Kinetis Microcontrollers Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

Kinetis Microcontrollers Knowledge Base

Discussions

Sort by:
Here you will find both the code and project files for the USB Mouse project. In this project the USB module is configured as a device, the X and Y coordinates to move the cursor are obtained from the accelerometer measurements. Once the code is loaded it is necessary to disconnect the USB cable from the J26 USB connector and plug it to the K64 USB connector. Once the device enumerates you can use it as an air mouse. The left and right click buttons have not been enabled. To compile the project you must import the following libraries: USBMouse.h FXOS8700Q.h Code: #include "mbed.h" #include "USBMouse.h" #include "FXOS8700Q.h" //I2C lines for FXOS8700Q accelerometer/magnetometer FXOS8700Q_acc acc( PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); USBMouse mouse; int main() {     acc.enable();     float faX, faY, faZ;     int16_t x = 0;     int16_t y = 0;       while (1)     {         //acc.getAxis(acc_data);         acc.getX(&faX);         acc.getY(&faY);         x = 10*faX;         y = 10*faY;               mouse.move(x, y);         wait(0.001);     } }
View full article
Here you will find the code and project files corresponding to the I2C-Accelerometer project. The accelerometer/magnetometer is connected to the I2C port, although bot the accelerometer and magnetometer are contained within a single package, they must be initialized individually. In this example the measurements from both devices (X,Y and Z axis) is performed and displayed at the serial terminal. In order to compile the project, the following library must be imported: FXOS8700Q.h Code: #include "mbed.h" #include "FXOS8700Q.h" //I2C lines for FXOS8700Q accelerometer/magnetometer FXOS8700Q_acc acc( PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); FXOS8700Q_mag mag( PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); //Temrinal enable Serial pc(USBTX, USBRX); MotionSensorDataUnits mag_data; MotionSensorDataUnits acc_data; int main() {     float faX, faY, faZ;     float fmX, fmY, fmZ;     acc.enable();     printf("\r\n\nFXOS8700Q Who Am I= %X\r\n", acc.whoAmI());     while (true)     {         acc.getAxis(acc_data);         mag.getAxis(mag_data);         printf("FXOS8700Q ACC: X=%1.4f Y=%1.4f Z=%1.4f  ", acc_data.x, acc_data.y, acc_data.z);         printf("    MAG: X=%4.1f Y=%4.1f Z=%4.1f\r\n", mag_data.x, mag_data.y, mag_data.z);         acc.getX(&faX);         acc.getY(&faY);         acc.getZ(&faZ);         mag.getX(&fmX);         mag.getY(&fmY);         mag.getZ(&fmZ);         printf("FXOS8700Q ACC: X=%1.4f Y=%1.4f Z=%1.4f  ", faX, faY, faZ);         printf("    MAG: X=%4.1f Y=%4.1f Z=%4.1f\r\n", fmX, fmY, fmZ);                 wait(1.0);     } }
View full article
Here you will find both the code and project files for the ADC project. This project configures the ADC to perform single conversions, by default this is performed using a 16 bit configuration. The code uses ADC0, channel 12, once the conversion is finished it is displayed at the serial terminal. Code: #include "mbed.h" AnalogIn AnIn(A0); DigitalOut led(LED1); Serial pc(USBTX,USBRX); float x; int main() {     pc.printf(" ADC demo code\r\n");     while (1)     {     x=AnIn.read();     pc.printf("ADC0_Ch12=(%d)\r\n", x);     wait(.2);     } }
View full article
Here you can find both the code and project files for the PWM project, in this example a single PWM channel belonging to the Flextimer 0 (PTC10/FTM_CH12) is enabled to provide a PWM signal with a 500ms period, the signal's duty cycle increases its period every 100ms, to visually observe the signal connect a led from the A5 pin in the J4 connector to GND (J3, pin 14). Code: #include "mbed.h" //PWM output channel PwmOut PWM1(A5); int main() {     PWM1.period_ms(500);     int x;     x=1;         while(1)     {         PWM1.pulsewidth_ms(x);         x=x+1;         wait(.1);         if(x==500)         {             x=1;         }     } }
View full article
