NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
ARM's Ronan Synnott demonstrates the Keil Microcontroller Development Kit (MDK) at the 2014 FTF-Americas. The MDK is a complete software development environment for the Kinetis device family.   Features Demonstrating Keil's Microcontroller Development Kit (full feature debug IDE from ARM) solution Connecting via Ulink Pro JTAG connector ARMCC (ARM compiler) View registers, view memory, etc. Values update on the fly, logic analyzer to visualize values in a system and display on a timeline format   Featured NXP Products Kinetis Microcontrollers Links ARM  
View full article
Demo The Automotive Magnetic Sensors demo will showcase the use of Rotational Wheel Speed Sensors for car ABS and Angular Sensors for Electric Throttle Control (ETC) as well as for Steering Angle measurement.     Features: NXP supplies magnetic sensors for rotational wheel speed and true angular measurement systems: ABS speed sensors with simple ferrites instead of expensive rare earth magnets, and with best in class jitter performance required for iTPMS, Angular sensors with outstanding accuracy of ±1˚ over full temp range and lifetime while operating in a wide temperature range up to 160 °C/320 °F. _______________________________________________________________________________________________________     Featured NXP Products: Sensors for Automotive|NXP _______________________________________________________________________________________________________     S01
View full article
this doc explain the HSE crypto driver and how to develop new feature 目录 1 参考资料 .................................................................... 2 1.1 参考资料 ................................................................. 2 1.2 版本匹配说明 .......................................................... 3 2 HSE FW服务 ............................................................. 3 2.1 服务描述符 ............................................................. 3 2.2 服务编号 ................................................................. 4 2.3 服务请求和响应 ...................................................... 6 2.4 服务执行 ................................................................. 9 2.5 Crypto驱动AES示例使用到的服务 ........................ 18 3 环境搭建 .................................................................. 19 3.1 安装与编译 ........................................................... 19 3.2 运行Demo ............................................................ 21 4 Crypto驱动代码与功能说明 ...................................... 23 5 定制1:增加GetAttribute功能 .................................. 28 6 CmacCtr Demo简介 ................................................. 31 7 SymmetricPrimitive Demo简介 ................................ 32 8 总结 ......................................................................... 34 9 其它注意事项 ........................................................... 34
View full article
Demo On this demo, we are showing a comparison between CAN-FD and classic CAN on the LPC54618 microcontroller. The LPC board is doing a firmware update using both CAN protocols Dual LPC54618 microcontroller CAN-FD kits illustrate the speed benefits of CAN-FD versus classic CAN One board acts as the vehicle console display and the other emulates a radio which serves the HMI over the CAN link Selecting between CAN and CAN-FD demonstrates the benefits in the display updates and in a simulated firmware update transfer Product Link LPCXpresso54618 CAN-FD kit OM13094 | LPCXpresso Development Board | LPC Microntrollers (MCUs) | NXP  LPC546XX LPC546XX Microcontroller (MCU) Family | NXP  Block Diagram
View full article
由于NXP之前使用的git服务器codeaurora已经永久性关闭,本文说明针对S32G如何迁移到github服务器的方法。 目录 1    服务器迁移情况说明... 2 2    参考文档和工具... 4 3    Yocto迁移说明... 4 3.1  从头开始新建Yocto工程说明... 4 3.2  对已有Yocto工程的迁移说明... 6 3.3  Migrate.sh的帮助... 7 4    独立编译迁移说明... 10 4.1  PFE独立编译... 11 4.2  IPCF独立编译... 13
View full article
Flying glasses demonstrator: Dual PMSM demo uses Qorivva MPC574xP and features spinning glasses mounted on the rotor of a first motor, while the second motor is equipped with a blade, "cutting" the glasses. Four glasses are mounted on the shaft of one motor while it is spinning. The second motor is running at the same time and it turn its propeller in a predefined movement so there is no damage to the glasses.   https://community.nxp.com/players.brightcove.net/4089003392001/default_default/index.html?videoId=4305972345001" style="color: #05afc3; background-color: #ffffff; font-size: 14.4px;" target="_blank   Features Permanent magnet Synchronous Motors Sensor used for speed and positioning measurement Featured NXP Products MPC574xP: Qorivva 32-bit MCU for Automotive and Industrial Functional Safety Applications Training Introduction to PMSM Motor Controls
View full article
In BLE spec there is no standard wireless pass through profile, so different chip vendors have their own implementations, which is also called Proprietary Profile, the compatibility is a big challenge. There are two wireless pass through demos in NXP BLE demos. For QN90XX chip, it’s called QPP. For KW3X, it’s called wireless UART. The wireless UART is more complex. It doesn’t support always-connection and have many limitations for the app. The common BLE debug tool app on phone side cannot communicate with it, while the QPP can work well.  This demo code is target to port the QPP profile to KW3X SDK, which can simplify user’s development.
