Kinetis Microcontrollers Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Kinetis Microcontrollers Knowledge Base

Discussions

Sort by:
Project Summary MonkeyListen uses the FRDM-K20D50 board (which has a Cortex M4 core with DSP instructions) with the FRDM-OLED shield so you can  make your very own spectrum analyzer display  The end result will be a functional DSP system that will analyze incoming audio content via an electret microphone on FRDM-OLED board and display the spectral content.   The example code will also show you how to plot time domain data (a simple audio scope!),  Frequency domain data (via an FFT) and a time-frequency plot (spectrogram).  Extra I/O are provided to hack the code and create your own DMM or oscilloscope. The FRDM-OLED shield also has an optional RS-485 interface for doing cool things like driving a DMX lighting system! Skills Developed: Spectral Analysis via FFT OLED display interfacing Electret microphone Interfacing Soldering SOIC8 and 1206 surface mount devices Cortex CMSIS DSP Library Materials: FRDM-K20D50 FRDM-OLED Development Tools Install Codewarrior 10.5 for Microcontrollers (Eclipse) Special Edition to your  machine Example Code Get the latest copy from Github Prerequisite Videos: All of the videos are organized on a Youtube playlist: H.I.T. #2: MonkeyListen - YouTube MonkeyListen WatchMe1st MonkeyListen Demo: Time Domain + FFT Mode MonkeyListen Demo: Spectrogram Mode Spectral Analysis for Embedded Systems Part 1 & Part 2 Getting Started with the ARM CMSIS DSP FFT library Introduction to Fixed Point Math for Embedded Systems Part 1, 2 and 3 The q31_t (Q.31) number format for the CMSIS DSP libraries FRDM-OLED Overview EEVblog #611 - Electret Microphone Design Loading and Configuring the MonkeyListen Example Software Step 1:  Get a FRDM-OLED      You can order raw PCBs yourself from OSHPark or your favorite PCB vendor.      The bill of materials for the FRDM-OLED is included with the build package on the FRDM-OLED page.     Please let us know if you are interested in a pre-assembled version.   If there is enough demand we will get some built via a Kickstarter campaign   Don't be afraid to build it yourself,  Soldering is fun!  There is plenty of good stuff on the web on how to do SMT soldering.   All of the parts on the board are fairly simply once you get the hang of it and everything can be hand soldered  The key is having some decent tools. Step 2: Put it Together Attach  The FRDM-OLED to the FRDM-K20D50.   The FRDM-K20D50 comes with female headers that you can solder on so the boards can be easily separated. Step 3: Download Download the example software.   The video "Loading and Configuring the MonkeyListen Example Software" will step you though downloading the program and doing some basic configuration. Step 4: Say Something Speak, Sing and Yell.... Step 5: Hack! Do something else cool.....  Make a DMM,  or an o-scope....
View full article
    作者 Shaozhong Liang     YAFFS(Yet Another Flash File System)文件系统是专门针对NAND闪存设计的嵌入式文件系统。在YAFFS中,文件是以固定大小的数据块进行存储的,块的大小可以是512字节、1024字节或者2048字节。这种实现依赖于它能够将一个数据块头和每个数据块关联起来。每个文件(包括目录)都有一个数据块头与之相对应,数据块头中保存了ECC(Error Correction Code)和文件系统的组织信息,用于错误检测和坏块处理。     YAFFS在文件进行改写时总是先写入新的数据块,然后删除旧的数据块,这样即使意外掉电,丢失的也只是这一次修改数据的最小写入单位,从而实现了掉电保护,保证了数据完整性。 YAFFS是为NAND FLASH设计的,它作了以下的假设或定义。     NAND Flash是基于块(block)的,每一个Block大小相同,由整数个chunk组成。每一个Block可单独擦除。一页(page,或chunk)为Flash的分配单元。所有的访问(读或者写)都是基于页(或chunk)的。     当对NAND Flash编程时,只有二进制中的0被编程,而1则“不关心”。比如,一个字节包含的二进制数为1010,那么当编程1001,会导致这两个数的位与操作。结果为1000.这和NOR FLASH不同。     YAFFS 分别用块号和 chunk id 标示块和 chunk 。它将空块(填满0xFF)当作空闲块或者已擦除块。这样,格式化一个YAFFS分区等价于擦除所有未损坏的块。 因此YAFFS最少需要一些函数能够擦除块,读一个页,写一个页。 1. 直接接口(Direct Interface)的相关文件     仅需要提取少量文件。使用yaffs的直接接口,你不需要所有的文件。你实际需要的文件列在下面,其余文件不需要编译。 direct/yaffsfs.c yaffs_guts.c direct/yaffscfg.c yaffs_nand.c yaffs_tagsvalidity.c yaffs_checkptrw.c yaffs_qsort.c yaffs_tagscompat.c yaffs_ecc.c yaffs_packedtags2.c 2. YAFFS  存储设备     YAFFS对文件系统上的所有内容(比如正常文件,目录,链接,设备文件等等)都统一当作文件来处理,每个文件都有一个页面专门存放文件头,文件头保存了文件的模式、所有者id、组id、长度、文件名、Parent Object ID等信息。因为需要在一页内放下这些内容,所以对文件名的长度,符号链接对象的路径名等长度都有限制。前面说到对于NAND FLASH上的每一页数据,都有额外的空间用来存储附加信息,通常NAND驱动只使用了这些空间的一部分,YAFFS正是利用了这部分空间中剩余的部分来存储文件系统相关的内容。以512+16B为一个PAGE的NAND FLASH芯片为例,Yaffs文件系统数据的存储布局如下所示: 0 to 511 数据区域 512 to 515 YAFFS TAG 516 Data status byte 517 Block status byte 坏块标志位 518 to 519 YAFFS TAG 520 to 522 后256字节数据的ECC校验结果 523 to 524 YAFFS TAG 525 to 527 前256字节数据的ECC校验结果     可以看到在这里YAFFS一共使用了8个BYTE用来存放文件系统相关的信息(yaffs_Tags)。这8个Byte的具体使用情况按顺序如下: Bits Content 20 ChunkID,该page在一个文件内的索引号,所以文件大小被限制在2^20 PAGE 即512Mb 2 2 bits serial number 10 ByteCount 该page内的有效字节数 18 ObjectID 对象ID号,用来唯一标示一个文件 12 Ecc, Yaffs_Tags本身的ECC校验和 2 Unused     其中Serial Number在文件系统创建时都为0,以后每次写具有同一ObjectID和ChunkID的page的时候都加一,因为YAFFS在更新一个PAGE的时候总是在一个新的物理Page上写入数据,再将原先的物理Page删除,所以该serial number可以在断电等特殊情况下,当新的page已经写入但老的page还没有被删除的时候用来识别正确的Page,保证数据的正确性。 ObjectID号为18bit,所以文件的总数限制在256K即26万个左右。     由于文件系统的基本组织信息保存在页面的备份空间中,因此,在文件系统加载时只需要扫描各个页面的备份空间,即可建立起整个文件系统的结构,而不需要像JFFS1/2 那样扫描整个介质,从而大大加快了文件系统的加载速度。     一个YAFFS设备是一个逻辑设备,它代表了一个物理设备的部分或整体。你可以认为它是一个Nand上的一个“分区”。比如,该分区可能覆盖整个NAND,也许只是一半,而另外一半就是另一个Yaffs_Device.它也可以用于你使用一个非flash设备(比如RAM)来测试的情况下。 一个Yaffs_Device记录了起始和结束块。通过改变它的起始和结束块,你就可以在同一个物理设备上使用不止一个的Yaffs_Device。 这里将需要你自己建立的Yaffs_Device结构的数据域列出,其他数据域由Yaffs自动创建。 int nDataBytesPerChunk     如其名,这是每一个chunk的字节数,还记得吧,在yaffs术语中,一个页就是一个chunk,因而它也是一页的字节数。它是数据字节数,即不包含OOB的数据。比如一页时2048字节+64字节的OOB,那么数值nDataBytesPerChunk为2048。 int nChunksPerBlock     物理Nand设备中每页包含的chunk(就是Nand上的页)的数目,最少是2。 int spareBytesPerChunk     空闲域(spare area)大小,比如:每个chunk(页)的OOB字节数。 int startBlock     该逻辑Yaffs_Device设备第一个块的块号(而字节地址),注意,yaffs需要第一个块是空闲的,因此你不可以设置该变量为0,如果设置为0,Yaffs会给它加1,并且会在结束块号上也加1,在你设置设备从块0开始,到最后一个块结束,这意味着yaffs试图写一个不存在的块,从而出现错误。 int endBlock     该逻辑Yaffs_Device设备的最后一个块号。如果startBlock为0,那么yaffs会使用endBlock+1,至少使startBlock+nReservedBlocks+2 int nReservedBlocks     这是YAFFS必须保留,用于垃圾回收和块错误恢复的可擦除块的数目。至少是2,但是5更好。如果你使用一个不会损坏的介质,比如RAM或者RAM盘,或者主机文件系统模拟,那么可以是2。 int nShortOpCaches     配置当前设备YAFFS Cache项的数目。0值表示不使用cache。对于大多数系统,推荐使用10到20之间的一个数值。不能大于YAFFS_MAX_SHORT_OP_CACHES定义的数值。 int useNANDECC     这是一个标志,用于指示是由yaffs执行ECC计算,还是由NAND驱动程序来执行ECC计算。(译者注:此数值取0,则使用yaffs来执行ECC计算,软件ECC计算。如果想要使用硬件ECC校验时,应该设置为1,并且在NAND驱动程序中加入硬件ECC校验的代码。) void *genericDevice     这是一个指针,它应该指向任何数据,底层NAND驱动程序需要知道以从物理设备读、写。 int isYaffs2     我们使用的是否YAFFS2版本? int inbandTags     是否为OOB区,如果不是,那么它为真,仅用于yaffs2 u32 totalBytesPerChunk     这个名字可能有点误导人,它应该等于nDataBytesPerChunk ,而非其名字暗示的nDataBytesPerChunk + spareBytesPerChunk。如果inbandTags为真,那么yaffs设置nDataBytesPerChunk,因此有足够的空闲空间存储数据,yaffs会在空闲域中正常存储。 write/readChunkWithTagsFromNAND, markNANDBlockBad queryNANDBlock 这些都是函数指针,你需要提供这些函数来给YAFFS,读写nand flash。 3.NAND Flash 访问函数 int (*writeChunkWithTagsToNAND) (struct yaffs_DeviceStruct * dev, int chunkInNAND, const u8 * data, const yaffs_ExtendedTags * tags);   dev: 要写入的yaffs_Device逻辑设备. chunkInNAND: 将chunk写入的页 Data: 指向需要写入的数据的指针 tags: 未压缩(打包)的OOB数据 Return: YAFFS_OK / YAFFS_FAIL 该函数将页(chunk)写入nand中,向nand中写入数据。数据和标签(tags)永远不应为 NULL. chunkInNand 是将要写入的页的页号,而不是需要转换的地址。 int (*readChunkWithTagsFromNAND) (struct yaffs_DeviceStruct * dev, int chunkInNAND, u8 * data, yaffs_ExtendedTags * tags);  dev: 要写入的yaffs_Device逻辑设备. chunkInNAND: 将chunk读入的页 Data: 指向需要读入的数据的缓冲区指针 tags: 指向未压缩(打包)的OOB数据的缓冲区指针 Return: YAFFS_OK / YAFFS_FAIL 该函数执行上一个函数的相反的功能,首先,读取数据和OOB字节,接着将这些输入放在一个由参数data指向的缓冲区中 int (*markNANDBlockBad) (struct yaffs_DeviceStruct * dev, int blockNo);   dev: 要写入的yaffs_Device逻辑设备. blockNo: 要标记的块. Return: YAFFS_OK / YAFFS_FAIL int (*queryNANDBlock) (struct yaffs_DeviceStruct * dev, int blockNo, yaffs_BlockState * state, u32 *sequenceNumber);   dev: 要写入的Yaffs_Device逻辑设备. blockNo: 要标记的块. state: Upon returning this should be set to the relevant state of this particular block. Sequance number: 该块的顺序号(The Sequence number),为0表示此块未使用 Return: YAFFS_OK / YAFFS_FAIL     它应检查一个块是否是有效的。如果在OOB中设置了坏块标记,那么*state应该被赋值为YAFFS_BLOCK_STATE_DEAD,*sequenceNumber赋值为0,然后返回YAFFS_FAIL。     如果该块没坏,那么应解压缩标签。标签解压缩后,若发现chunk已使用(查看tags.chunkUsed),则*sequenceNumber应赋值为tags.sequenceNumber,*state赋值为YAFFS_BLOCK_STATE_NEEDS_SCANNING,否则该块未使用,则*sequenceNumber赋值为0,*state赋值为YAFFS_BLOCK_STATE_EMPTY 4. YAFFS的缓存机制     由于NandFlash是有一定的读写次数的,所以在对一个文件进行操作的时候往往是先通过缓冲进行,对最后一次性写入NandFlash,这有效的减少了用户对NandFlash的频繁操作,延长了NandFlash的寿命。下面大致说一下YAFFS的缓存机制: 4.1.首先在yaffs_mount的时候会对yaffs_dev这个结构体进行注册,和缓冲部分相关的有: dev->nShortOpCaches//这个变量决定了有多少个缓冲,因为缓冲会大量的占用堆栈的空间,所以在yaffs不建议缓冲的数量很大,即使你填一个很大的数,系统也不会超过YAFFS_MAX_SHORT_OP_CACHES的总数。 yaffs_ChunkCache *srCache;//缓冲区的首地址,dev->srCache = YMALLOC( dev->nShortOpCaches * sizeof(yaffs_ChunkCache));下面介绍一下缓冲区这个结构体的组成: typedef struct { struct yaffs_ObjectStruct *object;//一个缓冲区对应一个文件 int chunkId; int lastUse; //通过lastUse来 int dirty; //标志了这一个缓冲区是否被使用 int nBytes; __u8 data[YAFFS_BYTES_PER_CHUNK];//数据区 } yaffs_ChunkCache; 4.2.什么时候用到缓冲区?        用到缓冲区最多的地方显而易见是对已经创建的文件进行写操作。而且是需要写的大小和512不一致的时候,这是因为如果是刚好512的话,系统会直接写入NandFlash中。对于小于512的系统首先会调用yaffs_FindChunkCache(in,chunk)这个函数来判断in这个object是否在缓冲区中存在。如果存在会调用已有缓冲区进行操作。当然如果是第一次对一个object进行操作,肯定在缓冲区中是不存在对应它的空间的,因此系统会调用yaffs_GrabChunkCache函数为此次操作分配一个缓冲区。 5. 应用层接口     YAFFS为连接的应用程序提供了一组函数。大部分跟标准C库函数,如open/close一致,只是增加了yaffs_前缀,如 yaffs_open. 这些函数定义在direct/yaffsfs.h中。     初始化yaffs来完成读写,你必须在每个你要使用的yaffs设备上调用yaffs_mount。比如yaffs_mount(”/boot”)。这可以在系统启动的时候执行,如果存在一个操作系统,那么程序需要考虑这点。在你完成使用的时候,你也需要调用yaffs_umount函数,这样yaffs就会将它需要状态写入磁盘。 如果读写文件的应用层接口已经存在,你可以根据相关的操作系统调用来封装相关的函数调用。 1 yaffs_mount( ) 功能说明:加载指定器件。 输入参数:path    要加载的器件。 输出参数:无。 返回值: 表明加载的状态。 调用的函数:yaffsfs_FindDevice( )、yaffs_GutsInitialise( )。 2 yaffs_open( ) 功能说明:按照指定方式打开文件。 输入参数:path    文件的绝对路径;           Oflag   打开的方式;           Mode    文件许可模式。 输出参数:无。 返回值:句柄。 调用的函数:yaffsfs_GetHandle( )、yaffsfs_FindDirectory( )、yaffs_MknodFile( )、yaffsfs_PutHandle( )、yaffs_ResizeFile( )、yaffsfs_FindObject( )。 3 yaffs_write( ) 功能说明:根据打开文件的句柄,从指定数组处读指定字节写入文件中。 输入参数:fd      要写入的文件的句柄;           Buf     要写入的数据的首地址;           Nbyte   要写入的字节数。 输出参数:无。 返回值: 写入了的字节数。 调用的函数:yaffs_WriteDataToFile( )、yaffsfs_GetHandlePointer( )、yaffsfs_GetHandleObject( ) 4 yaffs_read( ) 功能说明:根据打开文件的句柄,从文件中读出指定字节数据存入指定地址。 输入参数:fd       要读出的文件的句柄;           Buf      读出文件后要存入的数据的首地址;           Nbyte    要读出的字节数。 输出参数:无。 返回值: 读出了的字节数。 调用的函数:yaffs_ReadDataFromFile( )、yaffsfs_GetHandlePointer( ) 5 yaffs_close( ) 功能说明:关闭已经打开的文件句柄,yaffs 有缓冲机制,当调用yaffs_close()关闭文件之后能够保证将内容写入nandflash。 输入参数:fd    需要关闭的文件的句柄; 输出参数:无。 返回值:无。 6. YAFFS在MQX的应用案例     YAFFS提供了直接调用模式,可以方便移植到 none-OS或者light-weighted OS中。附件是将YAFFS移植到Freescale MQX实时操作系统的源代码和工程,可以在II型集中器的Demo Board上运行。     初步的测试表明YAFFS工作正常,能够完成创建目录,创建/删除文件,读/写文件操作等。 YAFFS非常适合none-OS或者是light-weighted OS,使用YAFFS需要关注的是RAM的消耗,适合小量文件(<20)。 如果不想使用MQX默认的MFS(FAT32文件系统),YAFFS可以作为一个文件系统的备选方案。