Here you can find both the code and project files for the Serial communication project, in this example the serial port (UART) is configured to establish communication between the computer using a serial terminal and the evaluation board. The default baud rate for the serial port is 9600 bauds. The code also implements an echo function, any key pressed in the computer's keyboard will be captured and displayed in the serial terminal. If your computer does not have a serial terminal you can download Tera Term from the following link: Tera Term Open Source Project The communication is established through the USB cable attached to the OpenSDA USB port. Code: #include "mbed.h" //Digital output declaration DigitalOut Blue(LED3); //Serial port (UART) configuration Serial pc(USBTX,USBRX); int main() {     Blue=1;     pc.printf("Serial code example\r\n");        while(1)     {         Blue=0;         pc.putc(pc.getc());     }    }
View full article
Here you can find the code and project files for the Interrupt example, in this example 2 KBI interrupts are enabled, one assigned to SW2 and another to SW3, during the main routine the blue led is turned on, when the interrupt routines are triggered the blue led is turned off and the red or green led blink once, the interrupt was configured to detect falling edges only. Code: #include "mbed.h" DigitalOut Red(LED1); DigitalOut Blue(LED3); InterruptIn Interrupt(SW2); void blink() {     wait(.4);     Red=1;     Blue=0;     wait(.4);     Blue=1;     wait(.4); } int main() {     Interrupt.fall(&blink);     Blue=1;     while (1)     {         Red=!Red;         wait(.4);     } }
View full article
Here you can find the code and project files for the GPIO example, in this example the 3 colors of the RGB led are turned on sequentially when the SW2 push button is pressed, the led pin definition is shared throughout all the freedom platforms. The wait function can be defined in seconds, miliseconds or microseconds. Code: #include "mbed.h" //Delay declared in seconds /*GPIO declaration*/ DigitalOut Red(LED1);         DigitalOut Green(LED2); DigitalOut Blue(LED3); DigitalIn sw2(SW2); int main() {     /*Leds OFF*/     Red=1;     Green=1;     Blue=1;         while(1)     {         if(sw2==0)         {             Red = 0;             wait(.2);             Red = 1;             wait(1);                                Green=0;             wait(.2);             Green=1;             wait(1);                         Blue=0;             wait(.2);             Blue=1;             wait(1);         }     } }
View full article
Welcome to the FRDM-K64 mbed workshop, in this page you will find all the code examples we will review on this session. The program covers the following modules: GPIO Serial communication Interrupts PWM ADC I2C (Accelerometer) USB Ethernet Depending on how fast we advance during the session some of the modules might be skipped; however here you can find both the source code and binary files ready to be flashed into the FRDM-K64 development board. FRDM-K64Z120M The FRDM-K64 is fully compatible with the Arduino rapid prototyping system, the following image depicts the board's pinout, the green labels can be used directly into your mbed proyects, they have already been defined in the headers and libraries in order to make development easier. Sign up at mbed.org In order to create the projects covered on this session it is necessary to create an mbed user account, open the website and create a user account, if you have already signed up please log in. Mbed debugging application To enable the FRDM-K64 development board using the binary files generated by mbed it is necessary to update the board's firmware, follow the steps mentioned below in order to enable the board to be programmed: Press the board's reset button While pressing the reset button connect the board to your computer using the USB cable, it must be connected to the J26 USB connector. Once the unit has enumerated as "Bootloader", copy the 20140530_k20dx128_k64f_if_mbed.bin file into the unit Disconnect and reconnect the USB cable, the board must enumerate as "MBED" Serial communication driver To implement serial communication you need to install the serial driver in your computer, download the driver, once your board has enumerated as MBED execute the driver and wait for it to be finished, this might take a couple of minutes. Serial terminal In order to communicate with the board via serial port it is necessary to use a serial terminal, by default WIndows 7 and 8 do not have this application, XP does. If your OS does not feature a serial terminal, you can download the one at the bottom (Teraterm). ! Your board is now ready to be programmed using mbed!
