NFC Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NFC Knowledge Base

Discussions

Sort by:
This page contains information about the supported NXP MCU/MPU and NXP NFC product combinations which have ready to use packages. These can be used as a reference. The table below contains link to where you can find the projects as well.    MCU ↓   NFC IC →  NTAG I²C  plus NTAG 5 PN7150 CLRC663 plus family* PN5180 i.MX RT1050 i.MX RT1050 + NTAG I²C plus i.MX RT1050 + CLRC663 plus   Video: Using i.MX RT1050 with CLRC663 plus family and the NFC Reader Library | NXP  i.MX RT1060 i.MX RT1060 + NTAG I²C plus  i.MX RT1060 + PN7150 i.MX 8M Mini i.MX 8M Mini + PN7150 (Andriod) i.MX 8M Mini + PN7150 (linux-yocto) i.MX 7 Dual Sabre i.MX7 Dual Sabre + PN5180 LPC1769 LPC1769 + CLRC663 plus LPC1769 + PN5180 LPC55S69 LPC55S69 + NTAG I²C plus LPC55S69 + NTAG 5 LPC55S69 + PN7150 LPC55S69 + CLRC663 plus LPC55S69 + CLRC663 plus + SE050 (smart lock) LPC11u37h LPC11u37 + PN7150 LPC11u37h + CLRC663 plus LPC11u68 LPC11u68 + PN7150 LPC82X LPC82X + PN7150 LPC845 LPC845 + CLRC663 plus Kinetis K82F K82F + CLRC663 plus K82F + PN5180 Kinetis K64F K64F + PN7150 K64F + CLRC663 plus Kinetis K63 K63 + PN7150 Kinetis K24 K24 + PN7150 KW41Z KW41Z + NTAG I²C plus KW41Z + NTAG 5 KW41Z + PN7150 *CLRC663 plus family: CLRC663 plus, MFRC630 plus, MFRC631 plus, SLRC610 plus For more information on the NFC products, please visit https://www.nxp.com/nfc
View full article
         
View full article
This document provides a step by step guide of how to use the CLRC663 plus with i.MX RT1050. For this purpose, we need to port the NFC Reader Library to i.MX RT1050.  There are two zip files attached to this document: 1. "NFCReaderLibrary_IMXRT1050_Porting Guide +DAL_IMXRT1050_BLE-NFC-V2.zip" : This folder is pre-configured for those who want to use BLE-NFC-v2 board with i.MX RT1050. 2. "NFCReaderLibrary_IMXRT1050_Porting Guide +DAL_IMXRT1050_CLEV6630B.zip" : This folder is pre-configured for those who want to use CLEV6630B board with i.MX RT1050. A video describing how to use i.MX RT1050 with CLRC663 Plus Family is available by clicking this link (Using i.MX RT 1050 with CLRC663 plus family |NXP ) as well. 
View full article
The latest NFC reader library for CLRC663 just supports LPCXpresso1769 and FRDM-K82 boards, so when customers want to porting the library to other host controller, they have to make a custom board at first, or use OM26630FDK and make a little hardware modification by following the steps described in https://www.nxp.com/docs/en/training-reference-material/NFC-READER-K64F.pdf?fsrch=1&sr=3&pageNum=1 to connect the frontend board with host controller board, but today we will discuss an alternative way. The CLEV663B Blueboard is a pure NFC frontend board, and it supports connecting with LPCXpresso board not limited with LPC1769, the main difference with OM26630FDK is the reader IC, which is CLRC663 not CLRC663 plus, but fortunately they are pin to pin compatible, so we may replace it with CLRC663 plus, and use that board for porting purpose. Before: After: please forgive my poor soldering skill... With this new board and LPC1769 Xpresso board, you may run the latest 5.12 NFC reader library, for example, the NfcrdlibEx1_BasicDiscoveryLoop demo. but you might have the following issue: This is due to ver 5.12 use another set of IO pins to connect with the reader IC, modify pin definitions in Board_Lpc1769Rc663.h can fix this issue. The final result is as below: Please note, it is recommended using NFC reader library ver 4.03 to test the hardware including CLEV663B and LPC1769Xpresso before replacing with CLRC663 plus, and you know, CLEV663B Blueboard is just optimized for CLRC663 , so the matching circuit is not the best for CLRC663 plus, it is just good enough to run the demo, so that we may know if the porting is successful, but if you want to have the best performance with CLRC663 plus, you have to redo the antenna tuning, and you may refer to https://community.nxp.com/docs/DOC-335545 for more details on that topic.
