Porting Notes for PianoPI Based
3.10.53

i.MX FAE Oct. 2015
Agenda

- PianoPI board brief
- U-boot porting
- Kernel & device tree porting
 - eMMC
 - LVDS
 - touch screen
 - WM8960
 - camera
- Yocto project porting
PianoPI board brief
PianoPI board is designed for IOT truck demo by freescale TIC team. The HW is designed by Lemaker. SW developed by TIC base on BSP version L3.0.101.
PianoPI board brief

More details on PianoPI board please refer to:
http://www.lemaker.org/article-48-1.html
U-boot porting
U-boot porting – boards.cfg

In L3.10.53_110, u-boot version is u-boot-2014.04.
To support pianoPI board, we add below line to boards.cfg:

```
Active arm armv7 mx6 freescale mx6pianopi mx6qpianopi
mx6pianopi:IMX_CONFIG=board/freescale/mx6pianopi/mx6q_4x_mt41j128.cfg,MX6Q,DEFAULT_FDT_FILE="imx6q-pianopi.dtb",DDR_MB=1024
```
U-boot porting – add files for PianoPI

- board
 - freescale
 - mx6pianopi
 - Makefile
 - mx6pianopi.c
 - mx6qpianopi_4x_mt41j128.cfg
 - plugin.S
 - mx6sabresd
 - Makefile
 - mx6dl_4x_mt41j128.cfg
 - mx6sabresd.c
 - mx6solo_4x_mt41j128.cfg
 - plugin.S
 - boards.cfg
 - include
 - configs
 - mx6pianopi_common.h
 - mx6pianopi.h
 - mx6sabresd_common.h
 - mx6sabresd.h

-one line change COBJS := mx6pianopi.o
-board c code
-board configuration (DCD for DDR)

PianoPI porting is based on mx6sabresd with corresponding configuration.

add mx6qpianopi ...
U-boot porting – mx6pianopi.c

Base on mx6sabre.c, we made some modifications according to PianoPI board.
Kernel & device tree porting
Kernel & device tree porting

For kernel and device tree, we made source code modifications to drive **eMMC**, **LVDS**, **touch screen**, **audio codec** and **camera**, which will be detailed described in coming slides.

Beside these relatively significant modifications, we also have made several changes to the device tree due to the HW configuration difference between PianoPI board and mx6qsabresd board, such as **IOMUX**, see below an example.

```
uart1 {
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_uart1_2>;
    status = "okay";
};
```

This is newly defined according to schematics and mx6q reference manual.
Kernel & device tree porting

Similar modifications include:

pinctrl_i2c3_3, pinctrl_pwm1_2…

Please note some IOMUX is not existed in `imx6qdl.dtsi` and cannot be cataloged to certain component. We could place these to `hog` as below:

```markdown
&iomuxc {
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_hog_1>;

    hog {
        pinctrl_hog_1: hoggrp-1 {
            fsl,pins = <
            MX6QDL_PAD_NANDF_D4__GPIO2_IO04 0x80000000  /* TP_RST */
            MX6QDL_PAD_NANDF_D5__GPIO2_IO05 0x80000000  /* TP_INT */
            MX6QDL_PAD_NANDF_D6__GPIO2_IO06 0x80000000  /* TP_SHDN */
            MX6QDL_PAD_NANDF_D7__GPIO2_IO07 0x80000000  /* SPK_PWR_EN */
            MX6QDL_PAD_SD1_DAT0__GPIO1_IO16 0x80000000  /* CSI0_PWDN */
            MX6QDL_PAD_SD1_DAT1__GPIO1_IO17 0x80000000  /* MIPI_PWDN */
            MX6QDL_PAD_SD1_DAT2__GPIO1_IO19 0x80000000  /* MIPI_RST */
            MX6QDL_PAD_SD1_CLK__GPIO1_IO20 0x80000000  /* CSI0_RST */
            ...}
    }
}

imx6qdl-pianopi.dtsi
```
eMMC on PianoPI board HW connection is the same as on mx6q sabresd. But we met a problem during L3.10.53 PianoPI porting. The mfgtool kernel cannot get /dev/mmcblk3, which is the emmc (SD4). See next slide the fail log.
Kernel & device tree porting – eMMC (2)

... UTP: received command '$ sh mksdcard.sh /dev/mmcblk3'
UTP: executing "sh mksdcard.sh /dev/mmcblk3"
1+0 records in
1+0 records out
1024 bytes (1.0 kB) copied, 0.00686533 s, 149 kB/s
sfdisk: Warning: /dev/mmcblk3 is not a block device
sfdisk: Disk /dev/mmcblk3: cannot get geometry

Disk /dev/mmcblk3: 0 cylinders, 255 heads, 63 sectors/track
sfdisk: /dev/mmcblk3: unrecognized partition table type
Old situation:
sfdisk: No partitions found
sfdisk: Warning: given size (503) exceeds max allowable size (0)
New situation:
Units: 1MiB = 1024*1024 bytes, blocks of 1024 bytes, counting from 0