View full article
This document shows the implementation of the infrared on the UART0 using the FRDM-KE02Z platform. The FRDM-KE02Z platform is a developing platform for rapid prototyping. The board has a MKE02Z64VQH2 MCU a Kinetis E series MCU which is the first 5-Volt MCU built on the ARM Cortex-M0+ core. You can check the evaluation board in the Freescale’s webpage (FRDM-KE02Z: Kinetis E Series Freedom Development Platform) The Freedom Board has a lot of great features and one of this is an IrDA transmitter and receiver on it. Check this out! One of the features of the MCU is that the UART0 module can implement Infrared functions just following some tricks (MCU-magic tricks). According to the Reference Manual (Document Number: MKE02Z64M20SF0RM) this tricks are:      UART0_TX modulation: UART0_TX output can be modulated by FTM0 channel 0 PWM output      UART0_RX Tag: UART0_RX input can be tagged to FTM0 channel 1 or filtered by ACMP0 module For this example we are going to use the ACMP0 module to implement the UART0_RX functionality. Note1: The Core is configured to run at the maximum frequency: 20 Mhz Note2: Refer to the reference manual document for more information about the registers. Configuring the FTM0. The next lines show the configuration of the FTM0; the module is configured with a Frequency of 38 KHz which is the ideal frequency for an infrared led. The FTM0_CH0 is in Edge_Aligned PWM mode (EPWM).           #define IR_FREQUENCY       38000 // hz      #define FTM0_CLOCK                BUS_CLK_HZ      #define FTM0_MOD_VALUE             FTM0_CLOCK/IR_FREQUENCY      #define FTM0_C0V_VALUE            FTM0_MOD_VALUE/2      void FTM0CH0_Init( void )      {        SIM_SCGC |= SIM_SCGC_FTM0_MASK;             // Init FTM0 to PWM output,frequency is 38khz        FTM0_MOD= FTM0_MOD_VALUE;        FTM0_C0SC = 0x28;        FTM0_C0V = FTM0_C0V_VALUE;        FTM0_SC = 0x08; // bus clock divide by 2      } With this we accomplish the UART0_TX modulation through a PWM on the FTM0_CH0. Configuring the ACMP0. The configuration of the ACMP0 is using a DAC and allowing the ACMP0 can be driven by an analog input.      void ACMP_Init ( void )      {        SIM_SCGC |= SIM_SCGC_ACMP0_MASK;        ACMP0_C1 |= ACMP_C1_DACEN_MASK |                   ACMP_C1_DACREF_MASK|                   ACMP_C1_DACVAL(21);    // enable DAC        ACMP0_C0 |= ACMP_C0_ACPSEL(0x03)|                            ACMP_C0_ACNSEL(0x01);        ACMP0_C2 |= ACMP_C2_ACIPE(0x02);  // enable ACMP1 connect to PIN        ACMP0_CS |= ACMP_CS_ACE_MASK;     // enable ACMP                 } With this we have now implemented the UART0_RX.     IrDA initialization. Now the important thing is to initialize the UART0 to work together with these tricks and implement the irDA functions. Basically we initialize the UART0 like when we use normal serial communication (this is not the topic of this post, refer to the project to see the UART_init function) and we write to the most important registers:         SIM_SOPT |= SIM_SOPT_RXDFE_MASK; UART0_RX input signal is filtered by ACMP, then injected to UART0.      SIM_SOPT |= SIM_SOPT_TXDME_MASK; UART0_TX output is modulated by FTM0 channel 0 before mapped to pinout. The configuration is as follows:      void IrDA_Init ( void )      { // initialize UART0, 2400 baudrate        UART_init(UART0_BASE_PTR,BUS_CLK_HZ/1000,2400);                  // clear RDRF flag        UART0_S1 |= UART_S1_RDRF_MASK;                  // initialize FTM0CH1 as 38k PWM output        FTM0CH0_Init();                      // enable ACMP        ACMP_Init(); SIM_SOPT |= SIM_SOPT_RXDFE_MASK;  //UART0_RX input signal is filtered by ACMP, then injected to UART0.        UART0_S2 &= ~UART_S2_RXINV_MASK;  //inverse data input SIM_SOPT |= SIM_SOPT_TXDME_MASK;  //UART0_TX output is modulated by FTM0 channel 0 before mapped to pinout .      } With the irDA initialization we got the infrared features on the UART0. Philosophy of the Example In the attachments of this post you can find the example which shows the use of these functions in a basic application; the project was compiled in CodeWarrior 10.6 and the philosophy is: I hope that the information presented on this document could be useful for you. Thank you! Best Regards!
View full article
OpenSDA/OpenSDAv2 is a serial and debug adapter that is built into several Freescale evaluation boards. It provides a bridge between your computer (or other USB host) and the embedded target processor, which can be used for debugging, flash programming, and serial communication, all over a simple USB cable.   The OpenSDA hardware consists of a circuit featuring a Freescale Kinetis K20 microcontroller (MCU) with an integrated USB controller. On the software side, it implements a mass storage device bootloader which offers a quick and easy way to load OpenSDA applications such as flash programmers, run-control debug interfaces, serial to USB converters, and more. Details on OpenSDA can be found in the OpenSDA User Guide.     The bootloader and app firmware that lay on top of the original OpenSDA circuit was proprietary.  But recently ARM decided to open source their CMSIS-DAP interface, and now a truly open debug platform could be created. This new open-sourced firmware solution is known as OpenSDAv2.   