View full article
The latest NFC reader library supports lpc1769 which is a cortex M3 controller with LPCopen lib supports, so in theory , it should supports other controllers supported by LPCopen, but we have to test this, so we choose , for example, lpc11u37, a cortex M0 based controller for this porting. Platform for this porting: LPC11u37h-Xpresso Rev A: CLRC663 plus based CLEV663B Blueboard 3.0. Please refer to Prepare CLEV663B board for NFC reader library porting  for details. They are connected via LPCXpresso ports. Now we may start the porting, the IDE we use in this porting is MCUXpresso 10.1.1 1. Download and import the latest NFC reader library for CLEV6630B, as it supports CLRC663 plus. For how to import the project, please refer to https://www.nxp.com/docs/en/application-note/AN11211.pdf . 2. Download LPCopen for LPC11u37h and import it as well. 3. Now we may choose some demo in the NFC reader library, for example, the NfcrdlibEx1_BasicDiscoveryLoop, and create new build configuration for lpc11u37h. 4.Select the correct MCU 5.Modify build settings Here we find LPC1769RC663 is defined, so we have to find what is related with this definition in the code and change it/them. Fortunately they are not too many. you may find they are just related with board header file including or something like that, so it is not difficult to modify them. 6. Add new header file for the new board definition 7. add the new board definition 8. As we now use LPCopen lib for LPC11u37h instead, so we have to change the including path. As LPC11u37h is cortex M3 based, so we have to setup FreeRTOS for M0 support: and add the source code for building: 9.Change the link libraries and including path 10.Set the correct ref projects to use LPCopen for LPC11u37h. 11. Some changes in LPCopen library: 1)enable semihosting debug 2) add startup source code for the demo, this C file can be reused/imported from the some lpcopen project. 12. After the above steps, we still have to change the source code in DAL: You know , due to different version of LPCopen library,  some function definition might be changed, and different LPCXpresso boards has different pin connection to the LPCXpresso ports, so it is recommended checking the board schematics and the examples in lpcopen project , find the proper function calls to implement the source codes in the DAL folder. When you finished , the porting is done. 13. As the final image size is greater than 128K, we have enable optimization for size. 14.Demo test ok. Now , we know lpc11u37 can be supported by the latest NFC reader library, so the porting should also be applied for other Cortex M0 controllers, and it is recommended the controller with large internal flash size, better greater than 128K, but anyway, in this porting, I didn't enable the size optimization for LPCopen library, so there might be possibility to have a smaller size image at last...
View full article
The NFC reader library is supporting multiple frontends. For a customer this might become a more difficult to use, if only the part for one of the frontend chips is needed. To enhance the readability and usability, you can remove the support for not used reader ICs by simply removing the folders below NxpRdLib/comps/phhalHw/src. For instance: if you only want to use the RC663, you could simply delete the folders Pn5180, Rc523. The result would be a library that only supports RC663. This short screen recording shows the steps to reduce the number of supported Frontends.