 Device Boot Start End MiB #blocks Id System
/dev/mmcblk3p1 7+ 509- 503- 514080 c W95 FAT32 (LBA)
/dev/mmcblk3p2 596+ 596- 0 0 83 Linux
/dev/mmcblk3p3 0 0 0 0 83 Empty
/dev/mmcblk3p4 0 0 0 0 83 Empty
sfdisk: Warning: partition 2 has size 0 but is not marked Empty
sfdisk: Warning: partition 1 extends past end of disk
Successfully wrote the new partition table

sfdisk: If you created or changed a DOS partition, /dev/foo7, say, then use dd(1)
to zero the first 512 bytes: dd if=/dev/zero of=/dev/foo7 bs=512 count=1
(See fdisk(8).)
UTP: sending Success to kernel for command $ sh mksdcard.sh /dev/mmcblk3.
utp_poll: pass returned.
UTP: received command '$ dd if=/dev/zero of=/dev/mmcblk3 bs=1k seek=384 conv=fsync count=129'
UTP: executing "dd if=/dev/zero of=/dev/mmcblk3 bs=1k seek=384 conv=fsync count=129"
129+0 records in
129+0 records out
132096 bytes (132 kB) copied, 0.00147833 s, 89.4 MB/s
UTP: sending Success to kernel for command $ dd if=/dev/zero of=/dev/mmcblk3 bs=1k seek=384 conv=fsync count=129.
utp_poll: pass returned.
UTP: received command '$ echo 0 > /sys/block/mmcblk3boot0/force_ro'
UTP: executing "echo 0 > /sys/block/mmcblk3boot0/force_ro"
sh: /sys/block/mmcblk3boot0/force_ro: No such file or directory
UTP: sending Non-success to kernel for command $ echo 0 > /sys/block/mmcblk3boot0/force_ro.
utp_poll: exit with status 256.

MFGTool programming fail log
We notice during the kernel boot up, the log shows \textit{unrecognisedEXT_CSD revision 7}

See below snap of JEDEC Standard No. 84-B51.

So we modified the source code as below right.
Kernel & device tree porting – LVDS (1)

LVDS schematics of PianoPI board is similar with mx6qsabresd. We just need to make some IOMUX adaptions.

The LVDS panel used is different. We need to configure it in the device tree based on the panel data sheet.
Kernel & device tree porting – LVDS (2)

```
mxcb1: fb@0 {
    compatible = "fsl.mxc_sdc_fb";
    disp_dev = "ldb";
    interface_pix_fmt = "RGB666";
    default_bpp = <16>;
    int_clk = <0>;
    late_init = <0>;
    status = "disabled";
};

... &ldb {
    status = "okay";

    lvds-channel@0 {
        fsl, data-mapping = "spwg";
        fsl, data-width = <18>;
        status = "okay";
        display-timings {
            native-mode = <&timing0>;
            timing0: hsd100pxn1 {
                clock-frequency = <71100000>;
                hactive = <1280>;
                vactive = <800>;
                hback-porch = <40>;
                hfront-porch = <40>;
                vback-porch = <10>;
                vfront-porch = <3>;
                hsync-len = <80>;
                vsync-len = <10>;
            };
        };
    };
};
```
display-timings Binding Guide

17 required properties:
18 - hactive, vactive: display resolution
19 - hfront-porch, hback-porch, hsync-len: horizontal display timing parameters in pixels
20 - vfront-porch, vback-porch, vsync-len: vertical display timing parameters in lines
21 - clock-frequency: display clock in Hz

25 optional properties:
26 - hsync-active: hsync pulse is active low/high/ignored
27 - vsync-active: vsync pulse is active low/high/ignored
28 - de-active: data-enable pulse is active low/high/ignored
29 - pixelclk-active: with
30 - active high = drive pixel data on rising edge/
31 sample data on falling edge
32 - active low = drive pixel data on falling edge/
33 sample data on rising edge
34 - ignored = ignored
35 - interlaced (bool): boolean to enable interlaced mode
In the DE mode

\(h_{\text{back-porch}} + h_{\text{front-porch}} + h_{\text{sync-len}} = \text{Horizontal Black Time} \)

\(v_{\text{back-porch}} + v_{\text{front-porch}} + v_{\text{sync-len}} = \text{Vertical Black Time} \)

\(h_{\text{back-porch}}, h_{\text{front-porch}}, h_{\text{sync-len}} \) are no-zero value

\(v_{\text{back-porch}}, v_{\text{front-porch}}, v_{\text{sync-len}} \) are no-zero value
4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Item</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td>Frequency</td>
<td>1/Tc</td>
<td>(64)</td>
<td>(71.1)</td>
<td>(74.7)</td>
<td>MHz</td>
<td>-</td>
</tr>
<tr>
<td>Vertical Total Time</td>
<td>TV</td>
<td>(810)</td>
<td>(823)</td>
<td>(829)</td>
<td>TH</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vertical Active Display Period</td>
<td>TVD</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>TH</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vertical Active Blanking Period</td>
<td>TVB</td>
<td>TV-TVD</td>
<td>(23)</td>
<td>TV-TVD</td>
<td>TH</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Horizontal Total Time</td>
<td>TH</td>
<td>(1380)</td>
<td>(1440)</td>
<td>(1480)</td>
<td>Tc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Active Display Period</td>
<td>THD</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>Tc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Active Blanking Period</td>
<td>THB</td>
<td>TH-THD</td>
<td>(160)</td>
<td>TH-THD</td>
<td>Tc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

LVDS has two modes: DE mode or SYNC mode. According to the LVDS panel datasheet, it is DE mode only. So we could set the values accordingly as below.

```c
&ldb {
    status = "okay";

    lvds-channel@0 {
        fsl.data-mapping = "spwg";
        fsl.data-width = <18>;
        status = "okay";

        display-timings {
            native-mode = <&timing0>;
            timing0: hsd100pxn1 {
                clock-frequency = <71100000>;
                hactive = <1280>;
                vactive = <800>;
                hback-porch = <40>;
                hfront-porch = <40>;
                vback-porch = <10>;
                vfront-porch = <3>;
                hsync-len = <80>;
                vsync-len = <10>;
            }
        }
    }
}
```

Vertical Black Time = vback-porch + vfront-porch + vsync-len
23 = 10 + 3 + 10

Horizontal Black Time = hback-porch + hfront-porch + hsync-len
160 = 40 + 40 + 80
Kernel & device tree porting – touch screen (1)

The touch screen IC on PianoPI board is GOODix GT9xx. In our BSP release, it is not supported. We have got the source code supporting device tree from GOODix FAE and added it into the kernel source code directory `drivers/input/touchscreen/`.