View full article
Here you can find both the code and project files for the PWM project, in this example a single PWM channel belonging to the Flextimer 0 (PTC10/FTM_CH12) is enabled to provide a PWM signal with a 500ms period, the signal's duty cycle increases its period every 100ms, to visually observe the signal connect a led from the A5 pin in the J4 connector to GND (J3, pin 14). Code: #include "mbed.h" //PWM output channel PwmOut PWM1(A5); int main() {     PWM1.period_ms(500);     int x;     x=1;         while(1)     {         PWM1.pulsewidth_ms(x);         x=x+1;         wait(.1);         if(x==500)         {             x=1;         }     } }
View full article
Background: NXP SC18IS602B I2C bus to SPI bridge chip is using TSSOP16 package, which is 16 leads; 0.65 mm pitch; 5 mm x 4.4 mm x 1.1 mm body. Customer requires to use a smaller package to emulate the SC18IS602B function. Kinetis L series MKL03Z16VFK4R product uses QFN24 package with 4 mm x 4 mm x 0.58 mm body. Demo Overview The I2C to SPI Bridge demo provides a replacement solution demo of SC18IS602B chip. The demo is based on FRDM-KL03Z board using I2C0 module as I2C slave and SPI0 module as SPI master. Provided data buffer size is 400bytes. The demo software is based on KSDK V2.0 for FRDM-KL03Z software. I2C slave interface: Pin number                 Function              FRDM-KL03Z jumper PTB3                          I2C0_SCL           J2-10 PTB4                          I2C0_SDA           J2-9   SPI master interface: Pin number                 Function              FRDM-KL03Z jumper PTA5                           SPI0_SS             J2_3 PTA6                           SPI0_MISO         J2_5 PTA7                           SPI0_MOSI         J2_4 PTB0                           SPI0_SCK           J2_6   INT pin (indicates if I2C to SPI Bridge allows i2c master start a new i2c transfer, low is active) Pin number                 Function              FRDM-KL03Z jumper PTB11                        GPIO output         J2_2   Connect I2C master with FRDM-KL03Z I2C slave interface and connect SPI slave with FRDM-KL03Z SPI master interface; Connect FRDM-KL03Z GND to I2C master and SPI slave before add power to those boards.  Below is the hardware platform connection way: I2C to SPI Bridge Demo Function For the KL03 chip with one SPI0_PCS0 chip select pin, I2C to SPI Bridge demo only supports function ID 0x01 as SPI write command. For example: if i2c master want to write 8bytes (0x21,0x22...0x28) to SPI slave, the i2c master needs to send below data to FRDM-KL03Z board:   [START] + [I2C Slave address+/W] + [0x01](Function ID) + [0x21](data 1) + [0x22](data 2) + ... +[0x28](data 😎 + [STOP]     I2C to SPI bridge demo supports Function ID 0xF0 to configure SPI interface: There provides four SPI baud rate: 6Mbps/3Mbps/1.5Mbps/1Mbps. More detailed info, please check below picture (picture abstracted from SC18IS602B datasheet): For example: customer could configure SPI baud rate to 3Mbps with send below data to FRDM-KL03Z board:        [START] + [I2C Slave address+/W] + [0Xf0](Function ID) + [0x01](data 1) + [STOP] Hardware Platform The demo is based on FRDM-KL03Z board, using internal IRC48M clock as system and bus clock source. There doesn’t need external clock source. Toolchain supported - IAR embedded Workbench 7.60.1  (Tested) - Keil MDK 5.18a - GCC ARM Embedded 2015-4.9-q3 - Kinetis Development Studio IDE 3.2.0 Running the Demo Connect a USB cable between the host PC and the USB port on the target board. Open a serial terminal with the following settings:     - 9600 baud rate     - 8 data bits     - No parity     - One stop bit     - No flow control Download the program to the target board. I2C master start to configure SPI interface      I2C to SPI bridge board I2C address is 0x7E. I2C master write data to SPI slave    I2C master write 10bytes to SPI slave, it will send 11bytes (includes one function ID 0x01). The first data is 0xAA and the last data is 0x22.    After I2C to SPI Bridge receive the data, it will send 10bytes to SPI slave.        I2C to SPI Bridge receive 10 bytes     I2C to SPI Bridge send 10bytes to SPI slave I2C master read data from SPI slave    I2C master read 10bytes(0x10 to 0x19) from SPI slave need to write data to SPI slave at first, then read data from I2C to SPI bridge data buffer directly.    Here just shows read 10bytes from I2C to SPI bridge data buffer. Attached I2C to SPI Bridge demo software default location is: ..\SDK_2.0_FRDM-KL03Z\boards\frdmkl03z\user_apps\i2c_to_spi
View full article
  当我们在使用Keil 时,经常会遇到无法下载程序的问题,以下对两种常见的情况进行总结:    1. 在我们需要将某工程代码移植到同系列其他型号器件上使用时,如果只是更改了器件型号,这时可能会导致无法正确下载。需要注意的是不仅要在Device中更换型号,还需要在Flash Download栏中选择正确的flash loader 并且设置正确的RAM起始地址。   举个例子:假设我们需要将FRDM_KL26的Sample code中的hello_world工程移植到256K flash的KL26上使用。打开FRDM_KL26的Sample code中hello_world工程,我们可以看到Device中器件为MKL26Z128xxx4,        在Target中可以看到Flash和RAM的起始地址和大小信息。          如果使用Jlink调试接口,选择J-LINK/J-TRACE Cortex  ,之后选择Setting,可以看到flash loader的相关信息。         将此工程移植到到256K flash的器件上,我们需要做的事情是:      在device中进行修改,选择MKL26Z256xxx4               在Target中可以看到这时flash和RAM的起始地址和大小信息已经自动做了更改。不需要再手动修改了。         但是在Flash Download中的设置还是之前的设置,并没有改变。           所以这时是无法正确下载程序的,需要我们手动去修改这里的两处配置。     一是 RAM for Algorithm中的Start应该设置为0x1FFFE000(从Target栏中可以获取该值),Size不用更改。      二是Program Algorithm 删除掉128k的flash loader ,添加256K的flash loader。       2.第二种可能遇到的情况是:本来可以正常下载的程序当复制到另外一台电脑时就无法正常下载了。遇到这种现象时,需要检查一下Flash Download中的相关配置是否正确,很可能会遇到 Program Algorithm中flashloder为空的情况,发生这种情况的原因可能是两个电脑的Keil版本不同,所以flash loader所在路径就会不同,这样flash loader就会变成空白,这时需要自己手动添加一下即可。
View full article
中文版:     想到过使用飞思卡尔的Freedom平台当做昂贵的J-Link调试器吗,好吧,这次给你机会了,呵呵。昨天在去SEGGER官网查资料的时候看到了一个suprise,Segger刚刚为OpenSDA平台release了一个可以兼容Jlink功能的firmware。说白了,就是借用OpenSDA当做J-Link用,当然有部分功能是有所限制的,不过瑕不掩瑜,Jlink的高速、稳定及一些特有的功能一直让接触过它的开发者印象深刻,所以能用low-cost的OpenSDA实现高性能的Jlink实在是让人兴奋,包括在下,哈哈,所以还等什么,赶紧露胳膊抹袖子整整吧,呵呵~     其实这次SEGGER提供的firmware就是OpenSDA的一个Application(我已经上传到本博客最后的附件中了),类似MSD-APP和DBUG-APP等其他的OpenSDA应用,所以它的使用方法类似,具体可以参考我之前的一篇博客《尝鲜OpenSDA方式调试仿真Freedom平台》http://blog.chinaaet.com/detail/31795.html。     (1)将firmware更新到OpenSDA的平台之后,再回到normal mode,这样就可以把OpenSDA当J-Link用了。将硬件连接好之后,打开J-Link Commander,弹出的窗口如下图所示,看吧,有点如假包换的J-Link味道了吧,呵呵,而且还有正版的S/N序列号哦。     (2)当然在IAR环境下使用它还需要简单的设置几步,如下图所示,建议不使用flash loader而是使用jlink自带的调试下载引擎,更稳定且速度杠杠的,呵呵:     (3)一切都准备好之后,就可以按照J-Link的调试方法调试Kinetis了,呵呵。当然有个最大的好处是,借用J-Link的特性,使用OpenSDA也可以支持Live watch了,可以实时更新观察变量,这点灰常灰常给力,如下图: Limitations:     当然我们也会猜到SEGGER不会那么蠢到自断财路(OpenSDA平台可是非常low-cost的),不然谁还会用那么昂贵的正版J-Link啊,呵呵。所以使用SEGGER提供的这个firmware有以下几点限制: 1)只能用在飞思卡尔平台基于ARM的产品上; 2)只可以调试飞思卡尔的评估板,所以貌似如果用在自己画的板子上可能有问题; 3)还有一个比较遗憾的,那就是不支持使用J-Flash软件(我一直觉着J-Flash很好用); 4)SEGGER不提供技术支持(这个我觉着无所谓)。     总体来说,还是利好的消息的,我还是灰常灰常看好OpenSDA的应用前景的,连SEGGER都低头兼容了,看来飞思卡尔以后调试器短板有望得到弥补,加油吧,呵呵。     不聊了,附件为更新的固件,未完待续~ /*****************************************************************************************************************************************/ English Version:    It feels realy good to see that SEGGER has offered a firmware running on the FRDM OpenSDA platform which makes OpenSDA compatible to J-Link lite, allowing users to take advantage of most J-Link features. It means we can do the same things with high-performance by using the low-cost OpenSDA platform. 1) How to do?    The J-Link firmware SEGGER offered is just an OpenSDA Application, so put the FRDM board into Bootloader mode and update the firmware, which is enclosed in the attached, just like other OpenSDA applications. Then put it into normal mode and the J-Link driver will be installed. Open the J-Link Commander, and we will see the diagram below. In IAR IDE, some setup steps need to follow: 2) Why to do?     Most inland customers get used to J-Link to debug ARM based products since ARM7 time and the J-Link is realy good debugger by my experience, althougn the legal J-Link is expensive. So we can help the customer to develop and evaluata products with low-cost OpenSDA platform.    In addition, live watch in IAR, which can update the varibles in time, is only supported with J-Link engine, which is very important to customer.   3) Limitations     May be used with ARM based Freescale devices only;     Only debugging on evaluation boards is allowed. Debugging on custom hardware is not supported and not allowed;     No production flash programming support;     Unlimited breakpoints in flash available for evaluation only;     No support is given. 4) Suggestions     OpenSDA is a very potential platform. USBDM has also released a firmware which is compatible to OpenSDA recently. So an open source OpenSDA  release from P&E is expected and to help customer to custom their own debugger hardware, which can help us to extend our Kinetis products more convenient. Voila, just give a try!