View full article
i.MX RT1170 crossover MCUs are part of the Edge Verse™ platform and are setting speed records at 1 GHz. This ground-breaking family combines superior computing power and multiple media capabilities with ease-of-use and real-time functionality. For reducing the overall system cost, RT117x didn't have embeded flash, need external Flash as program storage and XIP place, NXP and third party like IAR, KEIL and Segger all provide mature tool to make Nor Flash‘s programing with their own flashloader, can fulfillment most customer’s application requirement, but still some users need to customize the flash programing algorithm due to programing speed optimization and difference of the nor Flash from different vendor and, such as SFDP support, QE bit's position, default sector size, DDR/OPI/QPI feature, default 3 Bytes/4 Bytes mode and also operating sequence, but the default Flashloader is based on the ROM API, it's hard to debug and customize as there is no source code. This reference demo will use source code Flash operation API instead of ROM API. In addition, it also add two new useful feature, first one is current Flashloader framework can't support some nor flash which need pre-configuration, such as Cypress's S25HL01GT, its sector size is not unified, need to config additionally. This reference demo give some function interface to implement it with 3 bytes/4bytes command mode and DDR/SDR mode, it also improve the original framework by adding read-erase-write demonstration code, which can help user to verify their customized Flashloader without need to copy to IDE every time, improve the efficiency greatly. Second advantage is it can support download flow‘s log generation, by default there is no log info in overall download flow, hard to locate which step(get configure/init/erase/program/verify) the failure occur, this demo code add log function to record every detailed download step, by which users can optimize their download speed, it's helpful for mass production. Developers can also debug and customize depend on their own specific requirement and different nor Flash.
View full article
Demo Play "Asphalt Assault" video game while demonstrating NXP's motor driving capabilities using the S12 processor and 33932 motor driver controlling two engine control motors.   Product Link MC9S12G128 Ultra Reliable 16-bit Tower System Module https://www.nxp.com/design/development-boards/tower-development-boards/mcu-and-processor-modules/16-bit-mcu-modules/mc9s12g128-ultra-reliable-16-bit-tower-system-module:TWR-S12G128?&lang_cd=en Tower® Expansion Board - MC33932 & MC33926, Dual & Single H-Bridge, Brushed DC & Stepper motor Driver, 5-28V, 5A Tower Expansion Board - MC33932 & MC33926, Dual & Single H-Bridge, Brushed DC & Stepper motor Driver, 5-28V, 5A | NXP  Ultra-Reliable S12G General Purpose Automotive and Industrial Microcontrollers https://www.nxp.com/products/processors-and-microcontrollers/additional-architectures/16-bit-s12-and-s12x-mcus/ultra-reliable-s12g-general-purpose-automotive-and-industrial-microcontrollers:S12G?&lang_cd=en MC33932: H-Bridge Motor Driver, 5-28 V, 5 A, 11 kHz MC33932 | H-Bridge Motor Driver | NXP 
View full article
Demo Owner Brian Gildon   Timesys Vice President of Business Development, Brian Gildon demonstrates various NXP based applications for optimized performance devices. Demonstrations include  NXP's Vybrid TWR-VF65GS10 board on Linux, a fast boot demonstration using i.MX 6 platform on Linux and finally a Sabre SDP a multi-touch interface design for designers who want simple branding.   Features Timesys - Linux tools services and training First demo: Vybrid tower board demo RTOS and Linux running simultaneously Second demo: Boot up Android quickly from a cold boot Third demo: Accelerated video demo vs non-accelerated video comparison Fourth demo: QT widget support on a multi-touch interface   Product Link SABRE Board for Smart Devices Based on the i.MX 6Quad Applications Processors i.MX 6Quad SABRE Development Board | NXP  VFxxx Controller Solutions VFxxx Controller Solutions based on Arm® Cortex® A5 and M4 Cores | NXP  Links Tymesys  
