 0; n < NUM_LEDS; n++)          {             leds[n] = CRGB::Red;             FastLED.show();             delay(8);             leds[n] = CRGB::Black;        }      }            // Move a single white led as per rotation      for(int n = 0; n < NUM_LEDS; n++)       {         if(a==n)         {            leds[n] = CRGB::White;            FastLED.show();            delay(8);          }         else          {             leds[n] = CRGB::Black;          }      }        }  }
View full article
The demo from Code is an ultra-compact Sub-GHz to Wi-Fi Border Router solution for use in Home Automation Wireless Sensor Nodes, Smart Lighting, Smart City, Smart Meters, Smart Parking and IoT. The demo consists of an NXP SCM-i.MX 6SoloX V-Link device (i.MX6SoloX/PF0100/512MB LPDDR2) + Code V-Link Top board with 802.11a/b/g/n/ac module + Code Carrier board with the Phalanx Border Router. The Phalanx Border Router provides an optimized mesh network for sensing applications SCM V-Link technology is ideal for space-constrained applications allowing customers to integrate vertically. Features: Top board: Broadcom 2.4 GHz & 5 GHz Wi-Fi, 802.11 a/b/g/n/ac , up to 390 Mbps. U.FL standard antenna connector. SCM-i.MX6 SX V-Link Top board form factor, 15.5mm x 15.5mm. Optimized mesh network for sensing applications. Thousands of nodes, minimizing deployment costs. 900 MHz Wireless. A new, clever routing algorithm which reduces routing overhead. IPv6 capable __________________________________________________________________________________________________________________ Featured NXP Products: Single Chip System Modules (SCM)|NXP Partner CODE Ing __________________________________________________________________________________________________________________  
View full article
New generation Microwave oven. Delivery of highly efficient, controlled RF power will modernize RF and microwave heating applications, and create a new cooking and heating paradigm. Explore NXP's comprehensive solid state solutions with a complete line of drivers, power amplifiers, microcontrollers, antenna and reference design support, as well as smart, economical application development tools.     Features Long Life span Ability to focus energy directly into the food being cooked Phase, Frequency and Amplitude control Vary maximums and minimum thresholds of power within the oven Links RF Heating RF Power  
View full article
The DDR validation tool helps pinpoint the best DDR settings providing the best possible reliability. Without this tool, engineers are likely to spend months trying to figure out the settings, if they try at all.     Features The DDR validation tool helps pinpoint the best DDR settings providing the best possible reliability. Without this tool, engineers are likely to spend months trying to figure out the settings, if they try at all Featured NXP Products PE_QORIQ_OPTI_SUITE: Processor Expert QorIQ Optimization Suite DDRv Validation Tool Scenarios Tool DPAA Packet Tool - Processor Expert QorIQ Packet Tools Links P4080: QorIQ P4080/P4040/P4081 Communications Processors with Data Path  
View full article
Introduction Background There is not an official data for PCIe latency and performance, while some customers pay attention to and request these data. This paper utilizes Lmbench lat_mem_rd tool and DPDK qdma_demo to test the PCIe latency and performance separately. Requirement 1) Plug Advantech iNIC (LX2160A) into LX2160ARDB. 2) Configure EP ATU outbound window at console. 3) Apply the patch to lmbench-3.0-a9, and recompile lmbench tool. 4) There is qdma_demo in iNIC kernel rootfs by default. Test Environment     PCIe Latency Overview   Direction Description Latency(ns) PCIe(Gen3 x8) – DDR read from EP to RC 900 PCIe – PCIe – DDR Read from EP to EP (through CCN-508) 1550 PCIe – PCIe – DDR Read from EP to EP (through HSIO NOC) 1500 Setup 1) LX2160ARDB 2) iNIC – PCIe EP Gen3 x8 with LX2160A 3) Test App running at iNIC: Lmbench lat_mem_rd   # ./lat_mem_rd_pcie -P 1 -t 1m   PCIe Performance Overview    Direction Throughput (Gbps) PCIe EP to EP 50   Setup 1) LX2160ARDB 2) iNIC – PCIe EP Gen3 x8 with LX2160A 3) Test App : qdma_demo running at iNIC   $./qdma_demo -c 0x8001 -- --pci_addr=0x924fa00000 --packet_size=1024 --test_case=mem_to_pci Peer to Peer On LX2 Rev. 2      Products   Product Category NXP Part Number URL MPU LX2160A https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-lx2160a-lx2120a-lx2080a-processors:LX2160A LSDK software Layerscape Software Development Kit https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK   Tools    NXP Development Board URL LX2160ARDB https://www.nxp.com/design/qoriq-developer-resources/layerscape-lx2160a-reference-design-board:LX2160A-RDB Advantech ESP2120 Card      
View full article