OpenSDAv2: OpenSDAv2 uses the exact same hardware circuit as the original OpenSDA solution, and out of the box it still provides a debugger, drag-and-drop flash programmer, and virtual serial port over a single USB cable.   The difference is the firmware implementation: OpenSDA: Programmed with the proprietary P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2: Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default debug interface app.       Firmware Developer Kinetis K20 Based Hardware Circuit Default Debug Interface Drag-and-drop Target MCU Flash Programming Virtual Serial Port Source Code Available OpenSDA P&E Micro x P&E Micro .srec/.s19 x   OpenSDAv2 ARM/mbed.org x CMSIS-DAP .bin x x   The bootloader and app firmware used by OpenSDAv2 is developed by the community at mbed.org, and is known as “CMSIS-DAP Interface Firmware”. If you explore that site, you will find that this firmware was also ported to run on other hardware, but the combination of this mbed.org firmware with the Kinetis K20 MCU is known as OpenSDAv2.   It is important to understand however that it is possible to run a P&E Micro debug app on the CMSIS-DAP/mbed bootloader found on OpenSDAv2. Likewise it is possible to run a CMSIS-DAP debug app on the P&E Micro bootloader found on OpenSDA. The debug application used needs to be targeted towards a specific bootloader though, as a single binary cannot be used on both the OpenSDA and OpenSDAv2 bootloaders.   OpenSDAv2.1: During development of OpenSDAv2 features and bug fixes, it was found that the reserved bootloader space was too small. Thus a new version of OpenSDAv2 had to be created, which was named OpenSDAv2.1. The difference between the OpenSDAv2.0 and v2.1 is the address where the debug application starts: for OpenSDAv2.0 it expects the application at address 0x5000, while OpenSDAv2.1 expects the application to start at address 0x8000.   The only board with OpenSDAv2.0 is the FRDM-K64F. All other OpenSDAv2 boards (such as the just released FRDM-K22F) use OpenSDAv2.1.   Unfortunately this means that new OpenSDAv2 apps are needed. From a user perspective this mostly affects the JLink app since it was shared across all boards. Make sure you download the correct app for your board based on the OpenSDAv2 version.   OpenSDAv2 Apps: mbed CMSIS-DAP for FRDM-K64F mbed CMSIS-DAP for FRDM-K22F P&E Micro  (use the Firmware Apps link) Segger JLink (look at bottom of page for OpenSDAv2.0 or OpenSDAv2.1 app)   OpenSDAv2 Bootloader: The key difference between OpenSDA and OpenSDAv2 is the bootloader. Boards with OpenSDA use a proprietary bootloader developed by P&E Micro, and it cannot be erased or reprogrammed by an external debugger due to the security restrictions in the firmware. Boards with OpenSDAv2 use the open-source bootloader developed by mbed.org, and it can be erased and reprogrammed with an external debugger.   Apps need to be specifically created to work with either the P&E bootloader (Original OpenSDA) or the CMSIS-DAP/mbed bootloader (OpenSDAv2/OpenSDAv2.1) as the bootloader memory map is different.  Thus it’s important to know which type of bootloader is on your board to determine which version of an app to load.   You can determine the bootloader version by holding the reset button while plugging in a USB cable into the OpenSDA USB port. A BOOTLOADER drive will appear for both OpenSDA and OpenSDAv2.   The OpenSDAv2.0 bootloader (may also be called the CMSIS-DAP/mbed bootloader) developed by mbed.org will have the following files inside.  Viewing the HTML source of the bootload.htm file with Notepad will tell you the build version, date, and git hash commit. For the OpenSDAv2.1 bootloader, this file will be named mbed.htm instead.     The OpenSDAv1 bootloader developed by P&E Micro will have the following inside. Clicking on SDA_INFO.HTM will take you to the P&E website.       Using CMSIS-DAP: When you connect a Freedom board that has OpenSDAv2 (such as the FRDM-K64F) to your computer with a USB cable, it will begin running the default CMSIS_DAP/mbed application which has three main features.   1. Drag and Drop MSD Flash Programming You will see a new disk drive appear labeled “MBED”.   You can then drag-and-drop binary (.bin) files onto the virtual hard disk to program the internal flash of the target MCU.   2.Virtual Serial Port OpenSDAv2 will also enumerate as a virtual serial port, which you can use a terminal program , such as TeraTerm (shown below), to connect to. You may need to install the mbed Windows serial port driver first before the serial port will enumerate on Windows properly. It should work without a driver for MacOS and Linux.   3. Debugging The CMSIS-DAP app also allows you to debug the target MCU via the CMSIS-DAP interface. Select the CMSIS-DAP interface in your IDE of choice, and inside the CMSIS-DAP options select the Single Wire Debug (SWD) option:   Kinetis Design Studio (KDS): Note: OpenOCD with CMSIS-DAP for FRDM-K22F is not supported in KDS V1.1.0. You must use either the P&E app instructions or the JLink app instructions to use KDS with the FRDM-K22F at this time. This will be fixed over the next few weeks. OpenSDAv2 uses the OpenOCD debug interface which uses the CMSIS-DAP protocol. Make sure ' -f kinetis.cfg ' is specified as 'Other Options':   IAR     Keil:         Resources CMSIS-DAP Interface Firmware mbed.org FRDM-K64 Page FRDM-K64 User Guide OpenSDAv2 on MCU on Eclipse blog OpenSDA User Guide KDS Debugging   Appendix A: Building the CMSIS-DAP Debug Application The open source CMSIS-DAP Interface Firmware app is the default app used on boards with OpenSDAv2. It provides: Debugging via the CMSIS-DAP interface Drag-and-drop flash programming Virtual Serial Port providing USB-to-Serial convertor   While binaries of this app are provided for supported boards, some developers would like to build the CMSIS-DAP debug application themselves.   