Layerscape Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Layerscape Knowledge Base

Discussions

Sort by:
This topic explains steps to configure the “MT25QU02GCBB8E12” flash device for LX2160ARDB. The steps are common for most of the flash devices. If the procedure does not work for a particular flash device, please contact NXP Support.   Prerequisite: CW version 2019.01   In a custom design with LX2160, if you want to use the MT25QU02GCBB8E12 flash device which is not supported by the flash programmer,  you can add support for the new flash device by following these steps: Browse to the directory <CW4NET-Installation-Directory>/CW4NET_v2019.01/CW_ARMv8/Config/flash/ Duplicate file devices/MT25QU01GBBB.xml and rename the duplicated file as devices/MT25QU02GBBB.xml Update devices/MT25QU02GBBB.xml as follows: <device-file>       <device>             <content>                   <device_parameters>                         <device_type>spi</device_type>                         <manufacturerid>0x20</manufacturerid>                   </device_parameters>                  <name>MT25QU02GBBB</name>                   <sectors>                        <sector count="4096" size="0x10000"/>                   </sectors>                   <organizations>                         <organization depth="128M" width="8">                              <id>0xBB22</id>                               <algorithm>                                    <fpinclude href="algorithms/MT25QU02GBBB.xml"/>                               </algorithm>                         </organization>                   </organizations>             </content>       </device> </device-file> Duplicate file algorithms/MT25QU01GBBB.xml and rename the duplicated files as algorithms/MT25QU02GBBB.xml Update algorithms/MT25QU02GBBB.xml as follows: <algorithm-file>       <architectures>             <architecture type="arm" address_size="64">                   <controller type="QSPI">                         <format>bin</format>                         <entry_point>0x100</entry_point>                         <file>QSPI_64b</file>                        <fpinclude href="algorithms/params/MT25QU02GBBB_QSPI_64.xml"/>                         <supported_operations>                               <operation>id</operation>                               <operation>erase_sectors</operation>                               <operation>program</operation>                               <operation>dump</operation>                               <operation>protect_sectors</operation>                               <operation>unprotect_sectors</operation>                         </supported_operations>                   </controller>                  <controller type="FSPI">                        <format>bin</format>                        <entry_point>0x100</entry_point>                        <file>FSPI_64b</file>                        <fpinclude href="algorithms/params/MT25QU02GBBB_QSPI_64.xml"/>                        <supported_operations>                              <operation>id</operation>                              <operation>erase_sectors</operation>                              <operation>program</operation>                             <operation>dump</operation>                              <operation>protect_sectors</operation>                              <operation>unprotect_sectors</operation>                        </supported_operations>                  </controller>               </architecture>       </architectures> </algorithm-file> Duplicate algorithms/params/MT25QU01GBBB_QSPI_64.xml and rename the duplicated file as algorithms/params/MT25QU02GBBB_QSPI_64.xml Update algorithms/params/MT25QU02GBBB_QSPI_64.xml as follows: <params_file>     <parameters_block>         <param name="function" size="0x4"/>         <param name="padding1" size="0x4"/>         <param name="base_addr" size="0x8"/>         <param name="num_items" size="0x4" type="data_size"/>         <param name="result_status" size="0x4" type="result"/>         <param name="items" size="0x8" type="data_inout"/>         <param name="qspi_base_addr" size="0x8"/>         <param name="qspi_controller_offset" size="0x4"/>         <param name="bytes_per_sector" size="0x4" value="0x10000"/>         <param name="bytes_per_page" size="0x4" value="0x100"/>          <param name="number_of_sectors" size="0x4" value="0x1000"/>         <param name="swap_enable" size="0x1"/>         <param name="workaround" size="0x1" value="0"/>         <param name="is_nand" size="0x1" value ="0"/>         <param name="block_protect_mask" size="0x1" value="0x5C"/>         <param name="top_bottom_reg_address" size="0x4" value="0"/>         <param name="top_bottom_mask" size="0x1" value="0x20"/> Update the target initialization file as follows: def Config_Flash_Devices():     fl = flash.create(TA)       # Add FlexSPI device     #fl.add_device({"alias": "xspi", "name": "MT35XU512ABA", "address": 0x0, "ws_address": 0x18000000, "ws_size": 0x1FFFF, "geometry": "8x1", "controller": "FSPI"})     # Add MT25QU02GCBB8E12 flash device      fl.add_device({"alias": "xspi", "name": "MT25QU02GBBB", "address": 0x0, "ws_address": 0x18000000, "ws_size": 0x1FFFF, "geometry": "4x1", "controller": "FSPI"}) Restart CodeWarrior for ARMv8 and start the Flash programmer. Select  MT25QU02GBBB device from flash device list and configure the desired operations.
View full article
Trusted Firmware for Cortex-A (TF-A) is an implementation of EL3 secure firmware. TF-A replaces PPA in secure firmware role. Please note the steps listed in this topic can only be performed with LSDK 18.12 and newer releases.                                                       To migrate to the TF-A boot flow from the previous boot flow (with PPA), you need to compile the TF-A binaries, bl2_<boot_mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board. For SD boot, you need to compile the following TF-A binaries. TF-A binary name Components bl2_sd.pbl BL2 binary: Platform initialization binary RCW binary for SD boot  fip.bin BL31: Secure runtime firmware BL32: Trusted OS, for example, OPTEE (optional) BL33: U-Boot/UEFI image Follow these steps to compile and deploy TF-A  binaries (bl2_sd.pbl and fip.bin) on the SD card. Compile PBL binary from RCW source file Compile U-Boot binary [Optional] Compile OPTEE binary  Compile TF-A binaries (bl2_sd.pbl and fip.bin) for SD boot Program TF-A binaries to the SD card Step 1: Compile PBL binary from RCW source file You need to compile the rcw_1600_sdboot.bin binary to build the bl2_sd.pbl binary. Clone the  rcw repository and compile the PBL binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/rcw $ cd rcw $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03  $ cd ls1043ardb If required, make changes to the rcw files. $ make   The compiled PBL binary for SD boot on LS1043ARDB, rcw_1600_sdboot.bin, is available at rcw/ls1043ardb/RR_FQPP_1455/.   See the rcw/ls1043ardb/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files. Step 2: Compile U-Boot binary You need to compile the u-boot.bin binary to build the fip.bin binary. Clone the u-boot repository and compile the U-Boot binary for TF-A. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot.git $ cd u-boot $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03  $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- $ make distclean $ make ls1043ardb_tfa_defconfig $ make If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building the LSDK 18.12 U-Boot binary.                                                       The compiled U-Boot binary, u-boot.bin, is available at u-boot/. Step 3: [Optional] Compile OPTEE binary  You need to compile the tee.bin binary to build fip.bin with OPTEE. However, OPTEE is optional, you can skip the procedure to compile OPTEE if you want to build the FIP binary without OPTEE. Clone the optee_os repository and build the OPTEE binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os $ cd optee_os $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03 $ export ARCH=arm $ export CROSS_COMPILE=aarch64-linux-gnu- $ make CFG_ARM64_core=y PLATFORM=ls-ls1043ardb $ aarch64-linux-gnu-objcopy -v -O binary out/arm-plat-ls/core/tee.elf out/arm-plat-ls/core/tee.bin The compiled OPTEE image, tee.bin, is available at optee_os/out/arm-plat-ls/core/. Step 4: Compile TF-A binaries for SD boot Clone the atf repository and compile the TF-A binaries, bl2_sd.pbl and fip.bin. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/atf $ cd atf $  git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03 $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- Build BL2 binary with OPTEE. $ make PLAT=ls1043ardb bl2 SPD=opteed BOOT_MODE=sd BL32=<path_to_optee_binary>/tee.bin pbl RCW=<path_to_rcw_binary>/rcw_1600_sdboot.bin The compiled BL2 images, bl2.bin and bl2_sd.pbl are available at atf/build/ls1043ardb/release/. For any update in the BL2 source code or RCW binary, the bl2_sd.pbl binary needs to be recompiled. To compile the BL2 binary without OPTEE: $ make PLAT=ls1043ardb bl2 BOOT_MODE=sd pbl RCW=<path_to_rcw_binary>/rcw_1600_sdboot.bin                  Build FIP binary with OPTEE and without trusted board boot. $ make PLAT=ls1043ardb fip BL33=<path_to_u-boot_binary>/u-boot.bin SPD=opteed BL32=<path_to_optee_binary>/tee.bin The compiled BL31 and FIP binaries, bl31.bin, fip.bin, are available at atf/build/ls1043ardb/release/. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled. To compile the FIP binary without OPTEE and without trusted board boot: $ make PLAT=ls1043ardb fip BOOT_MODE=sd BL33=<path_to_u-boot_binary>/u-boot.bin To compile the FIP binary with trusted board boot, refer the read me at <atf repository>/plat/nxp/README.TRUSTED_BOOT                               Step 5: Program TF-A binaries to SD card Boot LS1043ARDB from NOR flash. Ensure that the switches are set to boot the board from NOR bank 0. For booting from NOR bank 0, switch settings are as follows: SW3[1:8] = 10110011 SW4[1:8] = 00010010 SW5[1:8] = 10100010 Boot from NOR bank 0: => cpld reset For LS1043ARDB, in boot log, you'll see: Board: LS1043ARDB, boot from vBank 0   Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. FM1@DTSEC1, FM1@DTSEC2, FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSEC5 Set server IP address to the IP address of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. See LS1043ARDB Ethernet and FMC port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux.                                                   => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime FM1@DTSEC4 => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact FM1@DTSEC4 Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command.  Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using FM1@DTSEC4 device host 192.168.1.1 is alive   Load TF-A binaries from the TFTP server For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow.                               Flash bl2_sd.pbl: => tftp 82000000 bl2_sd.pbl => mmc write 82000000 8 <blk_cnt> Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For example, when you load bl2_sd.pbl from the TFTP server, if the bytes transferred is 82809 (14379 hex), then blk_cnt is calculated as "82809/512 = 161 (A1 hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 8 AB Flash fip.bin: => tftp 82000000 fip.bin => mmc write 82000000 800 <blk_cnt> Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For example, when you load fip.bin from the TFTP server, if the bytes transferred is 1077157 (106fa5 hex), then blk_cnt is calculated as "1077157/512 = 2103 (837 hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 800 841 Boot from SD card: => cpld reset sd LS1043ARDB will boot with TF-A. In the boot log, you will see: NOTICE: Fixed DDR on board NOTICE: 2 GB DDR4, 32-bit, CL=11, ECC off NOTICE: BL2: v1.5(release):LSDK-19.03 NOTICE: BL2: Built : 14:59:48, May 28 2019 NOTICE: BL31: v1.5(release):LSDK-19.03 NOTICE: BL31: Built : 15:07:21, May 28 2019 NOTICE: Welcome to LS1043 BL31 Phase U-Boot 2018.09 (May 23 2019 - 14:35:16 +0530) SoC: LS1043AE Rev1.1 (0x87920011) Clock Configuration: CPU0(A53):1600 MHz CPU1(A53):1600 MHz CPU2(A53):1600 MHz CPU3(A53):1600 MHz Bus: 400 MHz DDR: 1600 MT/s FMAN: 500 MHz Reset Configuration Word (RCW): 00000000: 08100010 0a000000 00000000 00000000 00000010: 14550002 80004012 60040000 c1002000 00000020: 00000000 00000000 00000000 00038800 00000030: 00000000 00001100 00000096 00000001 Model: LS1043A RDB Board Board: LS1043ARDB, boot from SD
View full article
  The below steps are used to update composite firmware image in FlexSPI NOR flash and SD/eMMC card using an SD card. Load composite firmware image on SD card Option 1: Using HxD editor on Windows system Option 2: Using Linux system Program updated composite firmware in SD card Program updated composite firmware in FlexSPI NOR flash (DEV#0 and DEV#1) Program updated composite firmware in eMMC card NOTE: Examples shown below use the LX2160ARDB Rev 2 image names. The same examples are applicable for LX2160ARDB Rev 1 also by replacing the Rev 2 image name with the corresponding Rev 1 image name. Step 1: Load composite firmware image in SD card Option 1: Using HxD editor on Windows system The below steps describe how to use an HxD editor on a Windows machine to program firmware image on SD card without partitioning the card. NOTE: Use the following link to download the HxD editor for Windows: https://mh-nexus.de/en/hxd/. Download composite firmware image on Windows machine using the following links: For LX2160ARDB Rev1: For SD boot: https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_uboot_sdboot.img For FlexSPI boot: https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_uboot_xspiboot.img For eMMC boot: https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_uboot_emmcboot.img For LX2160ARDB Rev 2: For SD boot: https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_rev2_uboot_sdboot.img For FlexSPI boot: https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_rev2_uboot_xspiboot.img For eMMC boot: https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_rev2_uboot_emmcboot.img Format SD card. Open HxD editor and run as administrator. Open firmware_lx2160ardb_rev2_uboot_sdboot.img binary file in HxD editor. Copy the binary file (CTRL + A and CTRL + C). Plug the SD card either directly into the slot available on your Windows machine or using a memory card adapter/reader. Open disk (SHIFT + CTRL +D). Open disk NOTE: Uncheck the 'Open as Readonly' option while opening the disk. Go to SD block (or sector) 8 (0x1000). HxD Editor - Sector 8 Paste the copied binary image content (CTRL + B). Make sure to copy the image at SD block no. 8. Save the content. Repeat above steps to load firmware_lx2160ardb_rev2_uboot_xspiboot.img and firmware_lx2160ardb_rev2_uboot_emmcboot.img binary image in SD card. For example: Load firmware_lx2160ardb_rev2_uboot_xspiboot.img image in SD card at block no. 150500 and firmware_lx2160ardb_rev2_uboot_emmcboot.img image in SD card at block no. 300500. NOTE: Make sure that you load these images in SD blocks so that the images do not get overwrite. Eject the SD card. Option 2: Using Linux system Download composite firmware image on Linux machine using the following links: For LX2160ARDB Rev1: For SD boot: $ wget https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_uboot_sdboot.img For FlexSPI boot: $ wget https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_uboot_xspiboot.img For eMMC boot: $ wget https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_uboot_emmcboot.img For LX2160ARDB Rev 2: For SD boot: $ wget https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_rev2_uboot_sdboot.img For FlexSPI boot: $ wget https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_rev2_uboot_xspiboot.img For eMMC boot: $ wget https://www.nxp.com/lgfiles/sdk/lsdk2004/firmware_lx2160ardb_rev2_uboot_emmcboot.img Format SD card (optional, required if the card already has some data so to ensure that images have been loaded to card without conflicting with the existing data). Load composite firmware image to SD card. For SD boot: dd if=firmware_lx2160ardb_rev2_uboot_sdboot.img of=/dev/sdb bs=512 seek=8 For FlexSPI boot: dd if=firmware_lx2160ardb_rev2_uboot_xspiboot.img of=/dev/sdb bs=512 seek=150500 For eMMC boot: dd if=firmware_lx2160ardb_rev2_uboot_emmcboot.img of=/dev/sdb bs=512 seek=300500 Eject the SD card. Step 2: Program updated composite firmware in SD card NOTE: Since the updated composite firmware is now available at required block (SD start block no. 😎 in SD card, therefore, you can boot the board using SD card using following steps. Insert the SD card in SD slot of LX2160ARDB. Set switch settings to boot from SD card : SW1[1:4] = 1000  Restart the board. The board boots from updated composite firmware (SD boot) image loaded in the SD card. The U-Boot log displays: Model: NXP Layerscape LX2160ARDB Board Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from SD Step 3: Program updated composite firmware in FlexSPI NOR flash (DEV#0 and DEV#1) Insert the SD card in SD slot of LX2160ARDB. Set switch settings to boot from SD card=> SW1[1:4] = 1000 Restart the board and stop at U-Boot prompt. Load firmware_lx2160ardb_rev2_uboot_xspiboot.img at 0xa0000000 (DDR address) using the following command: => mmc read 0xa0000000 <start_block_number> <block_count> where, <start_block_number> - start block number in SD card where you have loaded the firmware. For example, if you have loaded firmware at SD card block 150500, start_block_number in hex is 24be4 <block_count> - number of blocks in SD card that needs to be read as per the file size. It is calculated as ‘file size /512’ + ‘few sectors for rounding up so that last block is not missed’. If firmware file size is 52158124 (31bdeac hex), block_count is 52158124/512 = 101871 (18DEF hex) + 10 (A hex) = 101881 (18DF9 hex). For example: => mmc read 0xa0000000 24be4 18DF9 Program default FlexSPI NOR flash: =>sf probe 0:0 =>sf update 0xa0000000 0x0 <firmware_lx2160ardb_rev2_uboot_xspiboot.img _filesize_in_hex> For example: => sf update 0xa0000000 0x0 31BDEAC    Program alternate FlexSPI NOR flash: => sf probe 0:1 => sf update 0xa0000000 0x0 <firmware_lx2160ardb_rev2_uboot_xspiboot.img _filesize_in_hex>  Restart the board to boot from FlexSPI NOR flash 0 (DEV#0). Switch settings to boot from DEV#0: SW1[1:8] = 1111 1000 The U-Boot log shows the following message: Model: NXP Layerscape LX2160ARDB Board Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#0 Restart the board to boot from FlexSPI NOR flash 1 (DEV#1) as well. Switch settings to boot from DEV#1 SW1[1:4] = 1111 1001  The U-Boot log shows the following message: Model: NXP Layerscape LX2160ARDB Board Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#1 Step 4: Program updated composite firmware in eMMC card Insert the SD card in SD slot of LX2160ARDB. Set switch settings to boot from SD card: SW1[1:4] = 1000 Restart the board and stop at U-Boot prompt. Load firmware_lx2160ardb_rev2_uboot_emmcboot.img at 0xa0000000 (DDR address) using the following command: => mmc dev 0; mmc read 0xa0000000 <start_block_number> <block_count> where, <start_block_number> - start block number in SD card where you have loaded the firmware. For example, if you have loaded firmware at SD card block 300500, start_block_number in hex is 495D4 <block_count> - number of blocks in SD card that needs to be read as per the file size. It is calculated as ‘file size /512’ + ‘few sectors for rounding up so that last block is not missed’. If firmware file size is 52158124 (31bdeac hex), block_count is 52158124/512 = 101871 (18DEF hex) + 10 (A hex) = 101881 (18DF9 hex). For example: => mmc read 0xa000000 495D4 18DF9 Program eMMC card. => mmc dev 1; mmc write 0xa0000000 8 18DF9 Restart the board to boot from eMMC. Set switch settings to boot from eMMC card. SW1[1:8] = 1001 1000 The U-Boot log shows the following message: Model: NXP Layerscape LX2160ARDB Board Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from eMMC