Demo High performance feature extraction and tracking application at ultra-low power on S32V platform. This demo showcases a real-time high computation algorithm with image capture and display running on a portion of the resources available on the S32V234. Customers can create demanding Automotive grade vision systems such as stereo and single camera as well as advanced surround view systems based on this demo. The application was written using APEX-CV pro library and demonstrates that high performance application leveraging the APEX Image Cognition Processor cores of the S32V234 could also be easy to write Features The APEX cores, with a combined 128 parallel computational units, crunch numbers quickly and at a fraction of the power. Fully programmable, the cores can execute standard and/or customized vision algorithms for ADAS applications and beyond. The S32V234 MCU captures raw images from HD sensor, and then formats the images with its on-chip ISP that here provides exposure control, white balancing, RGB to Y color conversion.  Formatted images are then feed into the APEX cores that generate multi-level image pyramids, and combined Harris Corner for feature detection followed by Lukas-Kanade (KLT) Sparse Optical Flow for feature tracking.  Then features and displacement are overlaid on image and displayed, at the processing performance of up to 100 fps NXP Recommends The S32V230 Processor family for Vision ADAS, includes the award winning automotive grade S32V234 MCU with dual APEX Image Cognition Processor cores. http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/s32-processors-and-microcontrollers/s32v230-family-of-processors-for-advanced-driver-assistance-systems:S32V230 Video Links
View full article
Cloud-Connected Parking Spot Sensor Demo This demo shows a use case of the LS1021 IoT GW along with a FRDM-KW24 powered Magnetometer sensor to monitor the  car parking spot  locations such as garage parking  in a building, Traffic Management and Traffic Monitoring   The data can be reported and monitored from the Cloud. Features: Small footprint platform with a wide variety of high-speed connectivity and low-speed serial interfaces through the use of the ARM-based QorIQ LS1021A embedded processor. The  FRDM-KW2 sensor data is send via Thread to the LS1021 IoT GW and The Proximetry Agent posts information to cloud server. _______________________________________________________________________________________________________ Featured NXP Products: Product Link Freedom Development Platform for Kinetis® KW2x MCUs FRDM-KW24D512|Freedom Development Platform|Kinetis | NXP  LS1021A-IoT Gateway Reference Design https://www.nxp.com/design/designs/ls1021a-iot-gateway-reference-design:LS1021A-IoT?&lang_cd=en _______________________________________________________________________________________________________ N15
View full article
Demo WaRP7 is an open source platform backed by the development community, design and manufacturing capabilities of element14. Features: CPU:  NXP i.MX 7Solo applications processor (Cortex TM -A7/Cortex TM –M4) Memory: 8GB eMMC 5.0 and 4Gb LPDDR3 Connectivity: WiFi, Bluetooth, BLE, USB-OTG, NFC Multimedia I/F: Camera, MIPI Display, Audio Sensors: Accelerometer, Barometer, Gyroscope Power: PMIC, Battery charger  BSP: Linux 3.14, Android 5.1 __________________________________________________________________________________________________________________ Featured NXP Products: i.MX7D: i.MX 7Dual Processors - Heterogeneous Processing with dual ARM® Cortex®-A7 cores and Cortex-M4 core Link WaRP7
View full article
Demo Owner: Nicholas Sargologos Demonstration of the IoTgateway reference design based on QorIQ Processor LS1021A multicore - utilizing the Freedom board, the Node Red network configuration tool and IBM Cloud Services   Features Multi-protocol support for IoT devices and high speed WAN / LAN for cloud connectivity The demo supports two data flows using Open source MQTT messaging protocol. There are two nodes powered by Kinetis micro-controllers and IoT Gateway. Node 1 is equipped with a sensor cluster serves as a publisher Node 2 is connected to as small fan and serves as a subscriber MQTT flows are carried from the nodes and the Iot gateway via Wi-Fi Java based environment is used to establish connectivity between nodes   Featured NXP Products LS1021A Links Product Link LS1021A-IoT Gateway Reference Design LS1021A-IoT Gateway Reference Design | NXP  Freedom Development Platform for Kinetis® KL14, KL15, KL24, KL25 MCUs FRDM-KL25Z|Freedom Development Platform|Kinetis® MCU | NXP  Block Diagram   News Buzz IoT designs need to start in the right direction - Embedded Computing Design
View full article