View full article
Demo Owner David Lopez This demo is an overview of our power management simulation and validation tools. Our tools will help you accelerate power management validation with ISO 26262 compliance. Through this demo you will discover how NXP develop innovative validation tool to cover multiple use case, and accelerate product validation in line with ISO26262. The leading device use to develop this tool is MC33908, System Basic Chip with DC/DC and highest functional safety level.  In addition this tool is also covering the validation of MCU and SBC attachment.  This tool contain a database made through the collection of different car OEM "non-ISO" pulse with fast execution.   Features Transient simulation tool platform Accelerate power management validation with ISO 26262 compliance Global OEM use cases database Featured NXP Products Analog and Power Management|NXP
View full article
This document introduce how to do LPDDR4 DQ Swapping in S32G platform.
View full article
Overview Heating, ventilation, and air conditioning (HVAC) systems are based on inputs from a variety of sensors, controlling different types of motors such as stepper motors for flaps and DC/BLDC blower fan motors. NXP broad portfolio of 32-bit, 16-bit S12, and 8-bit S08 families of microcontrollers enables designers to meet the needs of a variety of HVAC applications. System basis chips (SBCs) combine physical network connection with power management. Intelligent eXtreme switches complete the system solution for DC motor blowers. BLDC motor control requires more complex algorithms. NXP’s MagniV products combine MCU with SBC functionality, network connection, and motor control, specific drivers, into a single package, providing a cost-effective small footprint system solution. Interactive Block Diagrams https://www.nxp.com/video/building-automation:BUILDING-AUTOMATION-V02Recommended Products Category Products Features MCU MPC560xB|32-bit MCU|Body-Electronic | NXP  32-bit single-core Power Architecture® MCU. 32-bit Automotive General Purpose MCUs | NXP  Arm Cortex-M0+|Kinetis KEA 32-bit Automotive MCUs | NXP  System Basis Chip (SBC) MC33742 | SBC with Enhanced High-Speed CAN Transceiver | NXP  System basis chip with high-speed CAN Interface. SBC Gen2 with High-speed CAN | NXP  System basis chip with high-speed CAN Interface. MC33905 | SBC Gen2 with High-Speed CAN and LIN | NXP  System basis chip with high-speed CAN Interface. LIN SBC | NXP MC33910  System basis chip with LIN interface (Entry Level). LIN SBC | NXP MC33911 System basis chip with LIN interface (Medium Level). LIN SBC | NXP MC33912 System basis chip with LIN interface (High-end Level). CAN Interface MC33897 | Single-Wire Can Transceiver | NXP  CAN interface with protection features LIN Interface TJA1021 | LIN2.1/SAE J2602 Transceiver | NXP  LIN interface with low emission. MC33662 | LIN 2.1 / SAEJ2602-2, LIN Physical Layer | NXP  LIN 2.1 and SAEJ2602-2 interface. Switch Monitoring MC33972 | MSDI with Suppressed Wakeup | NXP  Multiple switch detection interface with sleep mode. MSDI | NXP  Multiple switch detection interface with sleep mode. Motor Control MagniV® S12ZVM Mixed-Signal MCUs | NXP  Single-chip BLDC motor control solution. MC33937 | Field Effect Transistor | NXP  Three phase field effect transistor (FET) pre-driver. MC33932 | H-Bridge Motor Driver | NXP  Dual 5.0 A throttle control H-bridge. High Side Switches MC33937 | Field Effect Transistor | NXP  Three phase field effect transistor (FET) pre-driver. MC33932 | H-Bridge Motor Driver | NXP  Dual 5.0 A throttle control H-bridge. Tools and Software Link Features Development Kit for sensorless BLDC | NXP  Based on the 32-bit Arm Cortex-M4F S32K144, the MTRDEVKSBNK144 is a development kit engineered for sensorless applications requiring one Brushless Direct Current (BLDC).