View full article
This how-to topic is applicable for only LSDK 18.09 and older releases. Follow these steps to update the PBL/RCW binary in QSPI NOR flash.  cpld reset boots the board from QSPI NOR flash0 and cpld reset altbank boots the board from QSPI NOR flash1. sf probe 0:1 means that the alternate bank will be written to. So, if the board boots from QSPI NOR flash0 and sf probe 0:1 is entered at the U-Boot prompt, the commands that follow will program QSPI NOR flash1.   Compiling PBL binary from RCW source file (optional) If user already has a PBL binary this step can be skipped.   Clone the rcw  repository and compile the PBL binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/rcw $ cd rcw $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-18.09 LSDK-18.09  $ cd ls1046ardb If required, make changes to the rcw files. $ make The default PBL binary for LS1046ARDB is RR_FFSSPPPH_1133_5559/rcw_1800_qspiboot.bin.swapped By default the QSPI controller on LS1046A reads/writes in 64-bit big endian (BE) mode. This makes it necessary to use a byte swapped PBL binary image, e.g., rcw_1800_qspiboot.bin.swapped. The last PBI command in rcw_1800_qspiboot.bin.swapped is a write to the QPSI_MCR register that changes the endianness of the QSPI controller to 64-bit little endian (LE). With this change, subsequent accesses will be made in little endian format. See the rcw/ls1046ardb/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files. Flashing PBL binary to QSPI NOR flash PBL image can be loaded to LS1046ARDB from a TFTP server or from a mass storage device (SD, USB, or SATA). Option 1: Load image from the TFTP server Boot LS1046ARDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI. For booting from QSPI, SW5[1:8] = 00100010 Boot from QSPI NOR flash0: => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Set up Ethernet connection When the board boots up, U-Boot prints a list of enabled Ethernet interfaces. FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1, FM1@TGEC2 Set server IP to the IP of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the ethernet interface connected to the TFTP server. Refer LS1046ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux. => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime FM1@DTSEC4 => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact FM1@DTSEC4 Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command. Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using FM1@DTSEC4 device host 192.168.1.1 is alive Load PBL binary from the TFTP server Program QSPI NOR flash1: => sf probe 0:1 TFTP PBL binary from the server to the DDR and write image to QSPI NOR flash1: => tftp 0xa0000000 <pbl binary> => print filesize filesize=128 => sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize  Address 0x0 is the location of PBL in the QSPI NOR flash.  Refer Flash layout for boot flow with PPA – LSDK 18.09 and older releases for the complete flash memory layout. Boot from QSPI NOR flash1: => cpld reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in the QSPI NOR flash. Option 2: Load image from partition on mass storage device (SD, USB, or SATA) Boot LS1046ARDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI. For booting from the QSPI flash, SW5[1:8] = 00100010 Boot from flash0: => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on the storage device. => ls mmc <device:partition> For example: => ls mmc 0:3 System Volume Information/ 168 rcw_1800_qspiboot.bin.swapped 1 file(s), 1 dir(s) Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 If the ls command fails to run, check that U-Boot in QSPI NOR flash0 supports the command by typing ls at the U-Boot prompt: => ls ls - lists files in a directory (default) Usage: ls <interface> [<dev[:part]> [directory]] - Lists files in directory [directory] of partition [part] on device type [interface] and instance [dev]. If U-Boot does not support this command, then update the composite firmware image in QSPI NOR flash0. For steps to update composite firmware image in QSPI NOR flash, refer LS1046ARDB - How to update composite firmware image in QSPI NOR flash. Program QSPI NOR flash1: => sf probe 0:1 Load PBL image from the storage device. => load mmc <device:partition> a0000000 <image name> => print filesize For example: => load mmc 0:3 a0000000 rcw_1800_qspiboot.bin.swapped 168 bytes read in 13 ms (11.7 KiB/s) => print filesize filesize=a8 Or => load usb <device:partition> a0000000 <image name> => print filesize Or => load scsi <device:partition> a0000000 <image name> => print filesize Program image to QSPI NOR flash: => sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize Address 0x0 is the location of PBL binary in QSPI NOR flash.  Refer Flash layout for boot flow with PPA – LSDK 18.09 and older releases for the complete flash memory layout. Boot from QSPI NOR flash1: => cpld reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in QSPI NOR flash.
View full article
Follow these steps to update the Linux kernel image and device tree on the eMMC card. NOTE: Below steps are valid for both LX2160ARDB Rev 1.0 and Rev 2.0 revisions. Compiling Linux kernel images and device tree   On Linux host, clone the repository with Linux kernel image and device tree: $git clone https://source.codeaurora.org/external/qoriq/qoriq-components/linux $ cd Linux $ git checkout -b <new branch> <start point> For example, $ git checkout -b LSDK-20.04-V5.4 LSDK-20.04-V5.4 where LSDK-20.04-V5.4 refers to a tag in the format LSDK-<LSDK version>- V<kernel version> $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- defconfig lsdk.config If you want to make changes to the device tree, open and edit arch/arm64/boot/dts/freescale/fsl-lx2160a-rdb.dts  You can make changes in the Linux kernel source code also if required. $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- The binary kernel image Image and compressed kernel image Image.gz are in arch/arm64/boot/. The device tree blob fsl-lx2160a-rdb.dtb is in arch/arm64/boot/dts/freescale/. Copying the compiled kernel images and device tree to the eMMC card   Step1: Copy the kernel images and device tree from Linux host machine Ensure the eMMC card available on the reference board. Check DIP switch settings for the desired boot type. Power on the board and let the board boot to LSDK distro prompt. In case LSDK image is not deployed on the storage device on the board, execute the following command under U-Boot prompt to boot the board to TinyDistro. For FlexSPI NOR boot: => run xspi_bootcmd For SD/eMMC boot: => run sd_bootcmd Log in to LSDK distro as root/root or TinyDistro as “root”. Bring up a network interface with Linux host. Dynamic IP address assignment: # udhcpc -i <port name in Tiny/LSDKDistro> Static IP address assignment: # ifconfig <port name in Tiny/LSDKDistro> <IP address> netmask <netmask address> up For example: # ifconfig enp1s0 192.168.2.120 netmask 255.255.255.0 up  Copy the Kernel, Kernel.gz images and device tree blob fsl-lx2160a-rdb.dtb from host machine. # mkdir <destination folder> # scp <user>@<ipaddress>:<file path>/<filename> <destination folder> For example: # mkdir /kernelfiles # scp user1@192.168.2.1:/tftpboot/Image.gz /kernelfiles   Step2: Copy the kernel image and device tree to the eMMC card sudo fdisk -l to list the disks that are accessible on board. Mount the eMMC card partition that contains Linux kernel images and device tree. NOTE: Use the command cat /proc/partitions to see the list of devices, their partitions along with their sizes to make sure that the correct device and partition name have been chosen. The eMMC storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c. Make sure to choose the correct device name, because data on this device will be replaced. If your Linux host machine supports read/write eMMC card directly without an extra eMMC card reader device, the device name of eMMC card is typically mmcblk1. In general, the Linux kernel images and device tree are stored in the second partition of the eMMC device (mmcblk1p2). For detail on storage layout on SD/eMMC/USB/SATA for LSDK images deployment, refer to section "LSDK memory layout and Userland" in Layerscape Software Development Kit User Guide. # sudo mkdir <mount_folder> # sudo mount /dev/sdX <mount_folder>  For example: # sudo mkdir /carddata # sudo mount /dev/mmcblk1p2 /carddata Replace Image, Image.gz, and fsl-lx2160a-rdb.dtb on the eMMC card with the new files copied in <destination folder> in the steps above. # sudo cp <destination folder>/Image <destination folder>/Image.gz <destination folder>/fsl-lx2160a-rdb.dtb <mount_location> For example: # sudo cp /kernelfiles/Image /kernelfiles/Image.gz /kernelfiles/fsl-lx2160a-rdb.dtb /carddata Unmount the card. for example: # sudo umount /dev/mmc1blk1p2 Reboot the board. At U-Boot prompt, run the following command to boot the board to LSDK distro using eMMC card. => run bootcmd_mmc1 If U-Boot does not find LSDK on the eMMC card, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored on the eMMC card.    