This debug application can be built for either the OpenSDAv2/mbed bootloader, or for the original OpenSDA bootloader developed by P&E Micro. If you are not sure which bootloader your board has, refer to the bootloader section in this document.   Building the CMSIS-DAP debug application requires Keil MDK. You will also need to have the “Legacy Support for Cortex-M Devices” software pack installed for Keil.   You will also need Python 2.x installed. Due to the python script used, Python 3.x will not work.   The code is found in the MBED git repository, so it can be downloaded using a git clone command: “git clone https://github.com/mbedmicro/CMSIS-DAP.git” Note that there is a Download Zip option, but you will run into a issue when trying to compile that version, so you must download it via git instead.   The source code can be seen below:   This repository contains the files for both the bootloader and the CMSIS-DAP debug interface application. We will concentrate on the interface application at the moment.   Open up Keil MDK, and open up the project file located at \CMSIS-DAP\interface\mdk\k20dx128\k20dx128_interface.uvproj In the project configuration drop-down box, you will notice there are a lot of options. Since different chips may have slightly different flash programming algorithms, there is a target for each specific evaluation board. In this case, we will be building for the FRDM-K64F board. Scroll down until you get to that selection:   Notice there are three options for the K64: k20dx128_k64f_if: Used for debugging the CMSIS-DAP application with Keil. Code starts at address 0x0000_0000 k20dx128_k64_if_openSDA_bootloader: Creates a binary to drag-and-drop on the P&E developed bootloader (Original OpenSDA) k20dx128_k64_if_mbed_bootloader: Creates a binary to drag-and-drop onto the CMSIS-DAP/mbed developed bootloader (OpenSDAv2)   Since the FRDM-K64F comes with the OpenSDAv2 bootloader, we will use the 3 rd option. If we were building the mbed app for another Freedom board which had the original OpenSDA bootloader, we would choose the 2 nd option instead.   Now click on the compile icon. You may get some errors If you get an error similar to the one shown below, make sure you have installed the Legacy pack for ARM as previously described earlier:           compiling RTX_Config.c...             ..\..\Common\src\RTX_Config.c(184): error:  #5: cannot open source input file "RTX_lib.c": No such file or directory            and           compiling usb_config.c...             ..\..\..\shared\USBStack\INC\usb_lib.c(18): error:  #5: cannot open source input file "..\..\RL\USB\INC\usb.h": No such file or directory   If you get an error regarding a missing version_git.h file , make sure that Python 2.x and git are in your path. A Python build script fetches that file. It's called from the User tab in the project options, under "Run User Programs Before Build/Rebuild". If there is a warning about “ invalid syntax ” when running the Python script, make sure your using Python 2.x. Python 3.x will not work with the build script.   Now recompile again, and it should successfully compile. If you look now in \CMSIS-DAP\interface\mdk\k20dx128 you will see a new k20dx128_k64f_if_mbed.bin file   If you compiled the project for the OpenSDA bootloader, there would be a new k20dx128_k64f_if_openSDA.S19 file instead.   Loading the CMSIS-DAP Debug Application: Now take the Freedom board, press and hold the reset button as you plug in the USB cable. Then, drag-and-drop the .bin file (for OpenSDAv2) or .S19 file (for OpenSDA) into the BOOTLOADER drive that enumerated.   Perform a power cycle, and you should see a drive called “MBED” come up and you can start using the CMSIS-DAP debug interface, as well as drag-and-drop programming and virtual serial port as described earlier in this document.   Appendix B: Building the CMSIS-DAP Bootloader All Freedom boards already come with a bootloader pre-flashed onto the K20.  But for those building their own boards that would like to use CMSIS-DAP, or those who would like to tinker with the bootloader, it possible to flash it to the Kinetis K20 device. Flashing the bootloader will require an external debugger, such as the Keil ULink programmer or Segger JLink.   Also note that the OpenSDA/PE Micro Bootloader cannot be erased! Due to the proprietary nature of the P&E firmware used by the original OpenSDA, it can only be programmed at the board manufacturer and JTAG is disabled. So these instructions are applicable for boards with OpenSDAv2 only.   First, open up the bootloader project which is located at \CMSIS-DAP\bootloader\mdk\k20dx128\k20dx128_bootloader.uvproj   There is only one target available because all OpenSDAv2 boards will use the same bootloader firmware as the hardware circuitry is the same.   