View full article
This was a super fun project to work on and is popular around the office and on the road.  Now I have two of these for a truely amazing barrage of Nerf darts!  It's also always a lot of fun to tear things down and the Nerf gun had some cool plastic work and the shooting mechanism is more simple than what I originally guess.  But I digress, this post is about how you can build one of these yourself.  Please leave any questions or comments in the section below and I will try to answer and make refinements to this guide as we go. Say hello to my little friend. The shopping list (aka Bill of Materials or BOM) If you shop around you might be able to find better prices or substitute parts. Type Part Qty Price URL UBEC HKU5 1 $             5.33 http://www.hobbyking.com/hobbyking/store/__16663__HobbyKing_HKU5_5V_5A_UBEC.html LiPo TURNIGY 2200mAh 3S 20C 1 $             7.89 http://www.hobbyking.com/hobbyking/store/__8932__Turnigy_2200mAh_3S_20C_Lipo_Pack.html Servo S5030DX 1 $           28.63 http://www.hobbyking.com/hobbyking/store/__18862__Hobbyking_S5030DX_Digital_MG_Servo_X_Large_HV_164g_0_20s_30kg.html Servo HK15138 1 $             3.12 http://www.hobbyking.com/hobbyking/store/__16269__HK15138_Standard_Analog_Servo_38g_4_3kg_0_17s.html Relay PCB COM-11041 1 $             3.95 https://www.sparkfun.com/products/11041 Relay Components Various 1 $             3.00 https://www.sparkfun.com/wish_lists/36307 Nerf Gun Nerf Dart Tag Swarmfire Blaster 1 $           44.99 http://www.toysrus.com/product/index.jsp?productId=11267568 Controller FRDM-KL64F 1 $           12.95 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-K64F Radio Module NRF24L01 2 $             3.00 http://www.dx.com/p/2-4ghz-nrf24l01-wireless-module-black-142224#.U8VIcpRdU1I Servo Arm Double Servo Arm X-Long 1 $             3.20 http://www.hobbyking.com/hobbyking/store/__19468__CNC_Alloy_Double_Servo_Arm_X_Long_Futaba_.html Servo Arm Heavy Duty Alloy Arm 1 $             5.63 http://www.hobbyking.com/hobbyking/store/__18350__Heavy_Duty_Alloy_1in_Servo_Arm_Futaba_Red_.html Servo Linkage Alloy Pushrod with Ball-Link 65mm 1 $             2.10 http://www.hobbyking.com/hobbyking/store/__25834__Alloy_Pushrod_with_Ball_Link_65mm.html Lazy Susan Shepherd 6 in. Lazy-Susan Turntable 1 $             4.49 http://www.homedepot.com/p/Shepherd-6-in-Lazy-Susan-Turntable-9548/100180572#.UYk5UqLql8E Metal Rod 3/8 in. x 36 in. Zinc Threaded Rod 1 $             2.87 http://www.homedepot.com/p/3-8-in-x-36-in-Zinc-Threaded-Rod-17340/202183465#.UYk5pqLql8E Frame 1/2 MDF 2ftx4ft 1 $           10.45 http://www.homedepot.com/p/1-2-in-x-2-ft-x-4-ft-Medium-Density-Fiberboard-Handy-Panel-1508108/202089097?N=btn1#.UYk6CqLql8E The build Two main pieces to construct in this phase.  The base turret and the actual hacking of the Nerf gun. All your base.. The base of the turret is pretty rudimentary, lot's of room for improvement here.  I used 1/2 MDF and some carpentry skills.  Here is an instructable on how to build a MDF box.  Atop the box is a lazy susan (ball bearing ring) so that the top-plate can rotate smoothly.  We considered leaving this element out, but worried that it would put to much strain on the servo. On the subject of servos, a few tidbits of wisdom for you as you build this thing.  First, the left/right servo needs to be dead center of the lazy susan, if your off too much things will start to bind which is not good for your servo.  Second, I used large higher torque servos which cost a bit more, they might be overkill, but it certainly performs well. I did a quick dimensionally accurate rendering of the design in Sketchup. Files are here. Hacking the Nerf Now for the fun stuff. There is no shortage of screws with this Nerf Gun.  So get out your Phillips screwdriver and go to town. There are two electrical systems in the Nerf that we are going to tap into.  One is the power switch and the other is the electrical trigger. This is the electrical trigger.  The trigger goes to our relay, which is either on or off.  We did try at first to use a 7.2V R/C car battery, but the Nerf draws too much power and didn't fire.  Going up to a 11.1V LiPo fixed that right up. This is the power switch. In Nerfinator 1.0 everything was hardwired together, which prevented us from completely pulling the Nerf from the base and made repairs difficult to say the least.  Nerfinator 2.0 we put this handy connector which allowed us to completely and easily remove the Nerf from the base.  Shipping this thing around the country will take a toll on it!  On that subject, Nerf 1.0, stopped cycling to the next position for us at the Austin Mini Maker Faire.  After a through inspection of the operational mechanics inside the Nerf (really cool BTW) it was a little bitty spring that was causing the piston not to fully retract.  We replaced the spring with 1/2 a ballpoint pin spring and to our surprise it all worked again.  Cue the MacGyver theme song... Electrical Connection Diagram [PDF] Code Mbed was the programming tool of choice for this build. Receive Side (RX) - The receiver is the base side.  This one takes input from the remote and controls the servo movement. NerfGun_nRF24L01P_RX - a mercurial repository | mbed Transmit Side (TX) - The transmitter is the remote side.  This one senses the users movement (accelerometer) and sends that data to the base station. NerfGun_nRF24L01P_TX - a mercurial repository | mbed Finishing Touches In the first passes of this build we just used a bare development board as the remote control.  We found that when given the remote they would not orientate it properly.  Angus and Iain CAD'ed up this really sweet controller for us to 3D print. Custom cutouts for the FRDM board and nRF module and powering through USB. Freedom- 3D Printed Controller files on Thingiverse Development Team Deactivated user - Amplification/Motivation CJarvis - Software/Hardware iafg and angusgalloway-b45797 - Design and print of controller Community Developed Improvements Nerf Gun Web Socket Compatibility - Controlling via Web Socket
View full article
最近有客户问到如何移植PE生成的TSI代码到IAR中,按照常规的方法在把头文件和库文件意义一一包含进来,非常繁琐,于是研究了一下相关的操作。在早期的IAR版本中,需要用户自己手动添加芯片名称,链接文件和包含的路径信息,特别是在PE增加或者删除组件后,需要用户去增减相应的文件,更增加了难度。而在最新版本的 IAR 6.7中集成了对PE工程的链接机制,它可以方便的读取PE工程的XML文件,从而实现移植PE生成的代码到 IAR Embedded Workbench中,相对于早期的IAR版本,主要完成以下几个工作: 自动检测使用的芯片类型; 自动添加PE的LCF连接配置文件; 自动更新包含的头文件路径; PE增加或者删除Component组件后,IAR工程会自动Add 或Delete 相应的组件代码; 尽管IAR完成了一些繁琐的工作,但网上没有太多的资源可以参考,对于首次使用的用户来说还是需要一些探索,为节省大家的时间,下面以一个具体的示例Step By Step的介绍如何在IAR中集成PE的工程。 1. 打开Processor Expert software 新建一个PE的工程并保存生成代码,这个过程比较简单,此处不再赘述,重点讲述一下在IAR中的使用步骤; 2. 在IAR Workbench中"Creat New Project"新建一个空的工程。 3. 保存新建的工程文件到PE工程的文件夹中,需要注意的是此处也可以选择其他路径,但为简便和易维护性上还是建议直接存放到PE工程中。 4. 打开Tools->Options->Project选项,勾选“Enable project connects”,这个选项的目的在于使能 IAR 能够读取Freescale Processor Expert和Infineon DAVE等第三方工具生成.XML文件。 5. 添加PE工程的XML文件,选择Project->Add Project Connection,会弹出链接选择对话框,选择使用Freescale Processor Expert,默认是IAR Project Connection; 6. 点击OK后,选择建立PE工程时生成的工程描述符文件Projectinfo.xml; 7. 完成上面步骤后,在IAR中自动完成以下三方面工作:自动加载PE生成的文件到IAR中,自动安装LCF链接配置文件,自动包含头文件路径。这几个步骤在之前版本的IAR中需要自己手动添加,并且当在PE中重新生成Code时需要重新添加对应的文件; 8. 完成上面步骤之后,需要根据实际情况配置采用的下载/调试器,Project->Options->Debugger->Setup 选择下载Driver,实验中使用的是KL25的FRDM板,所以在PE Macro中选择OpenSDA,点击OK,完成设置; 9. 编译工程,下载Debug; 总结下来,主要完成两个工作:(1)配置使能 Project connection,并导入PE生成的XML文件; (2)配置调试的下载器仿真器;
View full article
USB secondary ISP bootloader for LPC11U68  Overview        A Secondary Bootloader (SBL) is a piece of code that allows a user application code to be downloaded using alternative channels other than the standard UART0 used by the internal bootloader (on chip). Possible secondary bootloaders can be written for USB, Ethernet, SPI, SSP, CAN, and even I/Os. The secondary bootloader utilizes IAP as a method to update the user’s application code.        The internal bootloader is the firmware that resides in the microcontroller’s boot ROM block and is executed on power-up and resets. After the boot ROM’s execution, the secondary bootloader would be executed, which will then execute the user application.      The purpose of this document is to use USB as an example for developing the secondary bootloader and the code was tested using the LPCXpresso 11U68 evaluation board.       The MSCD presents easy integration with a PC‘s operating systems. This class allows the embedded system’s flash memory space be represented as a folder in Windows/Linux. The user can update the flash with the binary image using drag and drop, so the following sections will present a guideline for development and implementation of the USB secondary bootloader design, configuration, and test.      USB secondary bootloader code is base on the USB Mass Storage Class demo. However in this application note, we do not attempt to explain how the Mass Storage Class is implemented. Fig 1 LPCXpresso Board for LPC11U68 Setup file (sbl_config.h)       This file configures the secondary bootloader. The user should change this according to their application.       Some definitions and explanation: MAX_USER_SECTOR – This parameter is device dependent. In a 256 KB device, it will be 29 sectors, however the size of the last 5 sectors become the 32 KB instead of the 4 KB, so in the application, MAX_USER_SECTOR chooses 23 (Fig 2). CRP – Code Read Protection. This parameter allows select the desired CRP level. Choosing CRP3, the primary bootloader’s entry mechanism check will be bypassed. Fig 3 for CRP details. Fig 2 Flash sectors in LPC11U68 Fig 3 Code Read Protection (CRP) Secondary bootloader entry        The boot sequence shown below is used when entering the secondary USB bootloader. Fig 4 Using an entry pin      The secondary USB bootloader will check the status of a GPIO pin to determine if it should enter into programming mode. This is the easiest way since no post processing is needed. And this secondary bootloader uses P0.16. Automatic secondary bootloader entry       If the secondary USB bootloader detects that no user application is present upon reset, it will automatically enter programming mode. ISP entry disabled     If the secondary USB bootloader detects that a user application has already been installed and that CRP is set to level 3, then it will not enter ISP mode. Bootloader size        Since the bootloader resides within user programmable flash, it should be designed as small as possible. The larger the secondary USB bootloader is the less flash space is available to the user application. By default, the USB bootloader has been designed to fit within the first two flash sectors (Sector 0-1) so that the user application can start from sector 2. Code placement in flash       The secondary bootloader is placed at the starting address 0x0 so that it will be executed by the LPC11U68 after reset. Flash programming is based on a sector-by-sector basis. This means that the code for the user application should not be stored in any of the same flash sectors as the secondary bootloader and for efficient use of the flash space, the user application should be flashed into the next available empty sector after the bootloader.        In the application, the start sector is 3 (0x0000_3000) which is used to store the user application code. User application execution        If the SW2 button is not depressed, the secondary bootloader will start the execution of the user application. Execution of the user application is performed by updating the stack pointer (SP) and program counter (PC) registers. The SP points to the new location where the user application has allocated the top of its stack .The PC on the other hand contains the location of the first executable instruction in the user application. From here on the CPU will continue normal execution and initializations specified on the user application. By default, the bootloader uses 2 flash sectors. Therefore, to utilize the remaining flash, the secondary bootloader will look for the user application at 0x00003000 Handing interrupts      The LPC11U68 contains a NVIC (Nested Vectored Interrupt Controller) that handles all interrupts. When an interrupt occurs the processor uses the vector table to locate the address of the handler.      On the LPC11U68 the vector table is located in the same area of flash memory as the secondary bootloader. The secondary bootloader is designed to be permanently resident in flash memory and therefore it is not possible to update the contents of the vector table every time a new application is downloaded.       