View full article
Trusted Firmware for Cortex-A (TF-A) is an implementation of EL3 secure firmware. TF-A replaces PPA in secure firmware role. Please note the steps listed in this topic can only be performed with LSDK 18.12 and newer releases.                      To migrate to the TF-A boot flow from the previous boot flow (with PPA), you need to compile the TF-A binaries, bl2_<boot_mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board. For NAND boot, you need to compile the following TF-A binaries. TF-A binary name Components bl2_nand BL2 binary: Platform initialization binary RCW binary for NAND boot  fip.bin BL31: Secure runtime firmware BL32: Trusted OS, for example, OPTEE (optional) BL33: U-Boot/UEFI image Follow these steps to compile and deploy TF-A  binaries (bl2_nand.pbl and fip.bin) on the NAND flash. Compile PBL binary from RCW source file Compile U-Boot binary [Optional] Compile OPTEE binary  Compile TF-A binaries (bl2_nand.pbl and fip.bin) for NAND boot Program TF-A binaries to the NAND flash Step 1: Compile PBL binary from RCW source file You need to compile the rcw_1600_nandboot.bin binary to build the bl2_nand.pbl binary. Clone the  rcw repository and compile the PBL binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/rcw $ cd rcw $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03  $ cd ls1043ardb If required, make changes to the rcw files. $ make   The compiled PBL binary for NAND boot on LS1043ARDB, rcw_1600_nandboot.bin, is available at rcw/ls1043ardb/RR_FQPP_1455/.   See the rcw/ls1043ardb/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files. Step 2: Compile U-Boot binary You need to compile the u-boot.bin binary to build the fip.bin binary. Clone the u-boot repository and compile the U-Boot binary for TF-A. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot.git $ cd u-boot $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03  $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- $ make distclean $ make ls1043ardb_tfa_defconfig $ make If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building the LSDK 18.12 U-Boot binary.                                                       The compiled U-Boot binary, u-boot.bin, is available at u-boot/. Step 3: [Optional] Compile OPTEE binary  You need to compile the tee.bin binary to build fip.bin with OPTEE. However, OPTEE is optional, you can skip the procedure to compile OPTEE if you want to build the FIP binary without OPTEE. Clone the optee_os repository and build the OPTEE binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os $ cd optee_os $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03 $ export ARCH=arm $ export CROSS_COMPILE=aarch64-linux-gnu- $ make CFG_ARM64_core=y PLATFORM=ls-ls1043ardb $ aarch64-linux-gnu-objcopy -v -O binary out/arm-plat-ls/core/tee.elf out/arm-plat-ls/core/tee.bin The compiled OPTEE image, tee.bin, is available at optee_os/out/arm-plat-ls/core/. Step 4: Compile TF-A binaries for NAND boot Clone the atf repository and compile the TF-A binaries, bl2_nand.pbl and fip.bin. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/atf $ cd atf $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.03 LSDK-19.03 $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- Build BL2 binary with OPTEE. $ make PLAT=ls1043ardb bl2 SPD=opteed BOOT_MODE=nand BL32=<path_to_optee_binary>/tee.bin pbl RCW=<path_to_rcw_binary>/rcw_1600_nandboot.bin The compiled BL2 images, bl2.bin and bl2_nand.pbl are available at atf/build/ls1043ardb/release/. For any update in the BL2 source code or RCW binary, the bl2_nand.pbl binary needs to be recompiled. To compile the BL2 binary without OPTEE: $ make PLAT=ls1043ardb bl2 BOOT_MODE=nand pbl RCW=<path_to_rcw_binary>/rcw_1600_nandboot.bin                  Build FIP binary with OPTEE and without trusted board boot. $ make PLAT=ls1043ardb fip BL33=<path_to_u-boot_binary>/u-boot.bin SPD=opteed BL32=<path_to_optee_binary>/tee.bin The compiled BL31 and FIP binaries, bl31.bin, fip.bin, are available at atf/build/ls1043ardb/release/. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled. To compile the FIP binary without OPTEE and without trusted board boot: $ make PLAT=ls1043ardb fip BOOT_MODE=nand BL33=<path_to_u-boot_binary>/u-boot.bin To compile the FIP binary with trusted board boot, refer the read me at <atf repository>/plat/nxp/README.TRUSTED_BOOT                               Step 5: Program TF-A binaries to NAND flash Boot LS1043ARDB from NOR flash. Ensure that the switches are set to boot the board from NOR bank 0. For booting from NOR bank 0, switch settings are as follows: SW3[1:8] = 10110011 SW4[1:8] = 00010010 SW5[1:8] = 10100010 Boot from NOR bank 0: => cpld reset For LS1043ARDB, in boot log, you'll see: Board: LS1043ARDB, boot from vBank 0   Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. FM1@DTSEC1, FM1@DTSEC2, FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSEC5 Set server IP address to the IP address of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. See LS1043ARDB Ethernet and FMC port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux.                                                   => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime FM1@DTSEC4 => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact FM1@DTSEC4 Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command.  Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using FM1@DTSEC4 device host 192.168.1.1 is alive   Load TF-A binaries from the TFTP server For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow.                               Flash bl2_nand.pbl: => tftp 82000000 bl2_nand.pbl => nand erase 0x0 $filesize;nand write 0x82000000 0x0 $filesize; Flash fip.bin: => tftp 82000000 fip.bin => nand erase 0x100000 $filesize;nand write 0x82000000 0x100000 $filesize; Boot from NAND flash: => cpld reset nand LS1043ARDB will boot with TF-A. In the boot log, you will see: Fixed DDR on board NOTICE: 2 GB DDR4, 32-bit, CL=11, ECC off NOTICE: BL2: v1.5(release):LSDK-19.03 NOTICE: BL2: Built : 14:46:39, Jun 13 2019 NOTICE: BL31: v1.5(release):LSDK-19.03 NOTICE: BL31: Built : 14:52:37, Jun 13 2019 NOTICE: Welcome to LS1043 BL31 Phase U-Boot 2018.09 (Jun 13 2019 - 12:27:15 +0530) SoC: LS1043AE Rev1.1 (0x87920011) Clock Configuration: CPU0(A53):1600 MHz CPU1(A53):1600 MHz CPU2(A53):1600 MHz CPU3(A53):1600 MHz Bus: 400 MHz DDR: 1600 MT/s FMAN: 500 MHz Reset Configuration Word (RCW): 00000000: 08100010 0a000000 00000000 00000000 00000010: 14550002 80004012 e0106000 c1002000 00000020: 00000000 00000000 00000000 00038800 00000030: 00000000 00001100 00000096 00000001 Model: LS1043A RDB Board Board: LS1043ARDB, boot from NAND
View full article
Follow these steps to update the Linux kernel image and device tree on the SD card.  Compiling Linux kernel images and device tree On Linux host, clone the repository with Linux kernel image and device tree: $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/linux $ cd linux $ git checkout -b <new branch> <start point> For example, $ git checkout -b LSDK-19.06-V4.14 LSDK-19.06-V4.14 where LSDK-19.06-V4.14 refers to a tag in the format LSDK-<LSDK version>-V<kernel version> $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- defconfig lsdk.config If you want to make changes to the device tree, open and edit arch/arm64/boot/dts/freescale/fsl-ls1043a-rdb.dts $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- The binary kernel image Image and compressed kernel image Image.gz are in arch/arm64/boot/. The device tree blob fsl-ls1043a-rdb.dtb is in arch/arm64/boot/dts/freescale/. Copying the compiled kernel images and device tree to the SD card Plug the SD card into the Linux host machine. Mount the SD card partition that contains Linux kernel images and device tree. sudo mkdir <mount_location> sudo mount /dev/sdX <mount_location> Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct device names have been chosen. The SDHC storage drive in the Linux PC is detected as /dev/ sdX, where X is a letter such as a, b, c. Make sure to choose the correct device name, because data on this device will be replaced. If your Linux host machine supports read/write SDHC card directly without an extra SDHC card reader device, the device name of SDHC card is typically mmcblk0. Replace Image, Image.gz, and fsl-ls1043a-rdb.dtb on the SD card with the new files compiled in the steps above. sudo cp /linux/arch/arm64/boot/Image /linux/arch/arm64/boot/Image.gz /linux/arch/arm64/boot/dts/freescale/fsl-ls1043a-rdb.dtb <mount_location> sudo umount /dev/sdX Plug the SD card into LS1043ARDB and boot the board to Ubuntu using the SD card.  If U-Boot does not find LSDK on the SD card, it will boot TinyDistro from lsdk_linux_arm64_tiny.itb stored on the SD card. You can confirm that Linux kernel and device tree is updated on the SD card by running this command and checking the timestamp. root@localhost:~# uname -a Linux localhost 4.14.104 #2 SMP PREEMPT Wed Aug 21 17:14:01 IST 2019 aarch64 aarch64 aarch64 GNU/Linux
View full article
IEEE Std 1588 standard is for a precision clock synchronization protocol for networked measurement and control, define a Precision Time Protocol (PTP) designed to synchronize real-time clocks in a distributed system. This document introduces IEEE 1588 related basic concept and Precision Time Protocol, hardware assist for 1588 compliant time stamping on QorIQ  LS1021 platform, Linux Kernel PTP framework device driver implementation working with ptpd stack, IEEE 1588 test setup on LS1021ATSN platform and results. IEEE 1588 Introduction and Precision Time Protocol Hardware Assist for 1588 Compliant Time Stamping on QorIQ LS1021 Platform      2.1 Accessing Timer Registers      2.2. Time-Stamping on Ethernet Frame Reception for eTSEC      2.3. Time-Stamping on Ethernet Frame Transmission for eTSEC IEEE 1588 PTP Linux Device Driver and PTPd Application     3.1 IEEE 1588 Linux Software Structure     3.2 IEEE 1588 Linux Device Driver 3.3 PTPd Application Setup IEEE 1588 test on LS1021ATSN Platform    4.1 Build Images with OpenIL    4.2 Setup IEEE 1588 test environment on LS1021ATSN    4.3 Test result
View full article
Getting RCW image: Getting UEFI image:                              Getting PPA image: Getting Linux kernel and DTB, and Root FS images: - Download Image , fsl-ls1043a-uefi-rdb.dtb and fsl-image-core-ls1043ardb.ext2.gz . - Copy Image and fsl-image-core-ls1043ardb.ext2.gz to the TFTP server directory. Getting GRUB2 image for AARCH64 and sample GRUB configuration: - Download grub image from this location. - Download sample grub configuration from here . Placing GRUB image on FAT formatted SD card: Install FAT32 file system on SD card - Use the DISKPART utililty on windows command prompt to format a SD card with FAT32 file system. Use the following snapshot for reference - Copy grubaa64.efi and ls1043a-grub.cfg to the SD card. Booting to UEFI prompt on LS1043a RDB Board: Boot to u-boot prompt from NOR flash bank 0 on LS1043a RDB.  Setup serial port connection on host machine, to capture logs from the target LS1043a RDB board.. Reset the board to boot u-boot on bank 0, assuming that there is a valid u-boot image flashed on the primary bank 0. Copy Images to NOR flash alternate bank using u-boot commands sete uefi 'tftp 80000000 LS1043ARDB_EFI.fd; erase 0x64400000 0x644FFFFF ; cp.b 80000000 0x64400000 $filesize' sete rcw 'tftp 80000000 rcw_uefi_1500.bin; erase 0x64000000 0x640FFFFF ; cp.b 80000000 0x64000000 $filesize' sete ppa 'tftp 80000000 ppa.itb; erase 0x64500000 0x645FFFFF ; cp.b 80000000 0x64500000 $filesize' sete dtb 'tftp 80000000 fsl-ls1043a-uefi-rdb.dtb; erase 0x65B00000 0x65BFFFFF; cp.b 80000000 65B00000 $filesize' run uefi run ppa run rcw run dtb Note: The host machine is assumed to be having tftp server running, with the relevant files in place. The rcw, uefi, dtb and ppa images can also be found at compass link shared above. Note: Make sure SD card is inserted into the SD card slot on the board. Reset RDB to boot from NOR flash bank 4 => cpld reset altbank You should get UEFI boot prompt, as shown in the image below. Enter 2 to load Shell. On the Shell prompt run the following commands Shell> FS0:   Shell> ls You should see a list of the grub executable and configurations files present on SD card. Booting Linux via PXE on LS1043a RDB: Note: atftpd or tftpd-hpa, is required as tftp server for PXE boot to work. tftpd is not supported.  Load grub by entering the name of the grub executable. Shell> grubaa64.efi On the grub prompt, setup the server and client IPs for TFTP transfer. grub> set net_default_server=<server_ip> grub> net_add_addr eno0 efinet0 <client_ip> Load the grub configuration. grub> configfile (hd3,msdos1)/ls1043a-grub.cfg Grub menu is listed. Choose the entry for liinux boot. See the snapshot below for reference. Linux boot should start in around 7-8 minutes. Data transfer speed is around 100 KB/s.