  Overview NXP portfolio counts with multiple processing solutions ranging from MCUs to multicore MPUs enabling motor control, system control and advanced HMI. This solution is based on the i.MX6 Family Application Processors. This high-performance processor family provides a highly reliable power management, various memory interfaces and a wide range of other interfaces for connecting peripherals.   Block Diagram Products Category MPU Product URL 1 i.MX6UL: i.MX 6UltraLite Processor - Low-power, secure, Arm® Cortex®-A7 Core  Product Description 1 Expanding the i.MX 6 series, the i.MX 6UltraLite is a high performance, ultra-efficient processor family featuring an advanced implementation of a single Arm® Cortex®-A7 core, which operates at speeds up to 696 MHz. Product URL 2 i.MX-6ULZ: Ultra Low Cost Linux® Processor with Arm® Cortex®-A7 Core  Product Description 2 The i.MX 6ULZ processor is a high-performance, ultra cost-efficient consumer Linux processor featuring an advanced implementation of a single Arm® Cortex®-A7 core, which operates at speeds up to 900 MHz. Product URL 3 i.MX6ULL: i.MX 6ULL Single-Core Processor with Arm® Cortex®-A7 Core  Product Description 3 The i.MX 6ULL is a power efficient and cost-optimized applications processor family featuring an advanced implementation of a single Arm Cortex-A7 core, which operates at speeds up to 900 MHz.   Category Motor Control Driver Product URL MC34931: MC34931/S H-Bridge, Brushed DC Motor Driver, 5-36 V, 5 A, 11 kHz/20 kHz  Product Description The NXP® MC34931 is a monolithic, thermally efficient 36 V/ 5 A H-Bridge DC motor driver.   Category Audio Product URL 1 SGTL5000: Ultra-Low-Power Audio Codec  Product Description 1 The SGTL5000 is a low-power stereo codec designed to provide a comprehensive audio solution for portable products that require line-in, mic-in, line-out, headphone-out and digital I/O. Product URL 2 NCX8200UK: Audio jack configuration switch matrix  Product Description 2 The NCX8200 is an advanced audio jack configuration switch matrix device that supports 3- and 4-pole connectors.   Category Transceiver Product URL NTS0302JK: 2-bit dual supply translating transceiver; open drain; auto direction sensing  Product Description The NTS0302 is a 2-bit, dual supply translating transceiver family with auto direction sensing, that enables bidirectional voltage level translation.   Category Accelerometer Product URL MMA8451Q: ±2g/±4g/±8g, Low g, 14-bit Digital Accelerometer  Product Description The NXP® MMA8451Q is a low-power, three-axis capacitive micromachined accelerometer with 14 bits of resolution.   Category LCD Driver Product URL PCF85132U: LCD driver for low multiplex rates  Product Description The PCF85132 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) with low multiplex rates.   Category WiFi  Product URL  88W8997: 2.4/5 GHz Dual-Band 2x2 Wi-Fi® 5 (802.11ac) + Bluetooth® 5 Solution  Product Description The 88W8997 is the industry’s first 28nm, 802.11ac wave-2, 2x2 MU-MIMO combo solution with full support for Bluetooth 5.   Category Power Management Product URL PF1550: PMIC with 1A Li+ Linear Battery Charger for Low Power Processor Systems  Product Description The PF1550 is a Power Management Integrated Circuit (PMIC) designed specifically for use with i.MX processors on low-power portable, smart wearable and Internet-of-Things (IoT) applications.   Category Secure Element Product URL EdgeLock™ SE050: Plug & Trust Secure Element Family – Enhanced IoT security with maximum flexibility  Product Description The EdgeLock SE050 product family of Plug & Trust devices offers enhanced Common Criteria EAL 6+ based security, for unprecedented protection against the latest attack scenarios.
View full article
Demo Advantages of i.MX6 Dual/Quad Plus Features Memory bandwidth utilization greatly improved On-die caches for GPU Multi-source GPU composition Featured NXP Products i.MX6DP i.MX6QP
View full article
Demo This demo showcases NXP’s MCUs, A70CM and NTAG I2C products, combined in an IoT development platform for industrial and home automation applications. Complementary Zentri software enables Wi-Fi connectivity, cloud-based device management and data analysis Features: The LPC43S67-A70CM Cloud Connectivity Kit, coupled with software from Zentri: Helps designers of embedded IoT products quickly build cloud-connected products without the need for deep expertise in security, Wi-Fi stacks, device commissioning, and cloud service APIs. Provides a complete hardware and software platform for evaluating and prototyping cloud-connected applications with IEEE 802.11b/g/n wireless connectivity based on the LPC43S6x microcontroller family and A70CM secure element. NTAG capability enables easy, secure commissioning and diagnosis by field personnel. _______________________________________________________________________________________________________ Featured NXP Products: LPC43S67-A70CM Cloud Connectivity Kit NT3H1101/NT3H1201 LPCXpresso IDE _______________________________________________________________________________________________________ Links Zentri – Securely Connect Your Products
View full article
UDOO Neo has been designed primarily as a complete pocket-size wireless solution for Internet of Things (IoT) and connected device development, featuring Wireless N and Bluetooth 4.0 LE on-board connectivity. Furthermore, the new board will also integrate a three-axis accelerometer, gyroscope and magnetometer, allowing it to sense its position in any given environment.         Features   Links http://www.udoo.org/udoo-neo-the-wireless-playground-for-the-internet-of-things-that-fits-in-your-pocket/ http://www.udoo.org/udoo-neo/ ARM Cortex-A9|i.MX 6 Multicore Processors|NXP Mobile World Congress, and what UDOO Neo represents in the IoT space - UDOO Board Image   UDOO Neo projects walkthrough:    
View full article