The Cortex-M3 core allows the vector table to be remapped; however this is not the case with the Cortex-M0. Because of this, the secondary bootloader has been designed to redirect the processor to the handler listed in a vector table located in the application area of flash memory, see Fig 5. Fig 5 User application       To execute the user application the secondary USB bootloader will load the new SP and PC values into their respective registers, allowing the CPU to execute the new code correctly. Therefore, the user application must be built so that it can run from that starting address. In the application, this address is 0x00003E00. So relocate the user application storage area by following corresponding IDE’s User Guide.  Testing  Creating the binary file             In this application, I build the demos_switch_blinky which is from the LPCOpen library to create the binary which is compatible with the secondary USB bootloader. The binary see Table 1. 08 04 00 10 B5 09 00 00 07 07 00 00 9B 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 A1 E1 FF EF 00 00 00 00 00 00 00 00 00 00 00 00 A7 09 00 00 00 00 00 00 00 00 00 00 E5 09 00 00 27 03 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 01 03 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E1 09 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 38 B5 63 4C 25 68 28 07 07 D5 96 20 E0 60 61 48 00 78 00 28 01 D1 00 F0 F7 F8 20 68 0C 21 29 40 01 43 21 60 31 BD 38 B5 5A 4C A0 78 40 1C A0 70 C0 B2 65 28 34 DB 00 25 A5 70 20 78 00 28 2F D0 60 78 00 28 03 D0 02 28 16 D0 0A D3 20 E0 01 21 00 F0 CA F8 00 21 01 20 00 F0 C6 F8 00 21 02 20 13 E0 01 21 01 20 00 F0 BF F8 00 21 00 20 00 F0 BB F8 00 21 02 20 08 E0 01 21 00 F0 B5 F8 00 21 01 20 00 F0 B1 F8 00 21 01 20 00 F0 AD F8 00 E0 65 70 60 78 40 1C 60 70 C0 B2 03 28 00 DB 65 70 31 BD F8 B5 00 F0 36 F9 00 F0 C2 F8 3A 48 01 68 02 22 91 43 01 60 01 68 38 4A 0A 40 02 60 35 4F 01 20 38 70 36 48 00 68 0A 21 00 F0 2B F9 1E 21 00 F0 28 F9 40 1E 00 26 80 21 49 04 88 42 0C D2 30 49 48 60 30 48 02 68 12 02 12 0A C0 23 1B 06 13 43 03 60 8E 60 07 20 08 60 01 20 2B 49 08 60 23 4C 20 00 00 F0 18 F9 29 48 01 68 80 22 12 03 0A 43 02 60 20 68 01 21 01 43 21 60 20 68 01 21 88 43 20 60 20 68 80 21 88 43 20 60 A6 60 FA 20 80 00 60 60 20 68 40 21 01 43 21 60 20 68 80 21 01 43 21 60 20 68 80 20 80 04 1A 49 08 60 20 68 30 21 01 43 21 60 18 4D 28 78 00 28 12 D1 38 78 00 28 0E D0 00 21 00 20 00 F0 3E F8 00 21 01 20 00 F0 3A F8 00 21 02 20 00 F0 36 F8 FA 20 80 00 E0 60 3E 70 E8 7B 00 28 E6 D1 01 20 38 70 E3 E7 00 40 02 40 04 00 00 10 00 20 00 A0 FF FF FE FF 00 00 00 10 10 E0 00 E0 20 ED 00 E0 1C 80 04 40 14 82 04 40 00 E1 00 E0 01 00 00 A0 49 01 40 18 83 54 70 47 10 B5 32 4C 20 00 00 F0 BF F8 E1 21 49 02 20 00 00 F0 C7 F8 03 20 E0 60 81 20 A0 60 80 20 20 63 10 BD 00 00 03 28 00 DB 70 47 80 B5 01 23 4B 40 2D A1 0A 5C 2B A1 09 5C A0 20 00 06 FF F7 DC FF 01 BD 00 00 03 28 00 DB 70 47 10 B5 A0 21 09 06 24 A2 12 5C 92 00 89 18 8C 22 92 01 01 23 00 BF 21 A4 20 5C 83 40 8B 50 10 BD 00 00 F8 B5 FF F7 C7 FF A0 25 2D 06 28 00 00 F0 B6 F8 00 24 00 BF 18 A6 31 5D 88 00 28 18 80 22 92 01 80 18 00 BF 15 A2 12 5D 03 68 01 27 97 40 1F 43 07 60 01 23 28 00 FF F7 A9 FF 64 1C 03 2C EA DB F1 BD 00 00 80 B5 07 48 01 68 80 22 52 02 0A 43 02 60 19 22 0A A1 04 48 00 F0 98 F8 01 BD 00 00 00 80 00 40 80 80 04 40 00 40 04 40 80 B5 FF F7 E9 FF 00 F0 B1 F8 01 BD 02 02 02 00 11 10 12 00 00 03 81 00 00 04 81 00 00 05 81 00 00 08 81 00 00 09 81 00 00 0B 02 00 00 0C 02 00 00 0D 02 00 00 0E 02 00 00 12 81 00 00 13 81 00 00 17 01 00 01 09 01 00 01 0B 81 00 01 0E 81 00 01 14 82 00 01 15 82 00 01 16 81 00 01 17 82 00 01 1A 81 00 01 1B 81 00 01 1D 81 00 02 00 01 00 02 01 01 00 02 03 82 00 80 B5 00 F0 EF F8 01 49 08 60 01 BD 00 00 00 10 80 B5 03 4A 12 68 12 69 52 68 90 47 02 BD 00 00 F8 1F FF 1F 03 48 01 68 80 22 D2 05 0A 43 02 60 70 47 00 00 80 80 04 40 15 49 01 22 8A 61 0A 68 80 23 5B 01 13 43 0B 60 07 21 81 60 10 21 81 62 70 47 70 B5 04 00 0D 00 01 20 0E 49 08 60 00 F0 8F F8 06 00 29 01 FF F7 D3 FF 01 00 E0 68 80 22 02 43 E2 60 C8 B2 20 60 08 04 00 0E 60 60 E0 68 80 22 90 43 E0 60 30 00 FF F7 C2 FF 70 BD 00 00 80 80 04 40 98 80 04 40 02 48 01 68 40 22 0A 43 02 60 70 47 80 80 04 40 00 2A 00 D1 70 47 30 B4 0C 68 23 0C 25 0A E4 B2 00 2C 12 D0 02 2C 01 D0 0A D3 11 E0 ED B2 AC 00 04 19 02 2D 01 DB F4 25 00 E0 F0 25 63 51 07 E0 2D 06 AC 0D 04 19 23 66 02 E0 2D 06 AC 0D 03 51 09 1D 52 1E E0 D1 30 BC 70 47 FE E7 38 B5 20 20 00 F0 E8 F8 00 20 00 90 11 48 02 E0 00 99 49 1C 00 91 00 99 81 42 F9 DB 01 20 00 F0 1F F8 0D 48 01 68 01 24 03 22 91 43 21 43 01 60 80 20 00 F0 C7 F8 09 4D 23 20 28 60 80 20 00 F0 CB F8 68 68 C0 07 FC D5 2C 67 03 20 00 F0 10 F8 31 BD 00 00 C4 09 00 00 10 C0 03 40 08 80 04 40 42 49 FF E7 08 60 00 20 48 60 01 20 48 60 70 47 3F 49 F7 E7 43 A0 CA 05 12 0F 92 00 80 58 C9 06 C9 0E 49 1C 49 00 FF F7 49 FF 00 BD 00 B5 00 20 3B 49 03 22 8B 6E 13 40 11 D0 02 2B 11 D0 02 D3 03 2B 10 D0 00 BD 89 6B 0A 40 08 D0 01 2A 03 D0 03 2A 1A D1 31 48 00 E0 2F 48 00 68 00 BD 2D 48 00 BD C9 69 D6 E7 8B 6B 1A 40 08 D0 01 2A 03 D0 03 2A 05 D1 29 48 00 E0 27 48 00 68 00 E0 25 48 09 68 C9 06 C9 0E 49 1C 48 43 00 BD 00 00 00 00 10 B5 00 20 22 4C 03 21 A2 6E 0A 40 30 D0 02 2A 15 D0 21 D3 03 2A 2C D1 A2 6B 11 40 08 D0 01 29 03 D0 03 29 05 D1 19 48 00 E0 17 48 00 68 00 E0 14 48 21 68 C9 06 C9 0E 49 1C 48 43 19 E0 E1 69 14 A0 CA 05 12 0F 92 00 80 58 C9 06 C9 0E 49 1C 49 00 FF F7 EB FE 0C E0 A2 6B 11 40 08 D0 01 29 03 D0 03 29 05 D1 09 48 00 E0 07 48 00 68 00 E0 04 48 21 6F FF F7 DA FE 10 BD 00 00 40 80 04 40 70 80 04 40 00 1B B7 00 D0 09 00 00 D4 09 00 00 08 80 04 40 00 00 00 00 C0 27 09 00 90 05 10 00 C0 5C 15 00 F0 B3 1A 00 20 0B 20 00 00 9F 24 00 E0 32 29 00 C0 C6 2D 00 50 97 31 00 E0 67 35 00 70 38 39 00 00 09 3D 00 40 16 40 00 80 23 43 00 C0 30 46 00 0B 49 0A 68 10 43 09 4A 02 40 C8 20 00 02 10 43 08 60 70 47 06 49 0A 68 82 43 04 48 10 40 C8 22 12 02 02 43 0A 60 70 47 00 00 00 00 FF 25 00 00 38 82 04 40 70 B4 01 21 00 22 13 E0 04 68 00 1D 0C 42 02 D0 4D 46 6D 1E 64 19 22 60 24 1D 1B 1F 04 2B FA D2 25 00 9E 07 01 D5 22 80 AD 1C 0B 40 00 D0 2A 70 03 68 00 1D 00 2B E7 D1 70 BC 70 47 10 B5 07 49 79 44 18 31 06 4C 7C 44 16 34 04 E0 08 1D 0A 68 89 18 88 47 01 00 A1 42 F8 D1 10 BD 08 00 00 00 14 00 00 00 9D FF FF FF 08 00 00 00 00 00 00 10 00 00 00 00 00 F0 0B F8 00 28 01 D0 FF F7 DE FF 00 20 00 BF 00 BF FF F7 0C FD 00 F0 02 F8 01 20 70 47 80 B5 00 F0 02 F8 01 BD FE E7 07 46 38 46 00 F0 02 F8 FB E7 FE E7 20 21 09 03 26 31 18 20 AB BE F9 E7 01 48 80 47 01 48 00 47 D9 09 00 00 C5 09 00 00 00 BF 00 BF 00 BF 00 BF FF F7 D2 FF 00 1B B7 00 00 80 00 00 80 B5 FF F7 DF FD 01 BD FE E7 FE E7 FE E7                                                    Table 1 Drag and drop the binary file Running the secondary bootloader, and connect a USB cable between the PC and the J3, see Fig 6; Fig 6 Drag and drop the binary file to the driver, see Fig 7;    Fig 7 Review the values of the user application in the relative area , see Fig 8; Fig 8
View full article
This document covers some of the more common questions about the new Kinetis K8x family. Any new specific issues or questions should be posted into it's own thread, and will be added to this document as appropriate. Kinetis K80 Basics What is the K8x family? It is a new Kinetis family of Cortex-M4F devices, running up to 150MHz, that include 256K of Flash and 256K of SRAM. It features FS USB, SDRAM, QuadSPI, SPI, I2C, LPUART, and much much more. How does the Kinetis K8x family differ from other Kinetis K families? The K8x family offers the same advantages and compatibility as other Kinetis K families, but also offers several new features not found on other Kinetis K families: QuadSPI Support Dual Voltage Domains (independent VDDIO domain down to 1.8V for QuadSPI or other interfaces) EMVSIM (Euro, MasterCard, Visa Serial Interface Module) FlexIO Additionally the K81 and K82 families offer the following new security modules: LTC (Low Power Trusted Cryptography) Encryption / Decryption algorithms in hardware (as opposed to using mmCAU s/w libs) OTFAD (On The Fly AES Decryption) Zero latency decryption when executing encrypted code from QuadSPI Secure RAM 2KB of Secure Session RAM Because of the addition of a second voltage domain and QuadSPI, there is no hardware pin compatibility with previous Kinetis derivatives. However there is significant module and enablement re-use, so if you’re familiar with other Kinetis devices, it will be easy to get started with the K80. Where can I find reference manuals, datasheets, and errata? These can be found on the K8x documentation pages. Detailed information on the K81 is under NDA, so please contact your NXP sales representative for those documents. What’s the difference between the different K8x devices? K80 is the base version, which includes QuadSPI controller, SDRAM controller, FS USB, and much more. K81 adds DryIce Tamper Detect and the LTC/OTFAD modules K82 adds just the LTC/OTFAD modules K80 and K82 families have the same pin out for their respective packages. The pinout for K81 is slightly different but can still be compatible. What boards are available to evaluate the K80 family? FRDM-K82F: A Freedom board with a 100LQFP K82 device. Also includes dual QuadSPI, touch pad, Arduino compatible footprint, and FlexIO header compatible with OV7670 camera. TWR-K80F150M: A Tower board with 121XFBGA K80 device. Includes dual QuadSPI, SDRAM, EVMSIM, SDCard holder, touch pads, and more. TWR-POS-K81: A Point of Sale reference design board in tower form factor. This board is only available via your NXP sales representative. The K8x MCU Family Hardware Tools selection guide has more details on board differences. What packages are available? The 100 LQFP and 121 XFBGA packages are lead packages available today. The 144 LQFP package and the WLCSP are part of the Package Your Way (PYW) program, and you should contact your NXP sales representative if interested in those packages. What is the difference between K8x and KL8x families? The KL8x family shares many of the same features as the K8x family. The biggest differences are that the KL8x family uses the Cortex-M0+ core (instead of Cortex-M4F), has a lower max clock speed, and has less internal Flash and RAM. It also reduces the instances of peripherals available, but still includes QuadSPI, FlexIO, LTC, and BootROM peripherals like on the K80. See the KL8x Fact Sheet for more details. KL8x devices will be available in the first quarter of 2016. Software/Tools Where can I find instructions and details on the hardware used to evaluate the K8x family? FRDM-K82F: http://nxp.com/frdm-k82f/startnow​ TWR-K80F150M: http://nxp.com/twr-k80f150m/startnow ​ Which version of Kinetis SDK supports the K8x family? Kinetis Software Development Kit (KSDK) support is split depending on the evaluation platform. For TWR-K80F150M, support can be found in the Kinetis SDK 1.3 Mainline Release. For FRDM-K82F, support can be found in the Kinetis SDK FRDM-K82F Stand-alone release. Note that the FRDM-K82 standalone release is truly standalone, and does not require the mainline release to be installed. How do I run the FRDM-K82F OV7670 camera demo? See this Community post: https://community.freescale.com/docs/DOC-329438 How can I use the micro SD card reader on the TWR-K80F150M? Because the SD card signals are shared with the QuadSPI signals, the SD card slot is not connected by default. See section 3.14 of the TWR-K80F150M User Guide for details on how to connect it, with the understanding that QuadSPI will not be available on the board while using SDHC. How do I use the SDRAM on the TWR-K80F150M? See section 3.9 of the TWR-K80F150M User Guide. Due to the layout of the board, the OpenSDA UART feature cannot be used while running the SDRAM as jumpers J6 and J8 need to be removed. QuadSPI What is QuadSPI Flash? Why should I use it? QuadSPI is a name for a popular type of serial NOR flash memory that is SPI compatible, but also allows for multiple data lines (up to 4 per device, or 8 if done in parallel) with bi-directional data for increased memory bandwidth. The QuadSPI controller on the K8x also allows for Execute-In-Place (XIP) mode so that code can be executed out of this external memory. QuadSPI memory can be used for either extra memory storage or for extra code space, or a combination of both. After initialization, it appears as a readable area of memory starting at 0x6800_0000 (as well as at the alias regions). How can I program the