View full article
Chinese version   S32G的partition off流程要求核稳定的进 入到WFI状态,本文说明如何修改Linux内核, 在A53 Linux关机或kernel panic时,如何让所 有A53 Core进入WFI。 目录 1 背景说明与参考资料 .................................................. 2 1.1 背景说明 ................................................................. 2 1.2 参考资料 ................................................................. 5 1.3 测试工具 ................................................................. 6 2 Panic ......................................................................... 7 2.1 Panic代码流程分析 ................................................. 7 2.2 BSP30修改说明(Non-ATF) ................................... 10 2.3 BSP36修改说明(ATF) .......................................... 15 3 Poweoff ................................................................... 17 3.1 Poweroff代码流程分析 ......................................... 17 3.2 BSP30修改说明(Non-ATF) ................................... 19 3.3 BSP36修改说明(ATF) .......................................... 20 4 Reboot情况说明 ....................................................... 20 5 STR情况说明 ........................................................... 21
View full article
MC07XS6517 and MC17XS6500 single ICs provide comprehensive, cost-effective solutions for halogen, industrial lighting, LEDs, xenons, main switches and DC motor control. The eXtreme switch products are the latest achievement in DC motors and industrial lighting drivers. They belong to an expanding family to control and diagnose various types of loads, such as incandescent bulbs or light emitting diodes (LEDs), with enhanced precision. The products combine flexibility through daisy chainable SPI at 5.0 MHz, extended digital and analog feedbacks, which supports safety and robustness. This new generation of our high-side switch products family facilitates electronic control unit designs supported by the use of compatible MCU software and PCB footprints, for each device variant.     Features Operating voltage range of 7.0 V to 18 V, with sleep current <5.0 μA 5.0 MHz 16-bit SPI control of overcurrent profiles, channel control including 8-bit PWM duty-cycles, output -ON and -OFF open load detections, thermal shutdown and pre-warning, and fault reporting Output current monitoring with programmable synchronization signal and supply voltage feedback Programmable overcurrent trip levels Enhance output current sense with programmable synchronization signal and battery voltage feedback Watchdog and limp home mode External smart power switch control -16 V reverse polarity and ground disconnect protections Compatible PCB foot print and SPI software driver among the family Programmable Penta high-side switches Wide range diagnostic, current sensing and very low Rdson Up to 30% smaller PCB and 50% lower component count MC07XS6517 and MC17XS6500 eXtreme Switch applications include halogen, industrial lighting, LEDs, xenons, main switches and DC motor control   Featured NXP Products MC17XSF500: MC17XSF500, Penta 17 mOhm High Side Switch - Data Sheet MC07XSF517: MC07XSF517, Triple 7.0 mOhm and Dual 17 mOhm High Side Switch - Data sheet Block Diagram  
View full article