We also made modifications to the Makefile and Kconfig file. Device tree configuration see below.

```plaintext
&i2c3 {
  clock-frequency = <100000>;
  pinctrl-names = "default";
  pinctrl-0 = <&pinctrl_i2c3_3>;
  status = "okay";

  goodix_ts@5d {
    compatible = "goodix,gt9xx";
    reg = <0x5d>;
    interrupt-parent = <&gpio2>;
    interrupts = <5 2>;
    goodix,rst-gpio = <&gpio2 0x00>;
    goodix,irq-gpio = <&gpio2 5 0x00>;
    ... 
  }
}
```
Kernel & device tree porting – touch screen (2)

We have met the problem that, from debug log it seems touch screen module has get the touch coordinates. But touch on the screen UI has no response.

```
root@imx6qsabresd:~# evtest /dev/input/event0

Testing ... (interrupt to exit)
Event: time 1440752924.596007, type 1 (Key), code 330 (Touch), value 1
Event: time 1440752924.596007, type 3 (Absolute), code 53 (Position X), value 240
Event: time 1440752924.596007, type 3 (Absolute), code 54 (Position Y), value 807
Event: time 1440752924.596007, type 3 (Absolute), code 48 (Touch Major), value 28
Event: time 1440752924.596007, type 3 (Absolute), code 50 (Width Major), value 28
Event: time 1440752924.596007, type 3 (Absolute), code 57 (Tracking ID), value 0
Event: time 1440752924.596007, -------------- Config Sync --------------
Event: time 1440752924.596007, -------------- Report Sync --------------
Event: time 1440752924.610400, type 3 (Absolute), code 53 (Position X), value 240
Event: time 1440752924.610400, type 3 (Absolute), code 54 (Position Y), value 807
Event: time 1440752924.610400, type 3 (Absolute), code 48 (Touch Major), value 28
Event: time 1440752924.610400, type 3 (Absolute), code 50 (Width Major), value 28
Event: time 1440752924.610400, type 3 (Absolute), code 57 (Tracking ID), value 0
Event: time 1440752924.610400, -------------- Config Sync --------------
Event: time 1440752924.610400, -------------- Report Sync --------------
```
Kernel & device tree porting – touch screen (3)

We compared the evtest log with mx6q sabresd board and find the difference as below.

```plaintext
root@imx6qsabresd:~# evtest /dev/input/event0
Input driver version is 1.0.1
Input device ID: bus 0x18 vendor 0xdead product 0xbeef version 0x28bb
Input device name: "goodix-ts"
Supported events:
  Event type 0 (Sync)
  Event type 1 (Key)
    Event code 330 (Touch)
  Event type 3 (Absolute)
    Event code 48 (Touch Major)
      Value 0
      Min 0
      Max 255
    Event code 50 (Width Major)
      Value 0
      Min 0
      Max 255
    Event code 53 (Position X)
      Value 0
      Min 0
      Max 800
    Event code 54 (Position Y)
      Value 0
      Min 0
      Max 1280
  Event code 57 (Tracking ID)
    Value 0
    Min 0
    Max 255
Testing ... (interrupt to exit)
```

```plaintext
root@imx6qdlSolo:~# evtest /dev/input/event0
Input driver version is 1.0.1
Input device ID: bus 0x18 vendor 0x0 product 0x0 version 0x0
Input device name: "EETI eGalax Touch Screen"
Supported events:
  Event type 0 (Sync)
  Event type 1 (Key)
    Event code 330 (Touch)
  Event type 3 (Absolute)
    Event code 0 (X)
      Value 1472
      Min 0
      Max 32760
    Event code 1 (Y)
      Value 1824
      Min 0
      Max 32760
    Event code 47 (?)
      Value 0
      Min 0
      Max 4
  Event code 53 (Position X)
    Value 0
    Min 0
    Max 4
  Event code 54 (Position Y)
    Value 0
    Min 0
    Max 32760
  Event code 57 (Tracking ID)
    Value 0
    Min 0
    Max 65535
Testing ... (interrupt to exit)
```

PianoPI board

sabresd board
Below are the event definitions for touch screen.

```c
#define ABS_X                   0x00  /* MT slot being modified */
#define ABS_Y                   0x01  /* Major axis of touching ellipse */
#define ABS_Z                   0x02  /* Minor axis (omit if circular) */
#define ABS_RX                  0x03  /* Major axis of approaching ellipse */
#define ABS_RY                  0x04  /* Minor axis (omit if circular) */
#define ABS_RZ                  0x05  /* Ellipse orientation */
#define ABS_MT_SLOT             0x2f  /* MT slot being modified */
#define ABS_MT_TOUCH_MAJOR      0x30  /* Major axis of touching ellipse */
#define ABS_MT_TOUCH_MINOR      0x31  /* Minor axis (omit if circular) */
#define ABS_MT_WIDTH_MAJOR      0x32  /* Major axis of approaching ellipse */
#define ABS_MT_WIDTH_MINOR      0x33  /* Minor axis (omit if circular) */
#define ABS_MT_ORIENTATION      0x34  /* Ellipse orientation */
#define ABS_MT_POSITION_X       0x35  /* Center X touch position */
#define ABS_MT_POSITION_Y       0x36  /* Center Y touch position */
#define ABS_MT_TOOL_TYPE        0x37  /* Type of touching device */
#define ABS_MT_BLOB_ID          0x38  /* Group a set of packets as a blob */
#define ABS_MT_TRACKING_ID      0x39  /* Unique ID of initiated contact */
#define ABS_MT_PRESSURE         0x3a  /* Pressure on contact area */
#define ABS_MT_DISTANCE         0x3b  /* Contact hover distance */
```