QuadSPI? There is an example application in Kinetis SDK that shows how to program the QuadSPI at C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\driver_examples\qspi For programming an entire application, the ROM bootloader can be used. Details are in the K80 Bootloader Tools Package. The Kinetis Bootloader QuadSPI User's Guide that comes as part of that package describes all the steps needed to get up and running with QuadSPI. There is also an example Kinetis SDK application that runs out of QuadSPI at C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\hello_world_qspi_alias What performance tips are there if doing QuadSPI XIP? A few key performance factors: Ensure both the data and instruction cache is enabled Use as many data lines as possible (4, or 8 if available in dual/octal modes) Use DDR mode Any critical code should be placed in Flash/RAM for fastest performance If using XIP, code should be executed out of the QuadSPI aliased address space which starts at 0x0400_0000. A more detailed app note is under development. How do I debug code located in QuadSPI? You must make use of the aliased QuadSPI address space at 0x0400_0000. There is an example of this in the hello_world_qspi_alias example in Kinetis SDK. Due to the architecture of the M4 core on Kinetis, breakpoints cannot be set in the 6800_0000 address space, which is why the alias address space is provided. What app notes are available for the QuadSPI? Because the QuadSPI module found on the K8x family has also been used on other NXP devices, there are some app notes available that can be useful for QuadSPI development. Note that some of the implementation details and features as described in the app notes will be different for K8x, so please use the K8x reference manual for full details. AN4186​ AN4512​ AN4777​ ROM Bootloader Where can I find more information on the bootloader that comes built into the silicon of the K8x family? Download the K80 Bootloader Tools package. If interested in QuadSPI, the Kinetis Bootloader QuadSPI User's Guide that comes as part of that package describes all the steps needed to get up and running with QuadSPI. The other information found on the Kinetis Bootloader website is also useful as this is what the ROM Bootloader is based off of. What interfaces does the ROM Bootloader support? The ROM Bootloader on the K8x family can interface via LPUART, I2C, SPI, or USB HID (via BLHost) to erase and program both the internal flash and/or QuadSPI flash. This is the same bootloader found on other Kinetis devices, but also includes some more advanced features to support QuadSPI. How can I enter bootloader mode? By default, when using a Kinetis SDK project, the bootloader is disabled and the code immediately jumps to the address in Flash pointed at location 0x4. By asserting the NMI pin at reset though, the part can be forced to enter bootloader mode. This is useful for programming the QuadSPI or interfacing with the bootloader in other ways. This feature is controlled via the FOPT[BOOTPIN_OPT] bit, which the Kinetis SDK code sets to '0' to enable the NMI pin to enter bootloader mode. The NMI button on each board is: FRDM-K82F: SW2 TWR-K80F150M: SW2 The FOPT register (at 0x40C) can be modified to always go into Bootloader mode if desired. Details are in boot chapter of the K80 reference manual. Where is the bootloader configuration data found in Kinetis SDK? The Bootloader Configuration Area (BCA), which begins at address 0x3C0, is defined in C:\Freescale\KSDK_1.3.0\platform\devices\MK80F25615\startup\system_MK80F25615.c starting on line 133. You must also add the define BOOTLOADER_CONFIG in the project settings to let the linker files know to program this BCA area. The FOPT configuration register (at 0x40D) is defined in C:\Freescale\KSDK_1.3.0_K82\platform\devices\MK82F25615\startup\<compiler>\startup_MK80F25615.s and by default is set to 0x3D which disables the bootloader, but does enable the option to enter bootloader via the NMI pin at reset (see previous question) How can I use the UART port on the FRDM-K82F with the BootROM? The OpenSDA/UART lines on the FRDM-K82F use LPUART4, which is not used by the BootROM. If you would like to use the serial UART lines to interact with the BootROM, you can blue wire a connection from either J24 or J1, and connect to R32 (RX) and R36 (TX). This was due to muxing trade-offs. The OpenSDA/UART lines on the TWR-K80F150M are connected to UART1 and thus no modification is necessary for that board. Also keep in mind that you can use the USB interface with the BLHost tool on both boards with no modification. The examples in Kinetis SDK setup the QuadSPI Configuration Block (QCB) data using a qspi_config.bin file. How can I generate my own custom QCB file? There is a C file that come as part of Kinetis SDK (C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\hello_world_qspi\qspi_config_block_generator.c) or in the KBoot zip file, that can be compiled with various toolchains on a host computer, that will then produce a .bin file. You could import this file, and then after compilation, run it, and it will write out the new .bin to your hard drive. There is a tool under development that simplifies this process by reading in that example .bin file and then you can modify the fields in the app, and then it will write out the modified .bin file. Can I jump directly to QuadSPI for Execute in Place (XiP) after booting? Yes. However note that you must still put the Bootloader Configuration Area (BCA) into internal flash. And you also may want to put the QuadSPI Configuration Block (QCB) in flash as well since it needs to be read before the QuadSPI is setup. Thus even if all your code is in QuadSPI address space, the internal flash must also be written at least once to put in the configuration data. Once you have that set though, then you can develop code by only programming the QuadSPI address space. Troubleshooting I’m having debugger connection issues when using an external debugger, like a Segger JLink. Why? It’s likely that the OpenSDA circuit is interfering, and thus needs to be isolated via jumpers on the board. For TWR-K80F150M: Pull J16 and J17 For FRDM-K82F: Pull J6 and J7 Also make sure you are using the correct debug header for the K8x device on the board: For TWR-K80F150M: J11 For FRDM-K82F: J19 Where is the CMSIS-DAP/OpenOCD debug configuration for the K8x family in Kinetis Design Studio? KDS 3.0 does not support programming the K8x family via the CMSIS-DAP interface. You will need to change the OpenSDA app on the board to either J-Link or P&E as described in the K8x Getting Started guides (Part 3). I can't get OpenSDA on the FRDM-K82F into bootloader mode. Make sure jumper J23 is on pins 1-2 to connect the reset signal to the OpenSDA circuit. On some early versions of the board this was incorrectly installed on pins 2-3 instead. When using IAR with the default CMSIS-DAP debug interface, I sometimes get the error: “Fatal error: CPU did not power up” This is an issue in some older versions of IAR. Upgrade to at least version 7.40.5 which fixes this. When using KDS with the JLink interface with the FRDM-K82F board, I get an error. If you see the error "The selected device 'MK82FN256XXX15' is unknown to this version of the J-Link software." it's because the J-Link driver that comes with KDS 3.0.0 does not know about the K82 family. You can either select a MK80FN256XXX15 device (which is compatible with the K82 on the board) or update the JLink software by downloading and installing the latest JLink Software and documentation pack. At the end of the installation process it will ask to update the DLLs used by the IDEs installed on your computer, so make sure to check the KDS checkbox on that screen. I’m using the P&E OpenSDA App and debugging is not working. I get either "Error reading data from OpenSDA hardware. E17925" or “The system tried to join a drive to a directory on a joined drive” in KDS If using IAR, make sure you have the latest version (7.40.7 or later) If using KDS, you need to update the P&E plugin in KDS. Go to Help->Check for Updates, and select the P&E debug update. Make sure not to select the other debugger updates as it will break it in KDS 3.0.0 (see this thread)
View full article
This document shows the implementation of the infrared on the UART0 using the FRDM-KE02Z platform. The FRDM-KE02Z platform is a developing platform for rapid prototyping. The board has a MKE02Z64VQH2 MCU a Kinetis E series MCU which is the first 5-Volt MCU built on the ARM Cortex-M0+ core. You can check the evaluation board in the Freescale’s webpage (FRDM-KE02Z: Kinetis E Series Freedom Development Platform) The Freedom Board has a lot of great features and one of this is an IrDA transmitter and receiver on it. Check this out! One of the features of the MCU is that the UART0 module can implement Infrared functions just following some tricks (MCU-magic tricks). According to the Reference Manual (Document Number: MKE02Z64M20SF0RM) this tricks are:      UART0_TX modulation: UART0_TX output can be modulated by FTM0 channel 0 PWM output      UART0_RX Tag: UART0_RX input can be tagged to FTM0 channel 1 or filtered by ACMP0 module For this example we are going to use the ACMP0 module to implement the UART0_RX functionality. Note1: The Core is configured to run at the maximum frequency: 20 Mhz Note2: Refer to the reference manual document for more information about the registers. Configuring the FTM0. The next lines show the configuration of the FTM0; the module is configured with a Frequency of 38 KHz which is the ideal frequency for an infrared led. The FTM0_CH0 is in Edge_Aligned PWM mode (EPWM).           #define IR_FREQUENCY       38000 //hz      #define FTM0_CLOCK                BUS_CLK_HZ      #define FTM0_MOD_VALUE            FTM0_CLOCK/IR_FREQUENCY      #define FTM0_C0V_VALUE            FTM0_MOD_VALUE/2      void FTM0CH0_Init( void )      {        SIM_SCGC |= SIM_SCGC_FTM0_MASK;             // Init FTM0 to PWM output,frequency is 38khz        FTM0_MOD= FTM0_MOD_VALUE;        FTM0_C0SC = 0x28;        FTM0_C0V = FTM0_C0V_VALUE;        FTM0_SC = 0x08; // bus clock divide by 2      } With this we accomplish the UART0_TX modulation through a PWM on the FTM0_CH0. Configuring the ACMP0. The configuration of the ACMP0 is using a DAC and allowing the ACMP0 can be driven by an analog input.      void ACMP_Init ( void )      {        SIM_SCGC |= SIM_SCGC_ACMP0_MASK;        ACMP0_C1 |= ACMP_C1_DACEN_MASK |                   ACMP_C1_DACREF_MASK|                   ACMP_C1_DACVAL(21);    // enable DAC        ACMP0_C0 |= ACMP_C0_ACPSEL(0x03)|                            ACMP_C0_ACNSEL(0x01);        ACMP0_C2 |= ACMP_C2_ACIPE(0x02);  // enable ACMP1 connect to PIN        ACMP0_CS |= ACMP_CS_ACE_MASK;     // enable ACMP                } With this we have now implemented the UART0_RX.     IrDA initialization. Now the important thing is to initialize the UART0 to work together with these tricks and implement the irDA functions. Basically we initialize the UART0 like when we use normal serial communication (this is not the topic of this post, refer to the project to see the UART_init function) and we write to the most important registers:         SIM_SOPT |= SIM_SOPT_RXDFE_MASK; UART0_RX input signal is filtered by ACMP, then injected to UART0.      SIM_SOPT |= SIM_SOPT_TXDME_MASK; UART0_TX output is modulated by FTM0 channel 0 before mapped to pinout. The configuration is as follows:      void IrDA_Init( void )      { // initialize UART0, 2400 baudrate        UART_init(UART0_BASE_PTR,BUS_CLK_HZ/1000,2400);                  // clear RDRF flag        UART0_S1 |= UART_S1_RDRF_MASK;                  // initialize FTM0CH1 as 38k PWM output        FTM0CH0_Init();                      // enable ACMP        ACMP_Init(); SIM_SOPT |= SIM_SOPT_RXDFE_MASK;  //UART0_RX input signal is filtered by ACMP, then injected to UART0.        UART0_S2 &= ~UART_S2_RXINV_MASK;  //inverse data input SIM_SOPT |= SIM_SOPT_TXDME_MASK;  //UART0_TX output is modulated by FTM0 channel 0 before mapped to pinout.      } With the irDA initialization we got the infrared features on the UART0. Philosophy of the Example In the attachments of this post you can find the example which shows the use of these functions in a basic application; the project was compiled in CodeWarrior 10.6 and the philosophy is: I hope that the information presented on this document could be useful for you. Thank you! Best Regards!