View full article
In the U-Boot log, the names of the Ethernet interfaces are printed in the format <name>@<interface type>, for example, DPMAC3@xgmii. DPMAC is a DPAA2 object that identifies the physical interface.    Interface name is not fixed in LX2160ARDB, depending upon which interface is active, name will be assigned  in TinyDistro as well as in Ubuntu distribution. Interface names can be checked using ls-listni command. root@TinyDistro:~# ls-listni dprc.1/dpni.1 (interface: eth0, end point: dpmac.2) dprc.1/dpni.0 (interface: eth1, end point: dpmac.17)   For details regarding creation of a DPAA2 network interface (DPNI) in Linux, see "LSDK Quick Start Guide for LX2160ARDB -> Bringing up DPAA2 network interfaces" in Layerscape Software Development Kit User Guide.   The table below shows the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux for LX2160ARDB.    Port name on chassis Port name in U-Boot Port name in Linux (tinyDistro) Port name in Linux (Ubuntu userland) Description 40G MAC2 DPMAC2@xlaui4 Interface name will be ethn, for example eth0, eth1. Eth0: If PCIe is connected, else it is any connected DPAA2 interface. PCIe: enp1s0   DPAA: ethx 40G MAC2 QSFP+ port 10G MAC3 DPMAC3@xgmii 10G MAC3 USXGMII port 10G MAC4 DPMAC4@xgmii 10G MAC4 USXGMII port 25G MAC5 DPMAC5@25g-aui 25G MAC5 SFP port 25G MAC6 DPMAC6@25g-aui 25G MAC6 SFP port 1G MAC17 DPMAC17@rgmii-id 1G MAC17 RGMII port 1G MAC18 DPMAC18@rgmii-id 1G MAC18 RGMII port  
View full article
The table below shows the mapping of the Ethernet port names appearing on the front panel of the LS1043ARDB chassis with the port names in U-Boot, tinyDistro, and NXP LSDK userland.  Ethernet port mapping Port name on chassis Port name in U-Boot Port name in Linux (tinyDistro) Port name in Linux (LSDK userland) QSGMII.P0 FM1@DTSEC1 eth0 fm1-mac1 QSGMII.P1 FM1@DTSEC2 eth1 fm1-mac2 QSGMII.P2 FM1@DTSEC3 eth2 fm1-mac5 QSGMII.P3 FM1@DTSEC4 eth3 fm1-mac6 RGMII1 FM1@DTSEC5 eth4 fm1-mac3 RGMII2 FM1@DTSEC6 eth5 fm1-mac4 10G Copper FM1@TGEC1 eth6 fm1-mac9 Below is a table that shows the mapping between port numbers (from configuration file), character devices, hardware ports (Rx) and mEMACs for the standard SDK configuration (using RCW protocol 1455). FMC port mapping Port name on chassis XML port number (configuration file) Serdes protocol Character device Hardware port (device tree node) mEMAC (device tree node) QSGMII.P0 1 qsgmii fm0-port-rx0 port@88000 ethernet@e0000 QSGMII.P1 2 qsgmii fm0-port-rx1 port@89000 ethernet@e2000 QSGMII.P2 5 qsgmii fm0-port-rx4 port@8c000 ethernet@e8000 QSGMII.P3 6 qsgmii fm0-port-rx5 port@8d000 ethernet@ea000 RGMII1 3 rgmii fm0-port-rx2 port@8a000 ethernet@e4000 RGMII2 4 rgmii fm0-port-rx3 port@8b000 ethernet@e6000 10G Copper 9 xgmii fm0-port-rx6 port@90000 ethernet@f0000
View full article
Please note that the LSDK memory layout for PPA boot flow explained in this topic is only applicable for LSDK 18.09 and older releases. For LSDK 18.12 and newer releases, refer Flash layout for new boot flow with TF-A. The following table shows the memory layout of various firmware stored in NOR/NAND/QSPI flash device or SD card on all QorIQ Reference Design Boards. Firmware Definition MaxSize NOR/NAND/QSPI Flash Offset SD Start Block No. RCW + PBI 1 MB 0x00000000 0x00008 Boot firmware (U-Boot or UEFI) 2 MB 0x00100000 0x00800 Boot firmware environment 1 MB 0x00300000 0x01800 PPA firmware 2 MB 0x00400000 0x02000 Secure boot headers 3 MB 0x00600000 0x03000 DPAA1 FMAN ucode 256 KB 0x00900000 0x04800 QE/uQE firmware 256 KB 0x00940000 0x04A00 Ethernet PHY firmware 256 KB 0x00980000 0x04C00 DPAA2-MC or PFE firmware 3 MB 0x00A00000 0x05000 DPAA2 DPL 1 MB 0x00D00000 0x06800 DPAA2 DPC 1 MB 0x00E00000 0x07000 Device tree(needed by uefi) 1 MB 0x00F00000 0x07800 Kernel lsdk_linux_<arch>.itb 16 MB 0x01000000 0x08000 Ramdisk rfs 32 MB 0x02000000 0x10000 The following figures highlight the changes in the flash layout for boot flow with PPA and flash layout for new TF-A boot flow. Flash layout for boot flow with PPA   Changed flash layout for TF-A boot flow
View full article
Trusted Firmware for Cortex-A (TF-A) is an implementation of EL3 secure firmware. TF-A replaces PPA in secure firmware role. Note: Please note the steps listed in this topic can only be performed with LSDK 18.12 and newer releases.                                                                 To migrate to the TF-A boot flow from the previous boot flow (with PPA), you need to compile the TF-A binaries, bl2_<boot_mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board. For SD/eMMC boot, you need to compile the following TF-A binaries. TF-A binary name Components bl2_sd.pbl/bl2_emmc.pbl BL2 binary: Platform initialization binary RCW binary for SD/emmc boot  fip.bin BL31: Secure runtime firmware BL32: Trusted OS, for example, OPTEE (optional) BL33: U-Boot/UEFI image   Follow these steps to compile and deploy TF-A  binaries (bl2_sd.pbl/bl2_emmc.pbl and fip.bin) on the SD/eMMC card. Compile RCW binary Compile U-Boot binary [Optional] Compile OPTEE binary  Compile TF-A binaries (bl2_sd.pbl/bl2_emmc.pbl and fip.bin) for SD/eMMC boot Program TF-A binaries to the SD/eMMC card Step 1: Compile RCW binary You need to compile the RCW binary to build the bl2_sd.pbl/bl2_emmc.pbl binary. Clone the  rcw repository and compile the RCW binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/rcw $ cd rcw $ git checkout -b <new branch name> <LSDK tag>. For example, $  git checkout -b LSDK-20.04 LSDK-20.04 Compile RCW for Rev 1 or Rev 2 board. For LX2160ARDB Rev1: $ cd lx2160ardb For LX2160ARDB Rev2: $ cd lx2160ardb_rev2 If required, make changes to the rcw files. $ make The compiled RCW binary for SD/eMMC boot on LX2160ARDB for core frequency 2000 MHz, platform frequency 700 MHz and DDR memory data rate 2900 MT/s, with serdes1 = 19 serdes2 = 5 serdes3 = 2, rcw_2000_700_2900_19_5_2.bin is available at: rcw/lx2160ardb/XGGFF_PP_HHHH_RR_19_5_2 (For LX2160ARDB Rev 1) rcw/lx2160ardb_rev2/XGGFF_PP_HHHH_RR_19_5_2 (For LX2160ARDB Rev 2) Note: See the rcw/lx2160ardb/README or rcw/lx2160ardb_rev2/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files. Step 2: Compile U-Boot binary You need to compile the u-boot.bin binary to build the fip.bin binary. Clone the u-boot repository and compile the U-Boot binary for TF-A. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot.git $ cd u-boot $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-20.04 LSDK-20.04  $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- $ make distclean $ make lx2160ardb_tfa_defconfig $ make Note: If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building the LSDK 18.12 and above U-Boot binary.             The compiled U-Boot binary, u-boot.bin, is available at u-boot/. Step 3: [Optional] Compile OPTEE binary  You need to compile the tee.bin binary to build fip.bin with OPTEE. However, OPTEE is optional, you can skip the procedure to compile OPTEE if you want to build the FIP binary without OPTEE. Clone the optee_os repository and build the OPTEE binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os $ cd optee_os $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-20.04 LSDK-20.04 $ export ARCH=arm $ export CROSS_COMPILE=aarch64-linux-gnu- $ make CFG_ARM64_core=y PLATFORM=ls-lx2160ardb $ aarch64-linux-gnu-objcopy -v -O binary out/arm-plat-ls/core/tee.elf out/arm-plat-ls/core/tee.bin The compiled OPTEE image, tee.bin, is available at optee_os/out/arm-plat-ls/core/. Step 4: Compile TF-A binaries for SD/eMMC boot Clone the atf repository and compile the TF-A binaries, bl2_sd.pbl/bl2_emmc.pbl and fip.bin. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/atf $ cd atf $  git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-20.04 LSDK-20.04 $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- Build BL2 binary with OPTEE. For SD boot: $ make PLAT=lx2160ardb bl2 SPD=opteed BOOT_MODE=sd BL32=<path_to_optee_binary>/tee.bin pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.bin For eMMC boot: $ make PLAT=lx2160ardb bl2 SPD=opteed BOOT_MODE=emmc BL32=<path_to_optee_binary>/tee.bin pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.bin   The compiled BL2 images, bl2.bin and bl2_sd.pbl/bl2_emmc.pbl are available at atf/build/lx2160ardb/release/. For any update in the BL2 source code or RCW binary, the bl2_sd.pbl/bl2_emmc.pbl binary needs to be recompiled.   To compile the BL2 binary without OPTEE: For SD boot: $ make PLAT=lx2160ardb bl2 BOOT_MODE=sd pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.bin    For emmc boot: $ make PLAT=lx2160ardb bl2 BOOT_MODE=emmc pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.bin  Build FIP binary with OPTEE and without trusted board boot. $ make PLAT=lx2160ardb fip BL33=<path_to_u-boot_binary>/u-boot.bin SPD=opteed BL32=<path_to_optee_binary>/tee.bin The compiled BL31 and FIP binaries, bl31.bin, fip.bin, are available at atf/build/lx2160ardb/release/. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled.   