View full article
Based on NFC reader library porting guide for LPC11u37h(Ver 5.12) ,We have a partial ported NFC reader library like below: Now, it is time to port other demos in this project. You may choose any demo, but here NfcrdlibEx2_AdvancedDiscoveryLoop is selected. and similar with before, the first step is creating a new build configuration: then in the project references, choose the LPCopen library for LPC11u37 instead. Change the MCU settings: Change the build settings: Change FreeRTOS portable to cortex M0: Search "PHDRIVER_LPC1769RC663_BOARD" in the source code of "NfcrdlibEx2_AdvancedDiscoveryLoop" project, and you may simply replace it with "PHDRIVER_LPC11U37RC663_BOARD", and there are only two places needs to be fixed. Search "PHDRIVER_LPC1769" in the source code of "NfcrdlibEx2_AdvancedDiscoveryLoop" project, and you may simply replace it with "PHDRIVER_LPC11U37". Most changes are in phApp_Init.c. Also please don't forget to enable optimization for size. Building result: Demo testing result:
View full article
As NFC reader library 5.12 also supports PN5180, switching the NFC frontend from CLRC663 to PN5180 is quite easy based on previous porting. The porting also includes the hardware settings and software modification. Hardware Setup for porting: a) Remove resistors on PNEV5180B to disconnect the onboard lpc1769 from PN5180, following steps on page 16 of https://www.nxp.com/docs/en/application-note/AN11908.pdf  b) Connect LPCXpresso board for LPC11U37 with PNEV5180 as below: Software Modification for porting: 1. Make a copy of Board_Lpc11u37Rc663.h , and change its name to "Board_Lpc11u37Pn5180.h", and import it into the DAL/boards folder. 2.Change the source code in the header file as below: 3. Add two more pins' definition and configuration for BUSY and DWL pins of PN5180, and new configuration for reset pin. and modify the reset logic: 4.Change the IRQ interrupt trigger type to rising edge. 5.Include this header file in BoardSelection.h 6.Add this new configuration in ph_NxpBuild_App.h 7.Add this new configuration in phApp_Init.h 8.Add this new configuration in ph_NxpBuild_Platform.h 9.Add this new configuration in Settings. 10.Building result: Testing result:
View full article
  NXP offers FW update code as part of the SW6705.   PN7160 is typically delivered with the initial FW 12.50.05. To ensure full reliable functionality, it is highly recommended to update the FW on 12.50.09 (or latest). The FW update might be also helpful if you need to restore the default EEPROM settings.  The FW source data are inside the sFWudpate folder.  phDnldNfc_UpdateSeq.c -> FW Version 12.50.05 phDnldNfc_UpdateSeq_12_50_09.c -> FW Version 12.50.09 The phDnldNfc_UpdateSeq.c is executed, which means what is inside of this "C" file is pushed to the PN7160 EEPROM.  So, if you want to update from 12.50.05 to 12.50.09. You need to copy content from phDnldNfc_UpdateSeq_12_50_09.c to The phDnldNfc_UpdateSeq.c.  Also, make sure that the content in phDnldNfc_UpdateSeq_12_50_09.c is commended.   Once that's done, you can debug the code.  Then you can check the progress in "Terminal"   
View full article
Extended NFC Factory Test Application includes:  Get Current value (current measurement in mA) DPC Check (Available from FW. Version 12.50.06) Get AGC Value  Get AGC Value NFCLD (AGC value reading with fixed NFC Level Detector level)   How to get it:  Just download the app from Github. Replace the "NfcFactoryTestApp.c" with the file which is here in the attachment.  Run the application as described in ->AN13287.