View full article
FINALISTAS Después de un profundo análisis de todos los proyectos, nuestros jueces realizaron la difícil selección de los finalistas del Kinetis L MCU Challenge México entre los que el público elegirá al ganador; gracias a la excelente respuesta decidimos nombrar 16 finalistas.  Ellos son: Project Name Contestan Name Description Video Sistema de monitoreo de la contaminación acústica #MonitoreoAcustico Lucio Canche Diseño de una placa para monitoreo de niveles de ruido utilizando un sensor de sonido. Permite el estudio detallado de los patrones de propagación del sonido. Movimiento de un carro controlado #CarroPelotasAntiestres Emilio Jiménez Auto de juguete controlado por medio de pulsaciones realizadas con 2 pelotas anti-estrés, el presionar una pelota hará que el vehículo avance hacia adelante y la otra hará que gire sobre su propio eje. Viking lever #VikingLever Ma. Fernanda Gutierrez Consiste en un sistema de una palanca con contrapeso; tendrá en la punta una pelota con una led que indicará cuando el usuario tiene que golpearla. Controlador para el suministro de agua de una vivienda #ControladorAgua Rogelio Rosales El objetivo es el ahorro de agua. En un tinaco se colocan 2 sensores, uno a nivel alto y el otro a nivel bajo de agua. Dependiendo del nivel del agua los sensores mandan la señal a la bomba para que se encienda o apague. Rehab glove #RehabGlove Alexis Castañón Guante que posee sensores de flexión en las articulaciones de los dedos y de fuerza en las yemas, con el fin de enviar instrucciones a algún aparato, mientras el usuario realiza ejercicios como cerrar el puño o tocar las yemas de los dedos con el pulgar. Tablet braile para invidentes #TabletBraille Andres Gafford Tableta para leer ebooks braile con botones para cambiar de página, apagar y encender, que sean fáciles de percatar por un invidente; así como botones interactivos que desplieguen opciones del menú. Tapete interactivo para discapacitados #TapeteInteractivo Angel Campoy Este tapete interactivo, contribuye al desarrollo motriz. El teclado cuenta con cuatro botones, los cuales tienen un led que se enciende indicando al paciente que debe presionar el boton. Si activo el boton indicado,se enciende un LED verde o rojo si se equivocó. Neck remote control wheel chair #NeckControl Francisco Javier Pérez Corona Silla de ruedas controlada moviendo el cuello a la izquierda o derecha, presionando un botón con la cabeza, que a su vez haga avanzar o girar. Control de sensores infrarrojos para silla de ruedas #SensoresSilla Jesús Lizárraga Silla de ruedas diseñado para personas con parálisis cerebral. El usuario debe colocar las dos manos al ifgual que los codos por encima de los espacios indicados, los sensores se activarán haciendo que la silla avance o gire hacia el lado en que la persona posicionó la mano. N-drid uleta #NdridRuleta Jorge Rodriguez Rodriguez Juego de ruleta de leds de 4 colores, el usuario acumulará puntos cada vez que logre presionar el botón del color en donde parará la ruleta. KMA #KMA Luis Castellanos Prototipo para silla de ruedas que será controlada con un dispositivo de fácil manejo,  comunicado a la silla por bluethooth. Sensilla #Sensilla Miguel Rogel Silla móvil manipulada por sensores y con esto lograr desplazarse de una manera más accesible a sus capacidades. Pest control using Freescale #PestControl Pablo Yerena Este proyecto consiste en el control de plagas de manera ecológica, con la implementación de un aparato electrónico que emite frecuencias ultrasónicas evitando que animales e insectos invadan espacios físicos. Tren de colores musical #TrenColores Ricardo Villaseñor Juguete donde se utiliza un sensor óptico para la lectura de pequeños cubos de colores, donde cada color es una nota musical. Al colocar el lector sobre el cubo de color se emitirá la nota correspondiente. Morse deaf-mute communication system #MorseDeafMute Roberto Vite Ruiz Dispositivo de escritura basado en el código morse. Se muestra un código morse para cada letra del alfabeto permitiendo a una persona sorda o muda darse a entender de manera escrita.       Casco acelerómetro #CascoAcelerometro José Ramón Rodriguez Dispositivo  para silla de ruedas que  permite al paciente transportarse autónomamente mediante una especie de casco que detecte la dirección deseada, además de que sea una manera recreativa de trasladarse Podrás participar calificando cada proyecto a través de redes sociales y la herramienta RankTab; la votación se abrirá el día del evento a partir de las 9:00am, espera las instrucciones a través de la Comunidad Freescale,  Facebook y durante el evento. A todos los finalistas los esperamos el 07 de Diciembre a las 8:00hrs en el Centro de Congresos del Tecnológico de Monterrey Campus Guadalajara, donde se develará el misterio y conoceremos al ganador del viaje al Freescale Technology Forum (FTF) en Dallas, Texas del 08 al 11 de Abril del 2014. Para solicitar mayor información, favor de enviar un correo a cristina.garcia@mclgx.comA
View full article
This is an update to the KE0x Driver Library package with the example projects ported to Kinetis Design Studio (KDS).  These examples support the following boards: FRDM-KE02 FRDM-KE04 FRDM-KE06 The examples were tested with KDS v3.0.0
View full article
Since the mbed Ethernet library and interface for FRDM-K64 have not yet been fully tested, instead of using mbed we will use one of the latest demo codes from MQX specifically developed for the FRDM-K64 platform. Before starting please make sure you have the following files and software installed in your computer: CodeWarrior 10.6 (professional or evaluation edition) MQX 4.1 for FRDM-K64 (it is not necessary to install full MQX 4.1) JLink_OpenSDA_V2.bin (this is the debugger application) * If you don't have a valid license, you can find a temporary license below, it will only be valid until 7/30/2014 and it will only be available online until 7/05/2014. Building the project The first step to use an MQX project is to compile the target/IDE libraries for the specific platform: 1. Open CodeWarrior and drag the file from the following path C:\Freescale\Freescale_MQX_4_1_FRDMK64F\build\frdmk64f\cw10gcc onto your project area: This will load all the necessary libraries to build the project, once they are loaded build them it is necessary to modify a couple of paths on the BSP: 2. Right click on the BSP project and then click on properties 3. Once the properties are displayed, expand the C/C++ Build option, click on settings, on the right pane expand the ARM Ltd Windows GCC Assembler and select the directories folder, this will display all the libraries paths the compiler is using 4. Double click on the "C\Freescale\CW MCU v10.6\MCU\ProcessorExpert\lib\Kinetis\pdd_100331\inc" path to modify it, once the editor window is open, change the path from "pdd_100331" to "pdd" 5. Repeat steps 2 and 3 for the ARM Ltd Windows GCC Compiler 6. Now you can build the libraries, build them one at a time by right clicking on the library and selecting build project, build them in the following order, it is imperative you do it in that order. BSP PSP MFS RTCS SHELL USBD USBH 7. Once all the libraries are built, import the web hvac demo, do it by dragging the .project file to your project area; the project is located in the following directory:                     C:\Freescale\Freescale_MQX_4_1_FRDMK64F\demo\web_hvac\build\cw10gcc\web_hvac_frdmk64f 8. Once the project is loaded, build it by right clicking on the project folder and select Build project Debugging the project To debug the project it is necessary to update the FRDM-K64 debugging application: Press the reset button on the board and connect the USB cable Once the board enumerates as "BOOTLOADER" copy the JLink_OpenSDA_vs.bin file to the unit Disconnect and reconnect the board On CodeWarrior (having previously compiled the libraries and project) click on debug configurations 5. Select the connection and click on debug 6. Open HVAC.h and change the IP Address to 192.168.1.202 Now the demo code has been downloaded to the platform you will need the following to access all the demo features: Router Ethernet Cable Serial Terminal The code enables a shell access through the serial terminal, it also provides web server access with a series of options to simulate an Heating Air Conditioning Ventilation System, the system was implemented using MQX and a series of tasks, for more details on how the task are created, the information regarding how to modify the code please check the attached document: Freescale MQX RTOS Example guide.
View full article
As K2 – The Next Generation of Kinetis Solutions continues to build momentum around new applications within the Internet of Things (IoT), the ARM® mbed™-enabled Freescale Freedom development platform, FRDM-K64F, is taking center stage. With the FRDM-K64F platform now in the hands of thousands of engineers across the globe, we already are learning about how this platform is powering new and inventive applications. To help illustrate this powerful and fun-sized platform, coming every Monday (beginning on Monday, May 19) for five consecutive Mondays, we invite you to join us for MountainMondays and scale K2 where we'll be giving away 20 FRDM-K64F development platforms each week - that's 100 in all! Join us to begin the ascent on Monday, May 19, by following Freescale's Facebook, Twitter and Google+ pages to find out what you have to do to win one of these development platforms! For complete contest rules, click here. Thanks to everyone who have participated in #MountainMondays! Great ideas from everyone! Below is our list of winners thus far for each week. If your name is on any of the following lists, be sure to email your shipping address to socialmedia@freescale.com and continue the ascent with us each Monday through June 16! Week 1 - May 19, 2014: Basecamp FRDM And the winners for week 1 are ... On Facebook ... Ahmed Felhi Naga Kishanmv Raleigh Sea Illgen Austin Chen Rahul Karnik Derrick Beaven David Pereira Anhell Barragán Valentín Korenblit Олег Лаврухин Hector Fabian Joanna Kurki Jozef Humaj Wojtek Stoduly Google+ ... Gurinder Singh Gill Mark McDonnell Niklas Stoyke Twitter ... kumisaappaat cledic evemuller92 Week 2 - May 26, 2014: Basecamp K And the winners for week 2 are ... From Facebook … Gaurav Chaudhary Bhuvanesh Nick Pyrosster Pyrosster Federico Lo Grasso Florencia Caruso Nick Defensor Laura Mándola SuperKing Tříska  From Twitter … Antonio Quevedo Jayprakash Shet Fahad Mirza Jonathan Chadwick Gordon Margulieux Hector Fabian C Zahir Parkar Attila Kozmári From Google+… Sergey Gridnewskiy Paul Nykiel Matías Dell'Oso Manishi Barosee Week 3 - June 2, 2014: Basecamp 6 And the winners for week 3 are ... From Facebook … Robert Bui Trong Nguyen Alexandre Ferri Michal Wertheim Petr Vítek Gerald Fry Jr Leśniewicz Wojciech Adriana Errico Trong Nguyen Emnics Erwin Kuhn Maliganis Nikolaos Dushyant Arora Štefan Knotek Hom Flann James Braga From Twitter… Gaurav Singh From Google+ … Soputtra San Clovis Fritzen Cristina Pérez Week 4 - June 9, 2014: Basecamp 4 And the winners for week 4 are ... From Facebook … Ivan Ruiz Robin Wohlers-Reichel Tony Anderson Łukasz Bittner Laura Chijlis Earl Orlando Jaime Pérez Rak San Gabriel Korenblit Tobiasz Dworak Sean Emerald Ghulam Mirosław Szymczyk Bhaumik Bhatt Jenius Nghia From Google+ … prithvi ganesh Evangelia Karagianni Vandy San Greg Steiert Titvirak San Joji John Varghese Week 5 - June 16, 2014: Basecamp F And the winners for week 5 are ... Evangelia Karagianni Shady Trần Kasia Michalowska Nghia Nguyen Saudin Dizdarevic Navin Bhaskar Thank you to everyone who has participated in the past five weeks of #MountainMondays – we’ve finally reached the summit of K2! Your energy, inventiveness and contributions have all been fantastic! Congratulations to all winners! We hope you enjoy your development platform and look forward to hearing about what you build using the FRDM-K64F platform. Happy designing!