Click on the compile icon and it should compile successfully. If you see errors about a missing version_git.h file, note that Python 2.x must be in the path to run a pre-build script which fetches that file.   Now connect a Keil ULink to J10 and then insert a USB cable to provide power to J26. Note that if you have the 20-pin connector, you’ll want to use the first 10 pins.   Then for Keil 5 you will need to change some debug options (CMSIS-DAP is built under Keil 4.x).   Right click on the bootloader project, and go to the Debug tab and next to ULINK Pro Cortex Debugger, click on Settings:   Then under “Cortex-M Target Driver Setup”, change the “Connect” drop down box to “under Reset” and “Reset” dropdown box to “HW RESET”. Hit OK to save the settings.     Then in Keil, click on Flash->Erase.   And then on Flash->Download.   If you get an “Invalid ROM Table” error when flashing the CMSIS-DAP bootloader, make sure you made the changes to the debugger settings listed above.   After some text scrolls by, you should see:   Now power cycle while holding down the reset button, and you should see the bootloader drive come up. You’ll then need to drag and drop the mbed application built earlier onto it. And that’s all there is to it!   The binaries for the bootloader and CMSIS-DAP debug app for the FRDM-K64F board created in writing this guide are attached. Original Attachment has been moved to: k20dx128_bootloader.axf.zip Original Attachment has been moved to: k20dx128_k64f_mbed.bin.zip
View full article
This is a Processor Expert project created by CodeWarrior for MCUs v10.6 which implements the charge-discharge time of a RC circuit for measuring capacitance. The charge-discharge sequence is performed by TPM0 operating in PWM mode, while the time is measured by TPM1 operating in Input Capture mode. A 100K ohm series resistor is being used, and the result is expressed on nF. It is also using the LCDHTA component from Erich Styger for showing the measurements on a 16x2 LCD, connected to the FRDM-KL05Z through a proto shield. The project is attached, and the pictures shows the measurements of three different capacitors: 10nF, 47nF and 1uF.
View full article
Using five channels from FTM2 module of the KE02 microcontroller included on the FRDM-KE02Z board for controlling a robotic arm powered by five servomotors. Each servomotor is controlled by a couple of buttons of a matrix keyboard, which is connected to eigth GPIOs. Interrupts are not used in this example. The code was generated and compiled on CodeWarrior for Microcontrollers v10.5.
View full article
This manual explains how to create a project in CW and add components to Processor Expert. It also includes a couple of examples to print and get data with the printf and scanf functions from the stdio library by using Serial component (UART).
View full article
Hi everyone! I have made a simple touch sensing demo for KL25z Freedom board for fast user friendly test using MSD bootloader (default combined application in Open SDA when you receive the Freedom - Mass Storage Device and serial port). Demo changes the brightness of red led populated on the board and communicate with FreeMaster visualization tool over embedded virtual serial port of Open SDA connection. Touch sensing application is controlled by TSS (touch sensing softwere). For more information about touch sensing and download of TSS go to www.freescale.com/tss The visualization output has 2 separate scope windows: one showing signals captured from electrodes of slider another one showing position of finger on a slider The operation is really simple, just drag and drop the attached *.s19 file into your device using MSD bootloader (as other precompiled projects for Freedom board) open the *.pmp file that is associated with FreeMASTER, choose the correct COM port at speed of 38400 kbps and start communication The demo was made in CodeWarrior 10.4 using TSS library 3.0.1 in Processor Expert tool, source code can be provided if there will be an interest. There is no need to configure MAP file for FreeMaster communication, application uses so called TSA table - it is position independent this way. If you are not familiar with FreeMASTER or not have it installed in your PC - go to www.freescale.com/freemaster to read more and download the free installer, install it and you are good to run the demo. There are two independent snapshots below, showing the response to my finger movement along the slider Enjoy! and keep in touch
View full article
The Real Time Clock (RTC) module is the right tool when we want to keep tracking the current time for our applications. For the Freedom Platform (KL25Z) the RTC module features include: 32-bit seconds counter with roll-over protection and 32-bit alarm 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm. Register write protection. Lock register requires POR or software reset to enable write access. 1 Hz square wave output. This document describes how to implement the module configuration. Also, how to modify the hardware in order feed a 32 KHz frequency to RTC module (it is just a simple wire link).     Hardware. The RTC module needs a source clock of 32 KHz. This source is not wired on the board; hence we need to wire it. Do not be afraid of this, it is just a simple wire between PTC3 and PTC1 and the good news are that these pins are external.   