Description The S12ZVC is a highly reliable, low-cost 16-bit MCU that offers a built-in voltage regulator along with CAN bus, 12-bit ADC and a 4-channel PWM. This feature is a great asset when developing end-node automotive solutions, such as a switch panel, based on CAN bus integration. This application integrates many buttons and knobs to control automotive systems, for example, Lights, Doors, Audio Systems, Air Conditioner or windows at the driver or passengers reach. Block Diagram   Products Category Name 1: Microcontroller Product URL 1 S12ZVC Mixed-Signal MCUs|MagniV | NXP  Product Description 1 The S12ZVC is a low-cost MCU, designed for the smallest automotive CAN-termination nodes. The S12ZVC core integrates a 5V to 12V voltage regulator, this features enable the capability for the MCU to become an automotive solution; from lights to doors, to trunk locks or air conditioner switches.   Features Features Vreg for 3.5 to 20-volt operating range, scalable in supply for on- and off-chip systems CAN physical layer High-resolution mixed signal: 12-bit resolution ADC 16ns resolution PWM and Timer Related Documentation Document URL Title https://www.nxp.com/docs/en/application-note/AN5090.pdf Using the S12ZVC Device for Industrial Applications https://www.nxp.com/docs/en/application-note/AN4851.pdf Using the High-Resolution Timer and PWM in the S12ZVC   Related Software Related Software URL https://www.nxp.com/downloads/en/board-support-packages/VLG-MC9S12ZVC-DEMOSW.zip https://www.nxp.com/downloads/en/lab-test-software/DEVKIT-S12ZVC-LAB.zip https://www.nxp.com/downloads/en/board-support-packages/DEVKIT-S12ZVC-QSP.zip  Tools Tools URL VLG-MC9S12ZVC Evaluation Board | NXP  Related Demos from Communities URL List of MagniV and S12(X) Examples and Documents  List of MagniV S12(X) Application notes  S12 / MagniV Microcontrollers  CodeWarrior Development Tools  NXP Model-Based Design Tools 
View full article
本文为如下G2版本的升级篇,使用G3+更新的软件 目录 1    需要的软件与工具... 2 1.1  软件工具与文档... 2 1.2  开发说明... 3 2    测试软件安装编译说明... 3 2.1  安装LLCE Logger驱动... 3 2.2  编译LLCE驱动测试程序(以CAN Logger 为例) 4 2.3  Logger Demo功能说明... 5 2.4  M7 BootLoader ATF镜像冲突检查... 7 2.5  LLCE Logger Demo去掉CLOCK INIT. 9 2.6  LLCE Logger Demo去掉MCU 相关INIT. 10 2.7  LLCE Logger Demo程序去掉PORT INIT. 10 2.8  中断冲突说明... 10 2.9  去掉其它无用初始化... 11 3    Bootloader工程说明... 11 3.1  关掉XRDC支持... 12 3.2  关掉eMMC/SD支持(可选) 13 3.3  关掉secure boot(可选) 14 3.4  增加LLCE 驱动所需要的PORT 的初始化... 15 3.5  解决Bootloader,MCAL 与Linux 的clock 冲突... 16 3.6  配置A53 Boot sources: 34 3.7  配置M7 Boot sources: 36 3.8  关闭调试软断点... 37 3.9  编译Bootloader工程... 38 3.10 制造Bootloader的带IVT的镜像... 39 3.11 烧写镜像... 41 4    Linux LLCE logger功能修改... 42 4.1 ATF的修改... 42 4.2 Linux中关于LLCE配置... 44 4.3 LLCE相关初始化冲突说明... 45 5    测试... 46 5.1  硬件连接... 46 5.2  LLCE logger 测试过程... 46 S32G Boot customization doc how to run bootloader to run mcal&linux https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/S32G-Bootloader-Customzition/ta-p/1519838
View full article
Memtool is a useful debug tool which can read/write some i.MX register. It is default supported in Linux while not supported in Android. This article describse how to integrate memtool into i.MX8MM Android 12 platform, which is also similar in other i.MX new android platform.  