The ABS_X, ABS_Y are for **single touch** only while the definitions with prefix ABS_MT_ are for **multi-touch**.

We could learn from last slide that GOODiX provided driver reports **multi-touch type B** touch events. The mx6q sabresd used e-galax driver reports **single touch** events together with **multi-touch type A** events.

More details on multi-touch protocol please refer to:

Kernel & device tree porting – touch screen (5)

On mx6q sabresd board, the evtest log looks like this:

```
root@imx6qsabresd:~# evtest /dev/input/event0
...
Testing ... (interrupt to exit)
Event: time 1420438798.864839, type 3 (Absolute), code 57 (Tracking ID), value 27
Event: time 1420438798.864839, type 3 (Absolute), code 53 (Position X), value 5584
Event: time 1420438798.864839, type 3 (Absolute), code 54 (Position Y), value 15536
Event: time 1420438798.864839, type 1 (Key), code 330 (Touch), value 1
Event: time 1420438798.864839, type 3 (Absolute), code 0 (X), value 5584
Event: time 1420438798.864839, type 3 (Absolute), code 1 (Y), value 15536
Event: time 1420438798.864839, ----------------- Report Sync -----------------
Event: time 1420438798.944020, type 3 (Absolute), code 53 (Position X), value 5616
Event: time 1420438798.944020, type 3 (Absolute), code 54 (Position Y), value 15568
Event: time 1420438798.944020, type 3 (Absolute), code 0 (X), value 5616
Event: time 1420438798.944020, type 3 (Absolute), code 1 (Y), value 15568
Event: time 1420438798.944020, ----------------- Report Sync -----------------
Event: time 1420438798.970491, type 3 (Absolute), code 53 (Position X), value 6144
Event: time 1420438798.970491, type 3 (Absolute), code 54 (Position Y), value 15520
Event: time 1420438798.970491, type 3 (Absolute), code 0 (X), value 6144
Event: time 1420438798.970491, type 3 (Absolute), code 1 (Y), value 15520
Event: time 1420438798.970491, ----------------- Report Sync -----------------
```

As we see, it reports both single touch and multi-touch coordinates and the Yocto built UI responds to the touch. While the Goodix GT9xx driver reports only the multi-touch coordinates, and the UI doesn’t respond to the touch operations.

So the Yocto built UI responds to the single touch coordinates report events only. We need to add single touch events into the driver.
Kernel & device tree porting – touch screen (6)

We added single touch events to the driver source codes as below:

```c
static s8 gtp_request_input_dev(struct goodix_ts_data *ts)
{
    input_set_abs_params(ts->input_dev, ABS_X, 0, ts->abs_x_max, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_Y, 0, ts->abs_y_max, 0, 0);

    input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 255, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);

    static void gtp_touch_down(struct goodix_ts_data* ts, s32 id, s32 x, s32 y, s32 w)
    {
        input_report_abs(ts->input_dev, ABS_X, x);
        input_report_abs(ts->input_dev, ABS_Y, y);
        input_sync(ts->input_dev);
    }
```

We registered two events ABS_X and ABS_Y, and reported them when triggered. After the modification, touch on the panel UI get correct responses.
Kernel & device tree porting – WM8960 (1)

driver structure

Platform:
- fsl-sai.c fsl-ssi.c imx-audmux.h

Machine:
- config cpu_dai, codec_dai, control
- and audio routing map

Codec:
- imx-wm8960.c

- snd_soc_dai_ops
- hw_params, hw_free,
- set_fmt etc

- fsl_ssi.c fsl_sai.c

- snd soc dai ops
- hw params, set sysclk,
- set_fmt etc

- imx-wm8962.c imx-wm8960.c

- wm8962.c wm8960.c
Kernel & device tree porting – WM8960 (2)

```c
&i2c2 {
   clock_frequency = <100000>;
   pinctrl-names = "default";
   pinctrl-0 = <&pinctrl_i2c1_2>;
   status = "okay";

   codec: wm8960@1a {
      compatible = "wlf,wm8960";
      reg = <0x1a>;
      clocks = <&clks 201>;
      clock-names = "mclk";
      wlf,shared-lrclk;
   };

reg_audio: wm8960_supply {
   compatible = "regulator-fixed";
   regulator-name = "wm8960-supply";
   gpio = <&gpio2 7 0>;
   enable-active-high;
};
```

```c
sound {
   compatible = "fsl,imx6-pianopi-wm8960",
   "fsl,imx-audio-wm8960";
   model = "wm8960-audio";
   cpu-dai = <&ssi2>;
   audio-codec = <&codec>;
   codec-master;
   gpr = <&gpr>;
   audio-routing =
      "Headset Jack", "HP_L",
      "Headset Jack", "HP_R",
      "Ext Spk", "SPK_LP",
      "Ext Spk", "SPK_LN",
      "Ext Spk", "SPK_RP",
      "Ext Spk", "SPK_RN";
   mux-int-port = <2>;
   mux-ext-port = <3>;
   hp-det-gpios = <&gpio3 19 1>;
   spk-en-gpio = <&gpio2 7 0>;
};
```
Kernel & device tree porting – WM8960 (3)