View full article
The PN5180 offers a low-power card detection (LPCD) feature, which allows to power down the reader for a certain period of time to safe the energy. After this time the reader must become active again to poll for the cards. If no card has been detected, the reader can go back to the power down state. PN5180 LPCD cycle time includes standby time and VBAT time. In a normal case, standby time is 200ms (user can define it),   standby current is 15uA, VBATON current is 7500uA, FieldON current: 200mA.  Average current is about 200uA, it depends on your settings and application.   This article describes how to configure PN5180 LPCD using NXP Cockpit Tool and using NXP NFC Reader library.   1  PN5190 LPCD Overview PN5180 LPCD operates in two modes: auto calibration mode and self-calibration mode. Auto calibration mode:  everything done automatically Self-calibration mode:   calibration must be done manually before starting the LPCD.   1.1  Auto Calibration Mode ( 00b) The LPCD calibration is done automatically when the LPCD is started, using the gear and threshold as defined in the EEPROM. This mode always uses the same gear for the LPCD, and is the fast and easiest way to start the LPCD.  It is recommended to choose a gear, which always keeps the ITVDD and field strength limits, so normally, the highest gear number. Auto calibration mode is most commonly used, it is a standard use case. Below parameters need to be configured correctly in EEPROM   LPCD_REFERENCE_VALUE       LPCD_REFVAL_GPO_CONTROL      LPCD_THRESHHOLD  ( 0x37) LPCD wakes up, if current AGC during “ping” > AGC Reference + LPCD_THRESHOLD or< AGC Reference -LPCD_THRESHOLD Minimum LPCD_THRESHOLD = 03…08 (very sensitive) Maximum LPCD_THRESHOLD = 40 … 50 (very robust)    LPCD_FIELD_ON_TIME  (0x36) RF on time in 8µs, excluding the fix time .   Fix time = 62µs 01 => RF on = 70µs 02 => RF on = 78µs 03 => RF on = 86µs 10 => RF on = 190µs   1.2  Self Calibration Mode (01b) The LPCD calibration must be manually triggered, with reading or writing into the AGCREF_CONFIG register.   Reading from this register - without prior writing - starts an LPCD calibration. The calibration is executed using the gear which is resulting from the actual DPC setting under the actual antenna detuning condition. AGC_GEAR is used in the LPCD self-calibration.   Reading from this register - without prior writing - delivers in addition to the AGC_GEAR value the AGC_VALUE. The AGC_VALUE is used in the LPCD self-calibration. Writing to this register: Writing data to this register is required before starting the LPCD in Self-calibration mode. Either the previously read AGC_GEAR or a user-defined gear can be chosen. The previously read AGC_VALUE has to be written in any case. Writing data to this register defines the values for AGC_GEAR without taking the actual detuning condition into account. The value of AGC_GEAR to perform an LPCD calibration which derives the AGC_VALUE. This AGC_VALUE and the AGC_GEAR are used in the LPCD self-calibration.   Self-calibration mode always requires a Read AGC_REF_CONFIG, followed by a write AGC_REF_CONFIG, using the previously read AGC_VALUE.   The LPCD calibration can be done in two different options: Option 1:  Read AGC_REF_CONFIG register:  This command executes a standard RF Field on. So depending on the load condition the DPC adjusts the output power. The final gear is take as gear for the LPCD.  This option guarantees that the maximum output power is taken for the LPCD.   Option 2: Write AGC_REF_CONFIG register: This command executes a LPCD calibration ping with the gear number, as defined in the AGC_REF_CONFIG, bit 10:13. This option allows a flexible use of any of the defined gears for the LPCD.   PN5180 LPCD self-calibrate is executed, using Gear -> AGC_REF_CONFIG (Register) Threshold -> LPCD_THRESHOLD (EEPROM) RF on time-> LPCD_FIELD_ON_TIME (EEPROM)   2  How to configure PN5180 LPCD with Cockpit The NFC Cockpit allows the configuration and test of the low power card detection of the PN5180 as shown in below picture. The LPCD parameter, which are stored in the EEPROM, can be changed and the LPCD can be started. The LPCD tab allows to directly define and write the related EEPROM addresses:   LPCD Gear #: Defines the gear number, which is used for the LPCD in auto calibration mode, stored in addr. 0x34, bit 0:3 Threshold Value: Defines the threshold window, As soon as the AGC value during the LPCD ping exceeds the AGC reference value + threshold window, the IRQ will be raised and the PN5180 wakes up. Field On Time:  Defines the ping length Standby time :  This value defines the time between two pings in ms. FieldOn Current: This value is ITVDD under the loading condition, when RF field is on with the used gear. This value does not have any influence on the LPCD execution, but simply is used to estimate the overall  average current consumption. This current estimation is calculated, when the LPCD is started.         3   How to configure PN5180 LPCD with NXP NFC reader library. The LPCD works in two phases: First the standby phase is controlled by the wake-up counter (timing defined in the instruction), which defines the duration of the standby of the PN5180. Second phase is the detection-phase. The RF field is switched on for a defined time (EEPROM configuration) and then the AGC value is compared to a reference value.   Below is the flow chart for PN5180 LPCD          
View full article