To compile the FIP binary without OPTEE and without trusted board boot: For SD boot: $ make PLAT=lx2160ardb fip BOOT_MODE=sd BL33=<path_to_u-boot_binary>/u-boot.bin   For eMMC boot: $ make PLAT=lx2160ardb fip BOOT_MODE=emmc BL33=<path_to_u-boot_binary>/u-boot.bin To compile the FIP binary with trusted board boot, refer the read me at <atf repository>/plat/nxp/README.TRUSTED_BOO Step 5: Program TF-A binaries to SD/eMMC card Boot LX2160ARDB from FlexSPI. Ensure that the switches are set to boot the board from FlexSPI. For booting from FlexSPI: SW1[1:8] = 1111 100X [X is 0 for FlexSPI NOR flash0 and X is 1 for FlexSPI NOR flash1] SW2[1:8] = 0000 0110 SW3[1:8] = 1111 1100 SW4[1:8] = 1011 1000 Boot from FlexSPI NOR flash0: => qixis_reset For LX2160ARDB Rev 1, in boot log, you'll see: Board: LX2160ACE Rev1.0-RDB, Board version: B, boot from FlexSPI DEV#0 For LX2160ARDB Rev 2, in boot log, you'll see: Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#0 Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. DPMAC2@xlaui4, DPMAC3@xgmii [PRIME], DPMAC4@xgmii, DPMAC5@25g-aui, DPMAC6@25g-aui, DPMAC17@rgmii-id, DPMAC18@rgmii-id, e1000#0 Set server IP address to the IP address of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. Note: See LX2160ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux.                                => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime DPMAC3@xgmii => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact DPMAC3@xgmii Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command.  Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> => setenv gatewayIP <gateway IP> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using DPMAC3@xgmii device host 192.168.1.1 is alive Load TF-A binaries for SD boot from the TFTP server Note: For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow. Flash bl2_sd.pbl: => tftp 82000000 bl2_sd.pbl => mmc dev 0; mmc write 82000000 8 <blk_cnt> Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For example, when you load bl2_sd.pbl from the TFTP server, if the bytes transferred is 103353 (193b9 hex), then blk_cnt is calculated as "103353/512 = 201 (C9 hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 8 D3 Flash fip.bin: => tftp 82000000 fip.bin => mmc dev 0;  mmc write 82000000 800 <blk_cnt> Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For example, when you load fip.bin from the TFTP server, if the bytes transferred is 1178967 (11fd57 hex), then blk_cnt is calculated as "1178967/512 = 2302 (8FE hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: =>  mmc write 82000000 800 908 Boot from SD card: => qixis_reset sd LX2160ARDB will boot with TF-A. In the boot log, you will see: => NOTICE: BL2: v1.5(release):LSDK-20.04 NOTICE: BL2: Built : 22:01:10, Aug 20 2020 NOTICE: UDIMM 18ADF2G72AZ-3G2E1 NOTICE: DDR4 UDIMM with 2-rank 64-bit bus (x8) NOTICE: 32 GB DDR4, 64-bit, CL=22, ECC on, 256B, CS0+CS1 NOTICE: BL2: Booting BL31 NOTICE: BL31: v1.5(release):LSDK-20.04 NOTICE: BL31: Built : 22:02:07, Aug 20 2020 NOTICE: Welc U-Boot 2019.10 (Aug 14 2020 - 17:43:28 +0530) SoC: LX2160ACE Rev2.0 (0x87360020) Clock Configuration: CPU0(A72):2000 MHz CPU1(A72):2000 MHz CPU2(A72):2000 MHz CPU3(A72):2000 MHz CPU4(A72):2000 MHz CPU5(A72):2000 MHz CPU6(A72):2000 MHz CPU7(A72):2000 MHz CPU8(A72):2000 MHz CPU9(A72):2000 MHz CPU10(A72):2000 MHz CPU11(A72):2000 MHz CPU12(A72):2000 MHz CPU13(A72):2000 MHz CPU14(A72):2000 MHz CPU15(A72):2000 MHz Bus: 700 MHz DDR: 2900 MT/s Reset Configuration Word (RCW): 00000000: 50777738 24500050 00000000 00000000 00000010: 00000000 0c010000 00000000 00000000 00000020: 02e001a0 00002580 00000000 00000096 00000030: 00000000 00000000 00000000 00000000 00000040: 00000000 00000000 00000000 00000000 00000050: 00000000 00000000 00000000 00000000 00000060: 00000000 00000000 00027000 00000000 00000070: 08b30010 00150020 Model: NXP Layerscape LX2160ARDB Board Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from SD Load TF-A binaries for eMMC boot from the TFTP server Note: For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow. Flash bl2_emmc.pbl: => tftp 82000000 bl2_emmc.pbl => mmc dev 1; mmc write 82000000 8 <blk_cnt> Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For example, when you load bl2_emmc.pbl from the TFTP server, if the bytes transferred is 103353 (193b9 hex), then blk_cnt is calculated as "103353/512 = 201 (C9 hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 8 D3 Flash fip.bin: => tftp 82000000 fip.bin => mmc dev 1; mmc write 82000000 800 <blk_cnt> Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For example, when you load fip.bin from the TFTP server, if the bytes transferred is 1178967 (11fd57 hex), then blk_cnt is calculated as "1178967/512 = 2302 (8FE hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: =>  mmc write 82000000 800 908 Boot from eMMC card: => qixis_reset emmc LX2160ARDB will boot with TF-A. In the boot log, you will see:   => NOTICE: BL2: v1.5(release):LSDK-20.04 NOTICE: BL2: Built : 22:01:10, Aug 20 2020 NOTICE: UDIMM 18ADF2G72AZ-3G2E1 NOTICE: DDR4 UDIMM with 2-rank 64-bit bus (x8) NOTICE: 32 GB DDR4, 64-bit, CL=22, ECC on, 256B, CS0+CS1 NOTICE: BL2: Booting BL31 NOTICE: BL31: v1.5(release):LSDK-20.04 NOTICE: BL31: Built : 22:02:07, Aug 20 2020 NOTICE: Welc U-Boot 2019.10 (Aug 14 2020 - 17:43:28 +0530) SoC: LX2160ACE Rev2.0 (0x87360020) Clock Configuration: CPU0(A72):2000 MHz CPU1(A72):2000 MHz CPU2(A72):2000 MHz CPU3(A72):2000 MHz CPU4(A72):2000 MHz CPU5(A72):2000 MHz CPU6(A72):2000 MHz CPU7(A72):2000 MHz CPU8(A72):2000 MHz CPU9(A72):2000 MHz CPU10(A72):2000 MHz CPU11(A72):2000 MHz CPU12(A72):2000 MHz CPU13(A72):2000 MHz CPU14(A72):2000 MHz CPU15(A72):2000 MHz Bus: 700 MHz DDR: 2900 MT/s Reset Configuration Word (RCW): 00000000: 50777738 24500050 00000000 00000000 00000010: 00000000 0c010000 00000000 00000000 00000020: 02e001a0 00002580 00000000 00000096 00000030: 00000000 00000000 00000000 00000000 00000040: 00000000 00000000 00000000 00000000 00000050: 00000000 00000000 00000000 00000000 00000060: 00000000 00000000 00027000 00000000 00000070: 08b30010 00150020 Model: NXP Layerscape LX2160ARDB Board Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from eMMC  
View full article
Follow these steps to update the DPAA1 FMan ucode image in QSPI NOR flash.  cpld reset boots the board from QSPI NOR flash0 and cpld reset altbank boots the board from the QSPI NOR flash1. sf probe 0:1 means that the alternate bank will be written to. So, if the board boots from QSPI NOR flash0 and sf probe 0:1 is entered at the U-Boot prompt, the commands that follow will program QSPI NOR flash1.   Obtaining DPAA1 FMan ucode image Clone the qoriq-fm-ucode repository. $ git clone https://github.com/NXP/qoriq-fm-ucode.git $ cd qoriq-fm-ucode $ git checkout LSDK-<LSDK version>. For example, $ git checkout LSDK-18.12 The prebuilt FMan ucode images, fsl_fman_ucode_ls1046_r1.0_<microcode version>.bin, are at qoriq-fm-ucode/. In the binary file, ls1046_r1.0 refers to the LS1046A silicon revision 1.0. See qoriq-fm-ucode/readme for a description of the ucode version numbers. Programming FMan ucode image to QSPI NOR flash FMan ucode image can be loaded to LS1046ARDB from a TFTP server or from a mass storage device (SD, USB, or SATA). Option 1: Load image from the TFTP server Boot LS1046ARDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI. For booting from QSPI, SW5[1:8] = 00100010 Boot from QSPI NOR flash0: => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1, FM1@TGEC2 Set server IP to the IP of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. See LS1046ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux. => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime FM1@DTSEC4 => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact FM1@DTSEC4 Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command. Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using FM1@DTSEC4 device host 192.168.1.1 is alive Load FMan ucode image from the TFTP server Program QSPI NOR flash1: => sf probe 0:1 Flash the FMan ucode image: => tftp 0x80000000 <path to FMan ucode>/fsl_fman_ucode_ls1046_r1.0_<ucode version>.bin => print filesize filesize=7f5c Program the FMan ucode image to QSPI NOR flash: => sf erase 0x900000 +$filesize && sf write 0x80000000 0x900000 $filesize Address  0x900000 is the location of the FMan ucode image in QSPI NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Boot from QSPI NOR flash1 and press Enter to stop the autoboot: => cpld reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 You can check the following code line in the boot log to confirm that the DPAA1 FMan ucode image in QSPI NOR flash is updated. Fman1: Uploading microcode version 106.4.18 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu.  => cpld reset altbank Ubuntu 18.04.1 LTS localhost ttyS0 localhost login: root Password: Last login: Sun Jan 28 16:05:12 UTC 2018 on ttyS0 Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.9.105 aarch64) * Documentation: https://help.ubuntu.com * Management: https://landscape.canonical.com * Support: https://ubuntu.com/advantage If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in QSPI NOR flash. Option 2: Load image from partition on mass storage device (SD, USB, or SATA) Boot LS1046ARDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI. For booting from QSPI , SW5[1:8] = 00100010 Boot from QSPI NOR flash0: => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on storage device => ls mmc <device:partition> For example: => ls mmc 0:3 System Volume Information/ 32604 fsl_fman_ucode_ls1046_r1.0_106_4_18.bin 1 file(s), 1 dir(s) Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 If the ls command fails to run, check that U-Boot in QSPI NOR flash0 supports the command by typing ls at the U-Boot prompt: => ls ls - lists files in a directory (default) Usage: ls <interface> [<dev[:part]> [directory]] - Lists files in directory [directory] of partition [part] on device type [interface] and instance [dev]. If U-Boot does not support this command, then update the composite firmware image in QSPI NOR flash0. For steps to update composite firmware image in QSPI NOR flash, see LS1046ARDB - How to update composite firmware image in QSPI NOR flash. Program QSPI NOR flash1: => sf probe 0:1 Load FMan ucode image from the storage device. => load mmc <device:partition> 80000000 <image name> => print filesize For example: => load mmc 0:3 80000000 fsl_fman_ucode_ls1046_r1.0_106_4_18.bin 32604 bytes read in 18 ms (1.7 MiB/s) => print filesize filesize=7f5c Or => load usb <device:partition> 80000000 <image name> => print filesize Or => load scsi <device:partition> 80000000 <image name> => print filesize Program the FMan ucode image to QSPI NOR flash: => sf erase 0x900000 +$filesize && sf write 0x80000000 0x900000 $filesize Address  0x900000 is the location of the FMan ucode image in QSPI NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Boot from QSPI NOR flash1 and press Enter to stop the autoboot: => cpld reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 You can check the following code line in the boot log to confirm that the DPAA1 FMan ucode image in QSPI NOR flash is updated. Fman1: Uploading microcode version 106.4.18 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu.  => cpld reset altbank Ubuntu 18.04.1 LTS localhost ttyS0 localhost login: root Password: Last login: Sun Jan 28 16:05:12 UTC 2018 on ttyS0 Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.9.105 aarch64) * Documentation: https://help.ubuntu.com * Management: https://landscape.canonical.com * Support: https://ubuntu.com/advantage If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in QSPI NOR flash.
View full article
The attached patch is to support Aquantia AQR107 in LS1043A.
View full article
This how-to topic is applicable only for LSDK 18.09 and older releases.  For LSDK 18.12 and newer releases, refer LS1088ARDB-PB - How to deploy TF-A binaries in QSPI NOR flash. Follow these steps to update the U-Boot binary in QSPI NOR flash.  Prerequisites  Ubuntu 18.04 64-bit should be installed on the Linux host machine for building LSDK 18.06 or LSDK 18.09 U-Boot binary. qixis_reset boots the board from QSPI NOR flash0 and qixis_reset altbank boots the board from QSPI NOR flash1. sf probe 0:1 means that the alternate bank will be written to. So, if the board boots from QSPI NOR flash0 and sf probe 0:1 is entered at the U-Boot prompt, the commands that follow will program QSPI NOR flash1.   Compiling U-Boot binary Clone the u-boot repository compile the U-Boot binary for QSPI boot. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot.git $ cd u-boot $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-18.09 LSDK-18.09  $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- $ make distclean Run either of following depending on the board you are using:  For LS1088ARDB: $ make ls1088ardb_qspi_defconfig For LS1088ARDB-PB: make ls1088ardb_pb_qspi_defconfig If required, make changes to the U-Boot files. $ make If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building LSDK 18.06 or LSDK 18.09 U-Boot binary.  The compiled U-Boot image, u-boot.bin, is available at u-boot/. Flashing U-Boot binary to QSPI NOR flash Boot LS1088ARDB/LS1088ARDB-PB from QSPI. Ensure that the switches are set to boot the board from QSPI. For booting from the QSPI, SW1[1:8] + SW2[1] = 0011_0001_X Boot from QSPI NOR flash0: => qixis_reset For example: For LS1088ARDB, in boot log, you’ll see: Board: LS1088A-RDB, Board Arch: V1, Board version: C, boot from QSPI:0 For LS1088ARDB-PB, in boot log, you'll see: Board: LS1088ARDB-PB, Board Arch: V1, Board version: A, boot from QSPI:0 U-Boot image can be loaded to LS1088ARDB/LS1088ARDB-PB from a TFTP server or from a mass storage device (SD, USB, or SATA). Option 1: Load image from the TFTP server Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. DPMAC1@xgmii, DPMAC2@xgmii, DPMAC3@qsgmii, DPMAC4@qsgmii, DPMAC5@qsgmii, DPMAC6@qsgmii, DPMAC7@qsgmii, DPMAC8@qsgmii, DPMAC9@qsgmii, DPMAC10@qsgmii Set server IP to the IP of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. See LS1088ARDB/LS1088RDB-PB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux. => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime DPMAC3@qsgmii => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact DPMAC3@qsgmii Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command. Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using DPMAC3@qsgmii device host 192.168.1.1 is alive Load U-Boot image from the TFTP server Program QSPI NOR flash1: => sf probe 0:1 Flash U-Boot image: => tftp 0xa0000000 u-boot.bin => print filesize filesize=aa4b4 Program U-Boot image to QSPI NOR flash: => sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize.  Address 0x100000 is the location of U-Boot in QSPI NOR flash. For the complete flash memory layout for the PPA boot flow, refer Flash layout for old boot flow with PPA. Boot from QSPI NOR flash1: => qixis_reset altbank For LS1088ARDB, in boot log, you’ll see: Board: LS1088A-RDB, Board Arch: V1, Board version: C, boot from QSPI:1 For LS1088ARDB-PB, in boot log, you'll see: Board: LS1088ARDB-PB, Board Arch: V1, Board version: A, boot from QSPI:1 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in QSPI NOR flash. Option 2: Load image from partition on mass storage device (SD, USB, or SATA) Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on storage device => ls mmc <device:partition> For example: => ls mmc 0:2 Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 Program QSPI NOR flash1: => sf probe 0:1 Load U-Boot image from the storage device => load mmc 0:2 a0000000 <image name> => print filesize For example: => load mmc 0:2 a0000000 u-boot.bin => print filesize filesize=aaa34 Or => load usb 0:2 a0000000 <image name> => print filesize Or => load scsi 0:2 a0000000 <image name> => print filesize Program image to QSPI NOR flash: => sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize  Address 0x100000 is the location of U-Boot in QSPI NOR flash. For the complete flash memory layout for the PPA boot flow, refer Flash layout for old boot flow with PPA.  Boot from QSPI NOR flash1: => qixis_reset altbank For LS1088ARDB, in boot log, you’ll see: Board: LS1088A-RDB, Board Arch: V1, Board version: C, boot from QSPI:1 For LS1088ARDB-PB, in boot log, you'll see: Board: LS1088ARDB-PB, Board Arch: V1, Board version: A, boot from QSPI:1 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in QSPI NOR flash.
View full article
Follow these steps to update the Linux kernel image and device tree for LX2160ARDB on an SD card.  NOTE: Below steps are valid for both LX2160ARDB Rev 1.0 and Rev 2.0 revisions. STEP 1: Compiling Linux kernel images and device tree On Linux host, clone the repository with Linux kernel image and device tree: $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/linux $ cd linux $ git checkout -b <new branch> <start point> For example, $ git checkout -b LSDK-20.04-V5.4 LSDK-20.04-V5.4 where LSDK-20.04-V5.4 refers to a tag in the format LSDK-<LSDK version>-V<kernel version> $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- defconfig lsdk.config If you want to make changes to the device tree, open and edit arch/arm64/boot/dts/freescale/fsl-lx2160a-rdb.dts $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- The binary kernel image Image and compressed kernel image Image.gz are in arch/arm64/boot/. The device tree blob fsl-lx2160a-rdb.dtb is in arch/arm64/boot/dts/freescale/. STEP2: Copying the compiled kernel images and device tree to the SD card   Plug the SD card into the Linux host machine. sudo fdisk -l to list the disks that are accessible to the computer. Mount the SD card partition that contains Linux kernel images and device tree. sudo mkdir <mount_location> sudo mount /dev/sdX <mount_location> For example: $ sudo mkdir /carddata $ sudo mount /dev/mmcblk0p2 /carddata   NOTE: Use the command cat /proc/partitions to see the list of devices, their partitions along with their sizes to make sure that the correct device and partition name have been chosen. The eMMC storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c. Make sure to choose the correct device name, because data on this device will be replaced. If your Linux host machine supports read/write SD card directly without an extra SD card reader device, the device name of SD card is typically mmcblk0. In general, the Linux kernel images and device tree are stored in the second partition of the SD device (mmcblk0p2). For detail on storage layout on SD/eMMC/USB/SATA for LSDK images deployment, refer to section "LSDK memory layout and Userland" in Layerscape Software Development Kit User Guide. Replace Image, Image.gz, and fsl-lx2160a-rdb.dtb on the SD card with the new files compiled in the steps above. $ sudo cp /linux/arch/arm64/boot/Image /linux/arch/arm64/boot/Image.gz /linux/arch/arm64/boot/dts/freescale/fsl-lx2160a-rdb.dtb <mount_location> For example: $sudo cp /linux/arch/arm64/boot/Image /linux/arch/arm64/boot/Image.gz /linux/arch/arm64/boot/dts/freescale/fsl-lx2160a-rdb.dtb /carddata Unmount the card. For example: sudo umount /dev/mmcblk0p2 Plug the SD card into LX2160ARDB and boot the board. At U-Boot, run the following command to boot the board to LSDK distro using the SD card. => run bootcmd_mmc0 If U-Boot does not find LSDK on the SD card, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored on the SD card.