Kcontrol

```c
static const struct snd_kcontrol_new wm8960_snd_controls[] = {
SOC_DOUBLE_R_TLV("Capture Volume", WM8960_LINVol, WM8960_RINVol, 0, 63, 0, adc_tlv),
SOC_DOUBLE_R("Capture Volume ZC Switch", WM8960_LINVol, WM8960_RINVol, 6, 1, 0),
SOC_DOUBLE_R("Capture Switch", WM8960_LINVol, WM8960_RINVol, 7, 1, 0),
SOC_DOUBLE_R_TLV("Playback Volume", WM8960_LDAC, WM8960_RDAC, 0, 255, 0, dac_tlv),
SOC_DOUBLE_R_TLV("Headphone Playback Volume", WM8960_LOUT1, WM8960_ROUT1, 0, 127, 0, out_tlv),
SOC_DOUBLE_R("Headphone Playback ZC Switch", WM8960_LOUT1, WM8960_ROUT1, 7, 1, 0),
SOC_DOUBLE_R_TLV("Speaker Playback Volume", WM8960_LOUT2, WM8960_ROUT2, 0, 127, 0, out_tlv),
SOC_SINGLE("Speaker DC Volume", WM8960_CLASSD3, 3, 5, 0),
SOC_SINGLE("Speaker AC Volume", WM8960_CLASSD3, 0, 5, 0),
};
```

Kcontrol set the codec wm8960 registers via i2c interface
Kernel & device tree porting – WM8960 (4)

Audio routing

Audio routing for headphone and speakers
Kernel & device tree porting – WM8960 (5)

audio routing

static const struct snd_soc_dapm_route audio_paths[] = {
 { "Left Output Mixer", "LINPUT3 Switch", "LINPUT3" },
 { "Left Output Mixer", "Boost Bypass Switch", "Left Boost Mixer" },
 { "Left Output Mixer", "PCM Playback Switch", "Left DAC" },
 { "Right Output Mixer", "RINPUT3 Switch", "RINPUT3" },
 { "Right Output Mixer", "Boost Bypass Switch", "Right Boost Mixer" },
 { "Right Output Mixer", "PCM Playback Switch", "Right DAC" },
 { "LOUT1 PGA", NULL, "Left Output Mixer" },
 { "ROUT1 PGA", NULL, "Right Output Mixer" },
 { "HP_L", NULL, "LOUT1 PGA" },
 { "HP_R", NULL, "ROUT1 PGA" },
 { "Left Speaker PGA", NULL, "Left Output Mixer" },
 { "Right Speaker PGA", NULL, "Right Output Mixer" },
 { "Left Speaker Output", NULL, "Left Speaker PGA" },
 { "Right Speaker Output", NULL, "Right Speaker PGA" }
};
Kernel & device tree porting – WM8960 (6)

control widget

```c
static const struct snd_soc_dapm_widget wm8960_dapm_widgets[] = {
    SND_SOC_DAPM_DAC("Left DAC", "Playback", WM8960_POWER2, 8, 0),
    SND_SOC_DAPM_DAC("Right DAC", "Playback", WM8960_POWER2, 7, 0),
    SND_SOC_DAPM_MIXER("Left Output Mixer", WM8960_POWER3, 3, 0,&wm8960_loutput_mixer[0],
        ARRAY_SIZE(wm8960_loutput_mixer)),
    SND_SOC_DAPM_MIXER("Right Output Mixer", WM8960_POWER3, 2, 0,&wm8960_routput_mixer[0],
        ARRAY_SIZE(wm8960_routput_mixer)),
    SND_SOC_DAPM_PGA("LOUT1 PGA", WM8960_POWER2, 6, 0, NULL),
    SND_SOC_DAPM_PGA("ROUT1 PGA", WM8960_POWER2, 5, 0, NULL),
    SND_SOC_DAPM_OUTPUT("HP_L"),
    SND_SOC_DAPM_OUTPUT("HP_R"), ...
};
```

codec driver wm8960: widget definition for digital audio power control
Kernel & device tree porting – WM8960 (7)

control widget

```c
static const struct snd_soc_dapm_widget imx_wm8960_dapm_widgets[] = {
    SND_SOC_DAPM_HP("Headset Jack", NULL),
    SND_SOC_DAPM_SPK("Ext Spk", NULL),
    SND_SOC_DAPM_MIC("Hp MIC", NULL),
    SND_SOC_DAPM_MIC("Main MIC", NULL),
};
```

```c
data->card.dapm_widgets = imx_wm8960_dapm_widgets;
data->card.num_dapm_widgets = ARRAY_SIZE(imx_wm8960_dapm_widgets);
```

machine driver imx-wm8960:

Define widgets which will be linked to codec driver power management widget in last slide