View full article
Problem Analysis and solutions for booting from ROM BOOTLOADER in KL series 1 Abstract      When customer use the kinetis chip KL43, KL27 and KL17 which flash size is above 128K, they have found a problem that if the code boot from the ROM instead of the flash, the application code about the LPUART and I2C will run in abnormal state, especially when use PTA1 as the  LPUART receive pin, UART transmit function has no problem, but when the PTA1 receive the UART data, the code will run to the abnormal area and can’t return back, the code will be crash. This problem only happens on booting from the ROM and the uart and i2c peripheral are enabled in BCA 0x3d0 address, uart peripheral enablement in BCA area will influence the application PTA1 uart receive, i2c peripheral enablement in BCA area will influence the i2c0 module in the application code. If booting from the flash or booting from ROM but the uart and I2C peripheral are disabled in the BCA 0x3d0 address, everything is working ok in the application code.      This document will take the UART problem as an example, give details of the problem reproduction, testing, analysis and the solutions. The I2C problem is the same when booting from the ROM bootloader. 2 Problem reproduction and analysis  Testing preparation: IDE: KDS 和IAR Hardware: FRDM-KL43 Software: 3.0 and KSDK2.0_FRDM-KL43      We mainly reproduce the uart receive problem in two ways: new KDS PE project based on KSDK1.3.0 and official newest sample code package KSDK2.0_FRDM-KL43. 2.1 Problem reproduction in new creating kds project Because the KSDK2.0 still doesn’t support the PE function in the KDS IDE, so we use the KSDK1.3.0 as the PE KSDK to create the new KDS project. 2.1.1 Create KDS KL43 project The new KDS PE project creating is very simple, here just describe the important points which is relate to the UART problem after booting from the ROM. At first create a new KDS PE project which is based on KSDK1.3.0, and choose the chip as MKL43Z256VLH4, select the MCG mode as HIRC, and configure core clock to 48Mhz, bus clock to 24Mhz. Then add the uart module fls_debug_console for testing, because the FRDM_KL43 is using PTA1 and PTA2, the console module can be configured like the following picture, after the module is configured, press the code generation button to generate the project code. Then add the simple code in file main.c main function for testing: char a; for(;;) {                 PRINTF(" test!\n");                 a= GETCHAR();                 PUTCHAR(a);               } The code function is: printf the “test!” to the COM port in the PC, then wait the uart data, if receive the data, then printf the received data back and run this loop function again.   2.1.2 Add the BCA area    From the KL43 reference manual, we can get that, BCA start address is 0X3C0:     The KDS newly created project didn’t contain the BCA area in the link file, so we need to add this area in the link file and add the BCA data in the start file by ourselves. 2.1.2.1 Divide the BCA flash are in .ld file Add the following code to define the BCA start flash address and the flash size in the ProcessorExpert.ld memory area: m_bca                 (RX)  : ORIGIN = 0x000003C0, LENGTH = 0x00000040 Then add this code in the SECTIONS area:   .bca :            {              . = ALIGN(4);              KEEP(*(.bca)) /* Bootloader Configuration Area (BCA) */              . = ALIGN(4);            } > m_bca At last, the ld file is like this: For the ld file protection, we can change the ld file properties to read-only, then this file won’t be changed to the initial one after building. 2.1.2.2 Add the BCA data in the start file      After add the BCA flash area divide code, we still need to define the BCA data in the start file:    /* BCA Area */     .section .bca, "a"                 .ascii "kcfg"                            // [00:03] tag                 .long 0xFFFFFFFF // [07:04] crcStartAddress                 .long 0xFFFFFFFF // [0B:08] crcByteCount                 .long 0xFFFFFFFF // [0F:0C] crcExpectedValue                 .byte 0x03                                             // [10] enabledPeripherals  I2C and UART                 .byte 0xFF                                              // [11] i2cSlaveAddress                 .short 3000                           // [13:12] peripheralDetectionTimeout (milliseconds)                 .short 0xFFFF                        // [15:14] usbVid                 .short 0xFFFF                        // [17:16] usbPid                 .long 0xFFFFFFFF  // [1B:18] usbStringsPointer                 .byte 0xFF                                              // [1C] clockFlags                 .byte 0xFF                                              // [1D] clockDivider                 .byte 0xFF                                              // [1E] bootFlags                 .byte 0xFF                                              // [1F] reserved*/    More details, please refer to this picture:       So far, we have create the FRDM-KL43 test project which contains the BCA area, and boot from the ROM that can be modified in the flash address 0X40D, bit 6-7 in 0X40D is the BOOTSRC_SEL bits, 00 boot from flash, 10 and 11 boot from ROM, more details about the FOPT, please refer to Table 6-2. Flash Option Register (FTFA_FOPT) definition in reference manual.     2.1.3 Test result and analysis       Now, list the test result after booting from ROM or flash, and boot from ROM but enable the peripherals. Boot from: ROM peripheral Test Result Flash XX OK ROM 0XFF, enable all NO, UART can’t receive 0X08, enable USB Yes, UART can receive 0X04, enable SPI Yes, UART can receive 0X02, enable I2C Yes, UART can receive 0X01, enable LPUART NO, UART can’t receive      From the test result, we can reproduce the problem. The UART receive problem just happens on booting from ROM and the LPUART is enabled, when we run it with debugger, and test it step by step, we can find after the PTA1 have received the data, the code will run to the abnormal area. Note: when debug this code, please choose the JLINK as the debugger, because the P&E tool will protect the FOPT area automatically in the KDS IDE when do debugging, the code will still run from flash, so if customer use the P&E tool, they will found the PTA1 still can receive the data, this is not the real result, but the JLINK won’t protect FOPT area in the KDS IDE, it can reflect the real result.      After using the JLINK as the debugger, and we have found after PTA1 getting data or pulling low, the code will enter to the abnormal area like this:      We can get that the code run to the defaultISR, and display with USB_IRQHander, but this is not really the USB_IRQHander, just caused by the PC abnormal. Normally, it is caused by the missing of interrupt service function.       Now, we test the NVIC data to check which module interrupt caused this, the following picture is the result by enabling the LPUART and I2C peripheral in the ROM BCA area. We can find, even we didn’t do the cpu and peripheral initialization after booting from ROM, there still have peripheral be enabled, what the interrupt is enabled? From the definitive guide to the ARM Cortex-M0.pdf: NVIC_ISER = 0x40000100, Vector46=IRQ30 and vector24=IRQ8 is enabled, it should be not disabled after booting from the ROM. Now check the KL43 reference manual, Table 3-2. Interrupt vector assignments, we can get that the I2C0 and PORTA interrupt is enabled. Checking the PORTA register before do the cpu and peripheral initialization, PTA1 is enabled the port interrupt, and choose Flag and Interrupt on falling-edge.     This can tell us why the PTA1 pin have the problem of uart receive data or give a falling edge in PTA1 will run abnormal, because in default, even we configure the PTA1 as the uart receive function, but the code didn’t clear IRQ and NVIC register, when the signal happens on PTA1 pin, it will caused the PORTA interrupt, but we didn’t add the PORTA interrupt ISR function, it is also not useful to us, then PC don’t know where to go, so it will run abnormal, enter the defaultISR, and can’t recover. If you have interest, you can add the PORTA_IRQHandler function, you will find the code will run to this function. 2.2 Problem reproduction in KSDK2.0 IAR project  Test project: SDK_2.0_FRDM-KL43Z\boards\frdmkl43z\demo_apps\hello_world  Test the official project just to make sure, it is really the chip hardware function, not only the problem from new generated code in KDS.   Because the IAR IDE will protect the 0X400 area, then if we want to modify the FOPT, we need to modify the .board, add –enable_config_write at first.    Then modify the FOPT in startup_MKL43Z.s: __FlashConfig         DCD 0xFFFFFFFF         DCD 0xFFFFFFFF         DCD 0xFFFFFFFF         DCD 0xFFFFFFFE   ; 0xFFFF3FFE   __FlashConfig_End   Because the BCA peripheral area is in default as 0XFF, it enables all the peripheral, we don’t need to define the BCA area independently.  For getting the real test result, we add the NVIC and PORTA_PCR1 register printf code in the main function,    PRINTF("PORTA_PCR1=%X \n", PORTA->PCR[1]);    PRINTF("NVIC=%X \n", NVIC->ICER[0U]); And download the modified KSDK sample code to the chip, after testing, we get this result: hello world. PORTA_PCR1=A0205 NVIC=40000100 It is the same result as the new created project after booting from the ROM, PORTA interrupt and I2C interrupt is enabled, and it caused the PTA1 receive data problem.  3 Solutions and test result 3.1 Solutions      From the Chapter 2 testing and analysis, we can get that UART receive problem is caused by the PORT interrupt and NVIC is enabled after booting from the ROM, this should be caused by exiting the ROM, the ROM forget to disable it. We also can find some descriptions from the KL43 reference manual page 211: So, if customer want to solve this problem, to avoid the application enter to the abnormal area, we can disable the NVIC in the application code like this, the I2C NVIC is the same:     NVIC_DisableIRQ(8);//disable I2C0 interrupt     NVIC_DisableIRQ(30); //disable PTA interrupt 3.2 Test result   From the test result after adding the NVIC I2C and PORTA disable code, we can get the uart can works ok, if you have interest to test, the I2C will also work ok. 4 Conclusion When customer use the kinetis chip KL43, KL27 and KL17 which flash size is above 128K, and want to boot from the ROM and enable the LPUART and I2C in BCA area, please add the NVIC I2C(IRQ8) and PORTA(IRQ30) disable code in the application code:     NVIC_DisableIRQ(8);//disable I2C0 interrupt     NVIC_DisableIRQ(30); //disable PTA interrupt So far, I just find KL43, KL27 and KL17 which flash size is above 128K have this problem, other kinetis chip which have ROM bootloader don’t have this problem.