PTC1 is configured as the RTC_CLKIN it means that this is the input of source clock.     PTC3 is configured as CLKOUT (several options of clock frequency can be selected in SIM_SOPT2[CLKOUTSEL] register). For this application we need to select the 32 Khz clock frequency.                         RTC configuration using Processor Expert. First of all we need to set the configurations above-mentioned in Component Inspector of CPU component. Enable RTC clock input and select PTC1 in Pin Name field. This selects PTC1 as RTC clock input. MCGIRCLK source as slow in Clock Source Settings > Clock Source Setting 0 > Internal reference clock > MCGIRCLK source. This selects the 32 KHz clock frequency. Set ERCLK32K Clock Source to RTC Clock Input in Clock Source Settings > Clock Source Setting 0 > External reference clock > ERCLK32K Clock Source. This sets the RTC_CLKIN as the 32 KHz input for RTC module. Select PTC3 as the CLKOUT pin and the CLKOUT pin output as MCGIRCLK in Internal peripherals > System Integration Module > CLKOUT pin control. With this procedure we have a frequency of 32 KHz on PTC3 and PTC1 configured as RTC clock-in source. The MCG mode configurations in this case is PEE mode: 96 MHz PLL clock, 48 MHz Core Clock and 24 MHz Bus clock.   For the RTC_LDD component the only important thing is to select the ERCKL32K as the Clock Source. The image below shows the RTC_LDD component configuration for this application.   After this you only need to Generate Processor Expert Code and write your application.  The code of this example application can be found in the attachments of the post. The application prints every second the current time.     RTC bare-metal configuration. For a non-PEx application we need to do the same configurations above. Enable the internal reference clock. MCGIRCLK is active.          MCG_C1 |= MCG_C1_IRCLKEN_MASK; Select the slow internal reference clock source.          MCG_C2 &= ~(MCG_C2_IRCS_MASK); Set PTC1 as RTC_CLKIN and select 32 KHz clock source for the RTC module.          PORTC_PCR1 |= (PORT_PCR_MUX(0x1));              SIM_SOPT1 |= SIM_SOPT1_OSC32KSEL(0b10); Set PTC3 as CLKOUT pin and selects the MCGIRCLK clock to output on the CLKOUT pin.     SIM_SOPT2 |= SIM_SOPT2_CLKOUTSEL(0b100);     PORTC_PCR3 |= (PORT_PCR_MUX(0x5));   And the RTC module configuration could be as follows (this is the basic configuration just with seconds interrupt): Enable software access and interrupts to the RTC module.     SIM_SCGC6 |= SIM_SCGC6_RTC_MASK; Clear all RTC registers.   RTC_CR = RTC_CR_SWR_MASK; RTC_CR &= ~RTC_CR_SWR_MASK;   if (RTC_SR & RTC_SR_TIF_MASK){      RTC_TSR = 0x00000000; } Set time compensation parameters. (These parameters can be different for each application) RTC_TCR = RTC_TCR_CIR(1) | RTC_TCR_TCR(0xFF); Enable time seconds interrupt for the module and enable its irq. enable_irq( INT_RTC_Seconds - 16); RTC_IER |= RTC_IER_TSIE_MASK; Enable time counter. RTC_SR |= RTC_SR_TCE_MASK; Write to Time Seconds Register. RTC_TSR = 0xFF;   After this configurations you can write your application, do not forget to add you Interrupt Service Routine to the vector table and implement an ISR code.   In the attachments you can find two zip files: PEx application and non-PEx application.   I hope this could be useful for you,   Adrián Sánchez Cano. Original Attachment has been moved to: FRDM-KL25Z-RTC-TEST.zip Original Attachment has been moved to: FRDM-KL25Z-PEx-RTC.zip
View full article
Hello all.   I would like to share an example project for FRDM-KL25Z board on which C90TFS Flash Driver was included to implement emulated EEPROM (Kinetis KL25 doesn’t have Flex Memory). It is based on the “NormalDemo” example project. A string of bytes is stored on the last page of the flash memory (address 0x1FC00-0x1FFFF), and then, it is overwritten with a different string.   The ZIP file also includes the “Standard Software Driver for C90TFS/FTFx Flash User’s Manual” document. For more information, please refer to Freescale website and search for “C90TFS” flash driver. Hope this will be useful for you. Best regards! /Carlos
View full article
The FRDM-KL25Z is an ultra-low-cost development platform enabled by Kinetis L Series KL1 and KL2 MCUs families built on ARM® Cortex™-M0+ processor. Features include easy access to MCU I/O, battery-ready, low-power operation, a standard-based form factor with expansion board options and a built-in debug interface for flash programming and run-control. The FRDM-KL25Z is supported by a range of Freescale and third-party development software. Features MKL25Z128VLK4 MCU – 48 MHz, 128 KB flash, 16 KB SRAM, USB OTG (FS), 80LQFP Capacitive touch “slider,” MMA8451Q accelerometer, tri-color LED Easy access to MCU I/O Sophisticated OpenSDA debug interface Mass storage device flash programming interface (default) – no tool installation required to evaluate demo apps P&E Multilink interface provides run-control debugging and compatibility with IDE tools Open-source data logging application provides an example for customer, partner and enthusiast development on the OpenSDA circuit Take a look at these application notes: USB DFU boot loader for MCUs Developer’s Serial Bootloader. Low Cost Universal Motor Drive Using Kinetis L family . Writing your First MQXLite Application Learn more...