See device tree audio-routing on the right
Kernel & device tree porting – WM8960 (8)

cpu dai: ssi

Codec

i.MX6UL EVK Audio Codec CPU DAI:
- SAI

PianoPI Audio Codec CPU DAI:
- SSI

`imx-wm8960.c` is from `imx6UL evk` audio driver in L3.14.38-6ul-ga. In `imx6UL evk`, WM8960 is connected to SAI while in PianoPI board it is SSI by AUDMUX.
Kernel & device tree porting – WM8960 (9)

cpu dai: ssi

```c
#include "../codecs/wm8960.h"
#include "fsl_sai.h"
#include "imx-audmux.h"

static int imx_hifi_startup(struct snd_pcm_substream *substream)
{
    struct snd_soc_pcm_runtime *rtd = substream->private_data;
    struct snd_soc_dai *codec_dai = rtd->codec_dai;
    //struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
    struct snd_soc_card *card = codec_dai->codec->card;
    struct imx_wm8960_data *data = snd_soc_card_get_drvdata(card);
    bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
    // struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
    int ret = 0;

    data->is_stream_opened[tx] = true;
    /* if (data->is_stream_opened[tx] != sai->is_stream_opened[tx] ||
      data->is_stream_opened[!tx] != sai->is_stream_opened[!tx]) {
      data->is_stream_opened[tx] = false;
      return -EBUSY;
    } */
}
```

`imx-wm8960.c` is from `imx6UL evk audio driver in L3.14.38-6ul-ga`. It should remove sai related codes as left.
And set device tree as above.
Kernel & device tree porting – WM8960 (10)

Port 1, 2, & 7 connects to internal SSI, while port 3, 4, 5, & 6 to external pins.

The PianoPI schematic is connected to external port 3.

```plaintext
sound {
    compatible = "fsl,imx6-pianopi-wm8960",
    "fsl,imx-audio-wm8960";
    model = "wm8960-audio";
    cpu-dai = &ssi2;
    audio-codec = &codec;
    codec-master;

    ...  
}
```

imx6qdl-pianopi.dtsi
Kernel & device tree porting – WM8960 (11)

cpu dai: ssi

```c
... if (!strstr(cpu_np->name, "ssi"))
    goto audmux_bypass;

    ret = of_property_read_u32(np, "mux-int-port", &int_port); ...
    ret = of_property_read_u32(np, "mux-ext-port", &ext_port); ...
...
    int_port--;
    ext_port--;
    ret = imx_audmux_v2_configure_port(int_port,
        IMX_AUDMUX_V2_PTCR_SYN |
        IMX_AUDMUX_V2_PTCR_TFSEL(ext_port) |
        IMX_AUDMUX_V2_PTCR_TCSEL(ext_port) |
        IMX_AUDMUX_V2_PTCR_TFSDIR |
        IMX_AUDMUX_V2_PTCR_TCLKDIR,
        IMX_AUDMUX_V2_PDCR_RXDSEL(ext_port)); ....
    imx_audmux_v2_configure_port(ext_port,
        IMX_AUDMUX_V2_PTCR_SYN,
        IMX_AUDMUX_V2_PDCR_RXDSEL(int_port));
    if (ret) {
        dev_err(&pdev->dev, "audmux external port setup failed\n"));
        return ret;
    }

    audmux_bypass:
```

```
imx6qdl-pianopi.dtsi

sound {
    compatible = "fsl,imx6-pianopi-wm8960",
              "fsl,imx-audio-wm8960";
    model = "wm8960-audio";
    cpu-dai = <&ssi2>;
...
    mux-int-port = <2>;
    mux-ext-port = <3>;
    hp-det = <3 0>;
    hp-det-gpios = <&gpio3 19 1>;
    spk-en-gpio = <&gpio2 7 0>;
};
```

imx-wm8960.c should add audmux support.

The device tree ports configurations see the above.
Please note ssi should be corresponding to mux-int-port as listed in last slide:
si1<->1, ssi2<->2, ssi3<->7.
Kernel & device tree porting – WM8960 (12)

hp detect: i.MX6UL EVK

i.MX6UL EVK Audio Codec Headphone Detect:

HP_JD signal is connected to wm8960 JD3 pin.
Kernell & device tree porting – WM8960 (13)

hp detect: i.MX6UL EVK

Table:

<table>
<thead>
<tr>
<th>Address</th>
<th>BIT</th>
<th>Label</th>
<th>Default</th>
<th>Description</th>
<th>Refer To</th>
</tr>
</thead>
<tbody>
<tr>
<td>R48</td>
<td>3:2</td>
<td>HPSEL[1:0]</td>
<td>00</td>
<td>Headphone Switch Input Select</td>
<td>Headphone Jack Detect</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>TSENSEN</td>
<td>1</td>
<td>Temperature Sensor Enable</td>
<td>Thermal Shutdown</td>
</tr>
</tbody>
</table>

- Update R48(30h) with \(\text{hp-det} = <3 \ 0>; \)

Register Address:

- Additional Control (2):
 - **HPSWEN**: Headphone Switch Enable
 - 0 = Headphone switch disabled
 - 1 = Headphone switch enabled
 - **HPSWPOL**: Headphone Switch Polarity
 - 0 = HPDETECT high = headphone
 - 1 = HPDETECT high = speaker

- Update R24(18h) with \(\text{hp-det} = <3 \ 0>; \)
Kernel & device tree porting – WM8960 (14)

hp detect: i.MX6UL EVK

```c
sound {
    compatible = "fsl,imx6ul-evk-wm8960",
    "fsl,imx-audio-wm8960";
    model = "wm8960-audio";
    cpu-dai = <&sai2>;
    audio-codec = <&codec>;
    asrc-controller = <&asrc>;
    codec-master;
    gpr = <&gpr>;
    hp-det = <3 0>;
    hp-det-gpios = <&gpio5 4 0>;
};
```

```c
wm8690_init():

/* Enable headphone jack detect */
snd_soc_update_bits(codec, WM8960_ADDCTL2, 1<<6, 1<<6);
snd_soc_update_bits(codec, WM8960_ADDCTL2, 1<<5, data->hp_det[1]<<5);
snd_soc_update_bits(codec, WM8960_ADDCTL4, 3<<2, data->hp_det[0]<<2);
snd_soc_update_bits(codec, WM8960_ADDCTL1, 3, 3);
```

update R24(18h) with hp-det = <3 0>;
update R48(30h) with hp-det = <3 0>;
PianoPI Audio Codec Headphone Detect:

Headphone detect signal is connected to i.MX6 GPIO3_19, while wm8960 input signals JD3 is pulled low.