View full article
    以DMA方式通过UART发送数据应该是工程应用中很常用的一种方式了,尤其是在需要频繁发送数据或者数据包长度较大的场合,如果使用传统的UART查询或者中断方式发送和接收数据,对CPU资源的占用将是极大的浪费,带操作系统的应用还好些,如果是纯粹的前后台程序有时不能容忍的,所以DMA方式是很恰当的选择。而本篇以Kinetis L系列为例介绍一下以DMA方式通过UART端口发送长数据包,当然不同于K系列复杂强大的eDMA功能,L系列的DMA模块配置起来还是比较简单的。 测试平台:IAR6.7 + KL26 FRDM 测试代码:FRDM-KL26Z_SC\FRDM-KL26Z_SC_Rev_1.0\klxx-sc-baremetal\build\iar\uart0_dma        其实KL26的官方sample code中是自带uart0_dma例程的,但是实现的功能只是将UART口接收到的每一个字节的数据通过DMA方式再发送出去(即环形缓冲),这样用来作为一个功能演示的demo是可以,但是往往我们需要的是将某缓冲区的数据以DMA方式发送出去或者将接收到的数据以DMA方式写到某缓冲区这样的功能,为此我们就需要在原有的例程上进行修改从而达到我们的应用目的,这里给出几点需要修改的地方,并做了相关注释(整个工程见最后附件): 1)定义待发送缓冲区: /* array to be sended */ uint8 testdata[]={"\nFreescale Kinetis KL26\n"}; 2)设置DMA源地址: #define DMA0_DESTINATION  0x4006A007    /* the memory adress of UART0_D register */ #define DMA0_SOURCE_ADDR  (uint32)testdata    /* define the source data array address */ 3) 在DMA0_init()函数中修改发送数据包的长度: DMA_SAR0 = DMA0_SOURCE_ADDR;    //Set source address to UART0_D REG DMA_DSR_BCR0 = DMA_DSR_BCR_BCR(sizeof(testdata));    //Set BCR to know how many bytes to transfer DMA_DCR0 &= ~(DMA_DCR_SSIZE_MASK | DMA_DCR_DSIZE_MASK);    //Clear source size and destination size fields 4)添加源地址自动加1功能,因为之前的环形缓冲方式只是单字节数据,所以不需要源地址递增,但是由于我们这次需要发送整个数据包,所以这里我们就需要将源地址递增功能打开,而具体递增1,2还是4则取决于发送数据的最小单位(8bit,16bit or 32bit): /* Set DMA as follows: Source size is 8-bit size Destination size is 8-bit size Cycle steal mode External requests are enabled source address increments 1 automatically */ DMA_DCR0 |= (DMA_DCR_SSIZE(1) | DMA_DCR_DSIZE(1) | DMA_DCR_CS_MASK | DMA_DCR_ERQ_MASK | DMA_DCR_EINT_MASK | DMA_DCR_SINC_MASK); 5)配置DMAMUX通道为UART0 TX即发送通道(通道号为3),因为我们需要的是UART0_TX触发DMA传送: DMA_DAR0 = DMA0_DESTINATION;    //Set source address to UART0_D REG DMAMUX0_CHCFG0 = DMAMUX_CHCFG_SOURCE(3);    //Select UART0 TX as channel source DMAMUX0_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK;    //Enable the DMA MUX channel 6)在UART0_DMA_init()函数中修改UART0发送缓冲区为空时即触发DMA发送: void UART0_DMA_init(void) { UART0_C2 &= ~(UART0_C2_TE_MASK | UART0_C2_RE_MASK);  //Disable UART0 UART0_C5 |= UART0_C5_TDMAE_MASK;                      // Turn on DMA request(Transmit) for UART0 UART0_C2 |= (UART0_C2_TE_MASK | UART0_C2_RE_MASK);  //Enable UART0 } 7)在DMA发送完成中断服务函数中禁掉DMA通道,实现单次发送,即每个数据包发送完成之后即停止发送,否则不禁掉的话会一直触发DMA发送,造成串口堵塞: void DMA0_IRQHandler(void) {  /* Create pointer & variable for reading DMA_DSR register */ volatile uint32_t* dma_dsr_bcr0_reg = &DMA_DSR_BCR0; uint32_t dma_dsr_bcr0_val = *dma_dsr_bcr0_reg; if (((dma_dsr_bcr0_val & DMA_DSR_BCR_DONE_MASK) == DMA_DSR_BCR_DONE_MASK)      | ((dma_dsr_bcr0_val & DMA_DSR_BCR_BES_MASK) == DMA_DSR_BCR_BES_MASK)      | ((dma_dsr_bcr0_val & DMA_DSR_BCR_BED_MASK) == DMA_DSR_BCR_BED_MASK)      | ((dma_dsr_bcr0_val & DMA_DSR_BCR_CE_MASK) == DMA_DSR_BCR_CE_MASK)) { DMA_DSR_BCR0 |= DMA_DSR_BCR_DONE_MASK;                //Clear Done bit DMA_DSR_BCR0 = DMA_DSR_BCR_BCR(sizeof(testdata));      //Reset BCR dma0_done = 1; } /* once the array complete the transfer, then disable the DMA channel.*/ DMAMUX0_CHCFG0 &= ~DMAMUX_CHCFG_ENBL_MASK; }        将上述代码做完相应修改即可实现单次将内存缓冲区数据以DMA方式通过UART0发送出去,效果如下。此外,如果想周期性触发或者条件性触发,则只需再相应位置添加“DMAMUX0_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK;”这句代码即可打开通道,然后立即会触发UART0_TX发送数据,然后待数据包发送完之后再次停止等待下次使能。 另外,关于DMA的传输速度的话,因为其独立占用一条自己的总线,其搬运时钟为系统时钟(即coreclock/Systemclock),相比于总线上的传输速度,本例程中整个数据包的发送时间主要是取决于UART串口的波特率*数据包长度。 附件为修改好后的完整工程:
View full article
Hello Kinetis community, High accuracy metering is an essential feature of an electronic power meter application. Metering accuracy is a most important attribute because inaccurate metering can result in substantial amounts of lost revenue. Moreover, inaccurate metering can also undesirably result in overcharging to customers.  The common sources of metering inaccuracies, or error sources in a meter, include the sensor devices, the sensor conditioning circuitry, the Analog FrontEnd (AFE), and the metering algorithm executed either in a digital processing engine or a microcontroller In this post you will find the description of the implementation of a Two Phase Power Meter firmware featuring Kinetis KM34 device using a metering algorithm known as Filter Based Algorithm. The showed firmware was implemented on the hardware design described in the Reference Manual DRM149 (the software implementation shown in the DRM149 is using a more complex metering algorithm called Fast Fourier Transform). Firmware Design The firmware implements the basic functions for an e-meter application such as: Power meter calibration: Performs power meter calibration and stores calibration parameters. Data processing: Read digital values form the AFE and performs scaling. Calculation of quantities: Calculates billing and non-billing quantities HMI control: Updates LCD with the new values and transitions to new LCD screen. Powe Meter Calibration The calibration task runs whenever a non-calibrated power meter is connected to the mains. First it checks if the calibration flag is already stored in the microcontroller flash, if not, then it runs the calibration. More detail about the calibration process can be found in the DRM143 document. The function: int16 CONFIG_CalcCalibData (tCONFIG_FLASH_DATA *ptr)‍‍‍ is in charge of calculating the calibration data and store the calibration flag in the flash. You can refer to the next code section for the complete usage and definition.   /* if calibration data were collected then calibration parameters are       */   /* calculated and saved to flash                                            */   if (CONFIG_CalcCalibData ((tCONFIG_FLASH_DATA *)&ramcfg) == TRUE)     CONFIG_SaveFlash ((tCONFIG_FLASH_DATA *)&ramcfg, ramcfg.flag);‍‍‍‍ The calibration task terminates by storing calibration gains, offsets and phase shift into the flash and by resetting the microcontroller device. Data Processing Reading the phase voltage and phase current samples from the analog front-end (AFE) occurs periodically every 166.6 μs. This task runs on the highest priority level (Level 0) and is triggered asynchronously when the AFE result registers receive new samples. The task reads the phase voltage and phase current samples from the AFE result registers, scales the samples to the full fractional range, and writes the values to the temporary variables for use by the calculation task. While kWh values is being calculated every 6000 Hz the remaining quantities: kVARh, QAVG, PAVG, URMS and IRMS are being calculates every 1500 Hz (666.6 μs). This is according to the decimation factor and to reduce the CPU usage since those values are not needed every AFE sample. The meter definition used for this application can be found in the meterlib2ph_cfg.h files, this file was generated using the Filter-Based Metering Algorithms Configuration Tool, for more information on how to use the tool you can refer to the AN4265 document. This is the Meter configuration: Here you can see the expected error behavior against Frequency: The configuration of the AFE module and channels is the following:   /* Current Phase 1                                                          */   AFE_ChInit (CH0,               AFE_CH_SWTRG_CCM_PGAOFF_CONFIG(DEC_OSR1024),                    0,               PRI_LVL1,               (AFE_CH_CALLBACK)NULL);     /* Current Phase 2                                                          */   AFE_ChInit (CH1,               AFE_CH_SWTRG_CCM_PGAOFF_CONFIG(DEC_OSR1024),               0,               PRI_LVL1,               (AFE_CH_CALLBACK)NULL);     /* Voltage Phase 1                                                          */   AFE_ChInit (CH2,               AFE_CH_SWTRG_CCM_PGAOFF_CONFIG(DEC_OSR1024),                    0,               PRI_LVL1,               (AFE_CH_CALLBACK)NULL);     /* Voltage Phase 2                                                          */     AFE_ChInit (CH3,               AFE_CH_SWTRG_CCM_PGAOFF_CONFIG(DEC_OSR1024),               0,               PRI_LVL1,               (AFE_CH_CALLBACK)afech3_callback);     /* AFE Initialization @ 6 KHz                                               */   AFE_Init    (AFE_MODULE_RJFORMAT_CONFIG(AFE_PLL_CLK, AFE_DIV2, 12.288e6));  ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ As you can see only the CH3, which is measuring the Voltage phase 2, is configured with interrupt. During the CH3 callback the remaining channels are sampled to get the 4 values at the same time and performs scaling: /* measurements callback @ 6000 Hz                                            */ static void afech3_callback (AFE_CH_CALLBACK_TYPE type, int32 result) {   static int cnt_1 = 0;     if (type == COC_CALLBACK)   {      /* Current and Voltage reading                                            */     u24_sample[0] = AFE_ChRead (CH2) << U_SCALE;            /* Voltage 1 reading ... */     i24_sample[0] = AFE_ChRead (CH0) << I_SCALE;            /* Current 1 reading ... */     u24_sample[1] = AFE_ChRead (CH3) << U_SCALE;            /* Voltage 2 reading ... */     i24_sample[1] = AFE_ChRead (CH1) << I_SCALE;            /* Current 2 reading ... */     . . . . }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Calculation of Quantities Within the CH3 interrupt the metering algorithm functions are called to process the data of the active energy, the calculation task scales the samples using calibration offsets and calibration gains obtained during the calibration phase: METERLIB2PH_ProcSamples removes DC bias from phase voltage and phase current samples together with performing an optional sensor phase shift correction. METERLIB2PH_CalcWattHours recalculates active energy using new voltage and current samples. CONFIG_UpdateOffsets updates offset of the phase voltage and current measurements conditionally. The CH3 calls the next software interrupt, auxcalc_callback where non-billing quantities are calculated: METERLIB2PH_CalcVarHours recalculates reactive energy. METERLIB2PH_CalcAuxiliary recalculates URMS, IRMS, PAVG, QAVG and S auxiliary quantities. You can find more information about the Filter-Based Algorithm function in the AN4265 document.   HMI Control The display_callback task is called every 3 Hz by the auxcalc_callback and is executed on the lowest priority. For this application it update the clock data structure, refresh the watchdog timer and call some metering algorithm functions to read the values of the billing and non-billing quantities: METERLIB2PH_ReadResultsPh1 reads URMS, IRMS, PAVG, QAVG and S auxiliary quantities from phase 1. METERLIB2PH_ReadResultsPh2 reads URMS, IRMS, PAVG, QAVG and S auxiliary quantities from phase 2. A timer interrupt is used to update the the LCD content every 1500 ms. static void lptmr_callback (void) {   lcd_all_off();   /* update menu index                                                    */   menu_fcn[menu_idx]();   if ((++menu_idx) >= DIM(menu_fcn))   {     menu_idx = 0;   } }‍‍‍‍‍‍‍‍‍‍ Results The two-phase hardware has been calibrated using the test equipment ELMA8303. During accuracy calibration and testing, the power meter measured electrical quantities generated by the test bench, calculated active and reactive energies, and generated pulses on the output LEDs; each generated pulse was equal to the active and reactive energy amount kWh (kVARh)/imp3. The deviations between pulses generated by the power meter and reference pulses generated by test equipment defined the measurement accuracy.   The next figure shows the calibration protocol of the power meter. The protocol indicates the results of the power meter calibration performed at 25 °C. The accuracy and repeatability of the measurement for various phase currents and angles between phase current and phase voltage are shown in these graphs. The first graph indicates the accuracy of the active and reactive energy measurement after calibration. The x-axis shows variation of the phase current, and the y-axis denotes the average accuracy of the power meter computed from five successive measurements The second graph (on the bottom) shows the measurement repeatability; i.e. standard deviation of error of the measurements at a specific load point.  You will find attached a ZIP file containing the IAR source code of the application and a PDF file showing the complete results of the protocol. I hope the information helps. Regards, Adrian Cano
View full article
The documentation is only for eFlexPWM module of KV58, it describes the feature of nano-edge PWM, the mechanism of nano-edge PWM, and give the waveform which can describe the feature of nano-edge PWM. The attachment includes the brief introduction of nano edge PWM, the waveform of nano edge PWM, and the code which runs on TWR-KV58 and KDS3.0. Original Attachment has been moved to: eFlexPWMNanoEdgeKV58_2.rar
View full article
First let us see the clock tree: Core clock up to 112M, Bus clock up to 56M, Flash clock up to 28M. Clock can been from: System OSC、Slow IRC 、Fast IRC and System PLL 1. OSC SCG_SOSCCFG 2. PLL configuration formula: SPLL_CLK = (VCO_CLK)/2 VCO_CLK = SOSC_CLK/(PREDIV + 1) *(MULT + 16)  3. SCG_SPLLCSR void SystemClockInit(void) { SCG->SOSCCFG = 0x3C; SCG->SOSCCSR |= 1<<0; /* SOSCEN=1 enable SOSC clock */ /*wait clock active*/ while((SCG->SOSCCSR & SCG_SOSCCSR_SOSCVLD_MASK) == 0); SCG->SPLLCSR &= ~(0x1<<0) ; /* SPLLEN=0: disable PLL*/ SCG->SPLLCFG &= ~(0x7<<8); /* PREDIV=0: 1 */ SCG->SPLLCFG |= 0xCU<<16; /* MULT=12: 28   PLL VCO = 8/1*(12+16) = 224M */ SCG->SPLLCSR |= 0x1<<0; /* SPLLEN=1: enable PLL */ /* wait PLL active*/ while((SCG->SPLLCSR & SCG_SPLLCSR_SPLLVLD_MASK) == 0); SCG->RCCR |= SCG_RCCR_DIVCORE(0); /* DIVCORE=0: 1, CORE/SYS_CLK  112MHz */ SCG->RCCR |= SCG_RCCR_DIVBUS(1); /* DIVBUS=1: 2, BUS_CLK  56MHz */ SCG->RCCR |= SCG_RCCR_DIVSLOW(3); /* DIVSLOW=2: 4   FLASH_CLK  is 28MHz */ SCG->RCCR &= 0xFEFFFFFF; /* Initially set to SIRC so that LSB could be set as '0' */ SCG->RCCR |= SCG_RCCR_SCS(6); /* SCS=6: system clock System PLL */ }
View full article