View full article
引言 FRDM-KW36包含带有32 kHz晶体振荡器的RTC模块。此模块为以极低功耗模式运行的MCU生成32 kHz时钟源。该振荡器包括一组用作CLOAD的可编程电容器。改变这些电容器的值可以改变振荡器提供的频率。 此可配置电容的范围为0 pF(禁用电容器组)至30 pF,步长为2 pF。 这些值是通过组合启用的电容器获得的。可用值为2 pF,4 pF,8 pF和16 pF。可以完成这四个数值的任意组合。如果可以使用外部电容器,建议禁用这些内部电容器(清除RTC控制寄存器SFR中的SC2P,SC4P,SCS8和SC16位)。 要调整振荡器提供的频率,必须首先能够测量该频率。使用频率计数器将是非常好的,因为它提供了比示波器更精确的测量。您还需要输出振荡器频率。要输出振荡器频率,以任意一个蓝牙演示应用程序为例,您应该执行以下操作: 调整频率示例 本示例将利用Connectivity Software Stack中的心率传感器演示(freertos版本),并假定开发人员具有从SDK到IDE导入或打开项目的知识。 1.从SDK中打开或克隆“心率传感器”项目。 2.在工作区的board文件夹中找到board.c和board.h文件。 3.如下图所示在board.h文件中声明一个void函数。该函数将RTC管脚复用设置为输出到PTB3并能够测量频率。 4. 如下所示在board.c文件中开发BOARD_EnableRtcClkOut函数。 5. 代码如下: 6. 在BOARD_BootClockRUN(board.c文件)之后立即在hardware_init函数中调用BOARD_EnableRtcClkOut函数。 7. 在工作区的board文件夹中找到clock_config.c文件。 8. 在文件顶部添加以下定义。 9. 在BOARD_BootClockRUN函数内部(也在clock_config.c文件中)搜索对函数的CLOCK_CONFIG_EnableRtcOsc调用,然后通过上述任意定义来编辑变量。 10. 最后,在项目源文件夹中的“ preinclude.h”文件中禁用低功耗选项和LED支持: 此时,您可以在PTB3中进行测量,并使用频率计数器进行频率调整。每次对电路板进行编程时,都需要执行POR以获得正确的测量。下表是从FRDM-KW36板版本B获得的,可用作调整频率的参考。 请注意,电容不仅由启用的内部电容组成,还包括封装,内部走线,芯片焊盘和PCB走线中的寄生电容。因此,尽管下面给出的参考测量值应接近实际值,但您还应该在电路板上进行测量,以确保频率是专门针对您的电路板和布局进行调整的。 Labels:KW   KW35 | 36 kinetis kw36a
View full article
这篇文章通过覆盖与GFSK (通用频移键控)通信并行的 低功耗蓝牙 多节点连接,提供了混 合应用程序( W ireless UART + GFSK Advertising )的示例。这是 SDK 的另一个示例,其中我 们定义了 混合应用程序,用于与 GFSK 通信并行进行蓝牙 LE 广告和扫描。 Products Product Category NXP Part Number URL MCU KW36/35/34 https://www.nxp.com/products/wireless/bluetooth-low-energy/kw36-35-34-arm-cortex-m0-pluskinetis-kw36-35-34-bluetooth-low-energy-32-bit-mcus-nxp:KW36-35 MCU KW39/38/37 https://www.nxp.com/products/wireless/bluetooth-low-energy/kw39-38-37-32-bit-bluetooth-5-0-long-range-mcus-with-can-fd-and-lin-bus-options-arm-cortex-m0-plus-core:KW39-38-37   Tools NXP Development Board URL FRDM-KW36 Freedom Development Kit https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/frdm-kw36-freedom-development-kit-for-kinetis-kw36-35-34-mcus:FRDM-KW36 FRDM-KW38 Freedom Development Kit https://www.nxp.com/design/designs/freedom-development-kit-for-kw39-38-37-mcus:FRDM-KW38   SDK SDK Version URL MCUXpresso SDK Builder https://mcuxpresso.nxp.com/en/welcome
View full article