So the headphone detection is done by MPU GPIO triggered event, not by wm8960 HP detection function.
Kernel & device tree porting – WM8960 (16)

hp detect: PianoPI

```c
static void wm8960_init(struct snd_soc_dai *codec_dai)
{
  ...
  // snd_soc_update_bits(codec, WM8960_ADDCTL4, 7<<4, 3<<4);
  // snd_soc_update_bits(codec, WM8960_ADDCTL2, 1<<6, 1<<6);
  // snd_soc_update_bits(codec, WM8960_ADDCTL2, 1<<5, data->hp_det[1]<<5);
  // snd_soc_update_bits(codec, WM8960_ADDCTL4, 3<<2, data->hp_det[0]<<2);
  // snd_soc_update_bits(codec, WM8960_ADDCTL1, 3, 3);
  ...
  hp_set_status_check(): ...
  if (hp_status != priv->hp_active_low) { //headphone plugged in
    snd_soc_dapm_enable_pin(&priv->codec->dapm, "Headset Jack");
    snd_soc_dapm_disable_pin(&priv->codec->dapm, "Ext Spk");
    ...
  } else {
    snd_soc_dapm_disable_pin(&priv->codec->dapm, "Headset Jack");
    snd_soc_dapm_enable_pin(&priv->codec->dapm, "Ext Spk");
    ...
}
```

```
imx6qdl-pianopi.dtsi

sound {
  compatible = "fsl,imx6-pianopi-wm8960",
             "fsl,imx-audio-wm8960";
  model = "wm8960-audio";
  cpu-dai = &ssi2;
  audio-codec = &codec;
  asrc-controller = &asrc;
  codec-master;
  gpr = &gpr;
  /* hp-det = <3 1>; */
  hp-det-gpios = &gpio5 4 0;
}
```

We should disable wm8960 headphone detection function and change dapm as left.
The device tree hp-det configuration is not supported anymore. We delete it as above.
Kernel & device tree porting – WM8960 (17)

speaker power enable

PianoPI speaker power enable:
In Documentation/devicetree/bindings/regulator/fixed-regulator.txt
- **enable-active-high**: Polarity of GPIO is Active high
If this property is missing, the default assumed is active low.

Please note modify GPIO polarity `gpio = <&gpio2 7 1>` has no effect.

```c
reg_audio: wm8960_supply {
    compatible = "regulator-fixed";
    regulator-name = "wm8960-supply";
    gpio = <&gpio2 7 0>;
    /*   enable-active-high; */
};
```
Kernel & device tree porting – WM8960 (18)

speaker power enable

Why modify GPIO polarity gpio = &gpio2 7 1> has no effect

def drivers/regulator/fixed.c

```c
config->gpio = of_get_named_gpio(np, "gpio", 0);
if (of_find_property(np, "enable-active-high", NULL))
    config->enable_high = true;

if (config->gpio >= 0)
    cfg.ena_gpio = config->gpio;
    cfg.ena_gpio_invert = !config->enable_high;
if (config->enabled_at_boot) {
    if (config->enable_high)
        cfg.ena_gpio_flags |= GPIOF_OUT_INIT_HIGH;
    } else {
        cfg.ena_gpio_flags |= GPIOF_OUT_INIT_LOW;
    }
} else {
    if (config->enable_high)
        cfg.ena_gpio_flags |= GPIOF_OUT_INIT_LOW;
    } else {
        cfg.ena_gpio_flags |= GPIOF_OUT_INIT_HIGH;
    }
```

Set GPIO init voltage here, the configuration of GPIO polarity is overwritten.
On PianoPI board there are two cameras. One is OV5645 MIPI, the other is OV5640 parallel. The two OV564x cameras with same I2C address 0x3C are both connected to I2C1 via an I2C switch PCA9543.
I2C switch drive principle please see above. It usually connects several devices with same I2C address.

PCA9543 is a NXP I2C switch which supports two sub-devices. On PianoPI board, it connects to OV564x cameras.
Kernel & device tree porting – camera (3)

The PCA9543 driver source code is copied from L3.14.38-6dqp-ga, including several files under linux directory ./drivers/i2c/muxes/.

![Folder contents](image)

It is supposed to support **device tree** as it has device tree binding guide under Documentation directory. In fact it doesn’t. If go through the code of `i2c-mux-pca954x.c`, we could find it supports old style **platform matching** only.