View full article
for M68HC08, HCS08, ColdFire and Kinetis MCUs by: Pavel Lajsner, Pavel Krenek, Petr Gargulak Freescale Czech System Center Roznov p.R., Czech Republic The developer's serial bootloader offers to user easiest possible way how to update existing firmware on most of Freescale microcontrollers in-circuit. In-circuit programming is not intended to replace any of debuging and developing tool but it serves only as simple option of embedded system reprograming via serial asynchronous port or USB. The developer’s serial bootloader supported microcotrollers includes 8-bit families HC08, HCS08 and 32-bit families ColdFire, Kinetis. New Kinetis families include support for K series and L series. This application note is for embedded-software developers interested in alternative reprogramming tools. Because of its ability to modify MCU memory in-circuit, the serial bootloader is a utility that may be useful in developing applications. The developer’s serial bootloader is a complementary utility for either demo purposes or applications originally developed using MMDS and requiring minor modifications to be done in-circuit. The serial bootloader offers a zero-cost solution to applications already equipped with a serial interface and SCI pins available on a connector. This document also describes other programming techniques: FLASH reprogramming using ROM routines Simple software SCI Software for USB (HC08JW, HCS08JM and MCF51JM MCUs) Use of the internal clock generator PLL clock programming EEPROM programming (AS/AZ HC08 families) CRC protection of serial protocol option NOTE: QUICK LINKS The Master applications user guides: Section 10, Master applications user guides. The description of Kinetis version of protocol including the changes in user application: Section 7, FC Protocol, Version 5, Kinetis. The quick start guide how to modify the user Kinetis application to be ready for AN2295 bootloader: Section 7.8, Quick guide: How to prepare the user Kinetis application for AN2295 bootloader. Full application note and  software attached.
View full article
Today the universal motor is still widely used in home appliances such as vacuum cleaners, washers, hand tools, and food processors. The operational mode, which is used in this application, is closed loop and regulated speed. This mode requires a speed sensor on the motor shaft. Such a sensor is usually an incremental sensor or a tachometer generator. The kind of motor and its drive have a high impact on many home appliance features like cost, size, noise, and efficiency. Electronic control is usually necessary when variables speed or energy savings are required. MCUs offer the advantages of low cost and attractive design. They can operate with only a few external components and reduce the energy consumption as well as the cost. This circuit was designed as a simple schematic using key features of a Kinetis L MCU. For demonstration purposes, the Freescale low cost Freedom KL25z development platform was used. This application note describes the design of a low-cost phase angle motor control drive system based on Freescales’s Kinetis L series microcontroller (MCU) and the MAC4DC snubberless triac. The low-cost single-phase power board is dedicated for universal brushed motors operating from 1000 RPMs to 15,000 RPMs. This application note explains both HW and SW design with an ARM Kinetis L series MCU. Such a low-cost MCU is powerful enough to do the whole job necessary for driving a closed loop phase angle system as well as many others algorithms.        -Freedom development platform with universal motor drive board extension The phase angle control technique is used to adjust the voltage applied to the motor. A phase shift of the gate’s pulses allows the effective voltage, seen by the motor, to be varied. All required functions are performed by just one integrated circuit and a small number of external components. This allows a compact printed circuit board (PCB) design and a cost-effective solution. Learn more about the Kinetis L series Freedom Board Get the full application note in the link bellow:
View full article
The Freescale Freedom development platform is a low-cost evaluation and development platform featuring Freescale's newest ARM® Cortex™-M0+ based Kinetis KL25Z MCUs NEW! Quick Start Guide Features: KL25Z128VLK4--Cortex-M0+ MCU with:   - 128KB flash, 16KB SRAM - Up to 48MHz operation  - USB full-speed controller OpenSDA--sophisticated USB debug interface Tri-color LED Capacitive touch "slider" Freescale MMA8451Q accelerometer Flexible power supply options   - Power from either on-board USB connector - Coin cell battery holder (optional population option)  - 5V-9V Vin from optional IO header - 5V provided to optional IO header - 3.3V to or from optional IO header Reset button Expansion IO form factor accepts peripherals designed for Arduino™-compatible hardware
View full article