View full article
Follow these steps to update the DPAA2 MC firmware, DPC, and DPL images in FlexSPI NOR flash of LX2160ARDB. NOTE: Below steps are valid for both LX2160ARDB Rev 1.0 and Rev 2.0 revisions. NOTE: qixis_reset boots the board from FlexSPI NOR flash0 and qixis_reset altbank boots the board from FlexSPI NOR flash1. NOTE: sf probe 0:1 means that the alternate bank will be written to. So, if the board boots from FlexSPI NOR flash0 and sf probe 0:1 is entered at the U-Boot prompt, the commands that follow will program FlexSPI NOR flash1. Obtaining MC firmware Clone the qoriq-mc-binary repository. $ git clone https://github.com/NXP/qoriq-mc-binary.git $ cd qoriq-mc-binary/lx2160a/ $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-20.04 LSDK-20.04 The prebuilt MC firmware image, mc_10.20.4_lx2160a.itb, is available at /qoriq-mc-binary/lx2160a/. NOTE: The name of the MC firmware image may vary depending on the LSDK release version used.  Obtaining DPC and DPL images Clone the mc-utils repository and compile the DPC and DPL images. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/mc-utils $ cd mc-utils $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-20.04 LSDK-20.04 If required, make changes to the DPC and DPL files. $ make -C config/ The compiled dpc-usxgmii.dtb and dpl-eth.19.dtb images are available at /mc-utils/config/lx2160a/RDB/. NOTE: The name of the DPC and DPL images may vary depending on the LSDK release version used.  Flashing MC firmware, DPC, and DPL images to FlexSPI NOR flash Boot LX2160ARDB from FlexSPI. Ensure that the switches are set to boot the board from FlexSPI. SW1[1:8] = 1111 1000 SW2[1:8] = 0000 0110 SW3[1:8] = 1111 1100 SW4[1:8] = 1011 1000 Boot from FlexSPI NOR flash0: => qixis_reset For example: For LX2160ARDB, in U-Boot log, you’ll see: Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#0   The images can be loaded to the LX2160ARB from a TFTP server or from a mass storage device (SD, USB, or SATA).   Option 1: Load image from the TFTP server   Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. DPMAC2@xlaui4, DPMAC3@xgmii, DPMAC4@xgmii, DPMAC5@25g-aui, DPMAC6@25g-aui, DPMAC17@rgmii-id, DPMAC18@rgmii-id  Set server IP address to the IP address of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the ethernet interface connected to the TFTP server. See LX2160ARDB Ethernet Port Mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux. => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime DPMAC3@xgmii => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact DPMAC3@xgmii Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command.  Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings.    => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using DPMAC3@xgmii device host 192.168.2.1 is alive   Load images from a TFTP server to FlexSPI NOR flash1 NOTE: Ensure that the board boots from FlexSPI NOR flash1 before programming updated MC firmware and DPL and DPC images to FlexSPI NOR flash1. If board fails to boot successfully from FlexSPI NOR flash1, you can program composite firmware image to FlexSPI NOR flash1 by following the steps available in section "LSDK Quick Start Guide or LX2160ARDB" in LSDK User Guide. Program FlexSPI NOR flash1: sf probe 0:1 Flash MC firmware: => tftp 0x80000000 mc_10.20.4_lx2160a.itb => print filesize => sf erase 0xa00000 +$filesize && sf write 0x80000000 0xa00000 $filesize Address 0xa00000 is the location of MC firmware in FlexSPI NOR flash. Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Flash DPC image: => tftp 0x80000000 dpc-usxgmii.dtb => print filesize  => sf erase 0xe00000 +$filesize && sf write 0x80000000 0xe00000 $filesize Address 0xe00000 is the location of DPC image in FlexSPI NOR flash. Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Flash DPL image: => tftp 0x80000000 dpl-eth.19.dtb => print filesize  => sf erase 0xd00000 +$filesize && sf write 0x80000000 0xd00000 $filesize Address 0xd00000 is the location of DPL image in FlexSPI NOR flash. Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Boot from QSPI NOR flash1: => qixis_reset altbank In U-Boot log, you’ll see: Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#1   Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in FlexSPI NOR flash.   Option 2: Load images from partition on mass storage device (SD, USB, or SATA) Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on the storage device => ls mmc <device:partition> For example: => ls mmc 0:2 Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 Program QSPI NOR flash1: => sf probe 0:1 Flash MC firmware: Load MC firmware image from the storage device => load mmc 0:2 80000000 <mc firmware> For example: => load mmc 0:2 80000000 mc_10.20.4_lx2160a.itb => print filesize Or => load usb 0:2 80000000 <image name> => print filesize Or => load scsi 0:2 80000000 <image name> => print filesize   Program MC firmware image to FlexSPI NOR flash: => sf erase 0xa00000 +$filesize && sf write 0x80000000 0xa00000 $filesize  Address 0xa00000 is the location of MC firmware in FlexSPI NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Flash DPL image: Load DPL image from the storage device => load mmc 0:2 80000000 <dpl image> For example: => load mmc 0:2 80000000 dpl-eth.19.dtb => print filesize Or => load usb 0:2 80000000 <image name> => print filesize Or => load scsi 0:2 80000000 <image name> => print filesize   Program DPL image to FlexSPI NOR flash: => sf erase 0xd00000 +$filesize && sf write 0x80000000 0xd00000 $filesize  Address 0xd00000 is the location of DPL image in FlexSPI NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout.   Flash DPC image: Load DPC image from the storage device => load mmc 0:2 80000000 <dpc image> For example: => load mmc 0:2 80000000 dpc-usxgmii.dtb => print filesize Or => load usb 0:2 80000000 <image name> => print filesize Or => load scsi 0:2 80000000 <image name> => print filesize   Program DPC image to FlexSPI NOR flash: => sf erase 0xe00000 +$filesize && sf write 0x80000000 0xe00000 $filesize Address 0xe00000 is the location of DPC image in FlexSPI NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Boot from FlexSPI NOR flash1: => qixis_reset altbank In U-Boot log, you’ll see: Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#1   Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in FlexSPI NOR flash.  
View full article
Follow these steps to update the Linux kernel image and device tree on the SD card.  Compiling Linux kernel images and device tree On Linux host, clone the repository with Linux kernel image and device tree: $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/linux $ cd linux $ git checkout -b <new branch> <start point> For example, $ git checkout -b LSDK-18.09-V4.14 LSDK-18.09-V4.14 where LSDK-18.09-V4.14 refers to a tag in the format LSDK-<LSDK version>-V<kernel version> $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- defconfig lsdk.config If you want to make changes to the device tree, open and edit arch/arm64/boot/dts/freescale/fsl-ls1088a-rdb.dts $ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- The binary kernel image Image and compressed kernel image Image.gz are in arch/arm64/boot/. The device tree blob fsl-ls1088a-rdb.dtb is in arch/arm64/boot/dts/freescale/. Copying the compiled kernel images and device tree to the SD card Plug the SD card into the Linux host machine. sudo fdisk -l to list the disks that are accessible to the computer. Mount the SD card partition that contains Linux kernel images and device tree. sudo mkdir <mount_location> sudo mount /dev/sdX <mount_location> Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct device names have been chosen. The SDHC storage drive in the Linux PC is detected as /dev/ sdX, where X is a letter such as a, b, c. Make sure to choose the correct device name, because data on this device will be replaced. If your Linux host machine supports read/write SDHC card directly without an extra SDHC card reader device, the device name of SDHC card is typically mmcblk0. Replace Image, Image.gz, and fsl-ls1088a-rdb.dtb on the SD card with the new files compiled in the steps above. sudo cp /linux/arch/arm64/boot/Image /linux/arch/arm64/boot/Image.gz /linux/arch/arm64/boot/dts/freescale/fsl-ls1088a-rdb.dtb <mount_location> sudo umount /dev/sdX Plug the SD card into LS1088ARDB/LS1088ARDB-PB and boot the board to Ubuntu using the SD card. If U-Boot does not find LSDK on the SD card, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored on the SD card.
View full article
The table below shows the mapping of the Ethernet port names appearing on the front panel of the LS1046ARDB chassis with the port names in U-Boot, tinyDistro, and NXP LSDK userland.  Port name on chassis Port name in U-Boot Port name in Linux (tinyDistro) Port name in Linux (LSDK userland) RGMII1 FM1@DTSEC3 eth0 fm1-mac3 RGMII2 FM1@DTSEC4 eth1 fm1-mac4 SGMII1 FM1@DTSEC5 eth2 fm1-mac5 SGMII2 FM1@DTSEC6 eth3 fm1-mac6 10G Copper FM1@TGEC1 eth4 fm1-mac9 10G SEP+ FM1@TGEC2 eth5 fm1-mac10
View full article