We need to pass the I2C switch mux number and the adapter ID into the driver. So we add some codes in the driver to parse the settings from device tree, and configure them in the device tree file as below:

```c
i2c-mux-num = <2>;           /* simulate two I2C adapters */
i2c-mux-0-adap_id = <3>;
i2c-mux-1-adap_id = <4>;
```

Please refer to the next slides.
Kernel & device tree porting – camera (4)

... static int pca954x_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
 struct i2c_adapter *adap = to_i2c_adapter(client->dev.parent);
 struct pca954x_platform_data *pdata = dev_get_platdata(&client->dev);
 struct pca954x_platform_data *pdata_of;
...
 pdata_of = devm_kzalloc(&client->dev, sizeof(struct pca954x_platform_data), GFP_KERNEL);
 if (!pdata_of)
 return -ENOMEM;
 ret = of_property_read_u32(np, "i2c-mux-num", &pdata_of->num_modes);
 if (ret) {
 dev_err(&client->dev, "i2c-mux-num missing or invalid\n");
 return ret;
 }
 if(pdata_of->num_modes > chips[data->type].nchans) {
 pdata_of->num_modes = chips[data->type].nchans;
 }
 pdata_of->modes = devm_kzalloc(&client->dev, sizeof(struct pca954x_platform_mode)*pdata_of->num_modes, GFP_KERNEL);
}

mux number will be defined in device tree, which could be 2-8 for specific pca954x. For pca9543 it should be no more than 2.
Kernel & device tree porting – camera (5)

```c
pdata_of->modes = devm_kzalloc(&client->dev, sizeof(struct pca954x_platform_mode)*pdata_of->num_modes, GFP_KERNEL);
    if (!pdata_of)
        return -ENOMEM;
    for (num = 0; num < pdata_of->num_modes; num++) {
        pdata_of->modes[num].deselect_on_exit = true;
    }
    ret = of_property_read_u32(np, "i2c-mux-0-adap_id", &pdata_of->modes[0].adap_id);
    if (ret) {
        dev_err(&client->dev, "i2c-mux-0-adap_id missing or invalid\n");
        return ret;
    }
    ret = of_property_read_u32(np, "i2c-mux-1-adap_id", &pdata_of->modes[1].adap_id);
    if (ret) {
        dev_err(&client->dev, "i2c-mux-1-adap_id missing or invalid\n");
        return ret;
    }
    pdata = pdata_of;
    ...
```

In device tree we will define two simulated I2C adapters id. Should not conflict with existed ones. That is, in i.MX6Q board, they could not be 0-2.
Kernel & device tree porting – camera (6)

```
... i2c1 {
    clock-frequency = <100000>;
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_i2c1_2>;
    status = "okay";

codec: wm8960@1a { ... };

i2c-switch@70 {
    compatible = "nxp,pca9543";
    reg = <0x70>;
    i2c-mux-num = <2>;
    i2c-mux-0-adap_id = <3>;
    i2c-mux-1-adap_id = <4>;

    i2c@0 {
        reg = <0>;

        ov5645_mipi: ov5645_mipi@3c { /* i2c2 driver */
            compatible = "ovti,ov5645_mipi";
            reg = <0x3c>;
            ... }
    }

i2c@1 {
    reg = <1>;

    ov5640: ov5640@3c {
        compatible = "ovti,ov5640";
        reg = <0x3c>;
        ... }
}
```

Configure for I2C switch in device tree
Kernel & device tree porting – camera (7)

root@imx6qsabresd:~# i2cdetect -l
i2c-0 i2c 21a0000.i2c I2C adapter
i2c-1 i2c 21a4000.i2c I2C adapter
i2c-2 i2c 21a8000.i2c I2C adapter
i2c-3 i2c i2c-0-mux (chan_id 0) I2C adapter
i2c-4 i2c i2c-0-mux (chan_id 1) I2C adapter

The last two I2C adapter is generated by I2C switch pca9543.

root@imx6qsabresd:~# i2cdetect -y 3

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- UU -- -- -- --
20: --
30: -- UU -- -- --
40: --
50: --
60: --
70: UU --

0x1a is audio codec wm8960.
0x3c is ov5645_mipi.
0x70 is I2C switch pca9543.

root@imx6qsabresd:~# i2cdetect -y 4

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: --
10: -- UU -- -- --
20: --
30: -- UU -- -- --
40: --
50: --
60: --
70: UU --

Here 0x3c is ov5640 parallel.

root@imx6qsabresd:~#
Kernel & device tree porting – camera (8)

OV5640 parallel

There are two cameras on the board. For OV5640 parallel, we could use the driver in L3.10.53_1.1.0_GA directly. Once I2C switch is debugged OK, device tree correctly configured parallel camera OV5640 will work.

Please note two cameras on i.MX6Q sabresd board, one is OV5640/OV5642 parallel camera, the other is OV5640 MIPI.

If in device tree we set camera as above left, the ov5640_camera and ov5642_camera module driver will both be probed as below left. If we set as above right, only ov5640_camera will be probed as below right.

```
root@imx6qsabresd:~# lsmod
Module                  Size  Used by
ov5642_camera          75119  0
mxc_v412_capture       22322  2
ipu_fg_overlay_sdc     4877  1 mxc_v412_capture
ipu_csi_enc            2841  1 mxc_v412_capture
ipu_prp_enc            4645  1 mxc_v412_capture
ipu_still              1663  1 mxc_v412_capture
ipu_bg_overlay_sdc     4001  1 mxc_v412_capture
ov5640_camera          17959  0
ov5645_camera_mipi     19193  0
mxc_dcic               5334  0
```

```
root@imx6qsabresd:~# lsmod
Module                  Size  Used by
mxc_v412_capture       22322  2
ipu_fg_overlay_sdc     4877  1 mxc_v412_capture
ipu_csi_enc            2841  1 mxc_v412_capture
ipu_prp_enc            4645  1 mxc_v412_capture
ipu_still              1663  1 mxc_v412_capture
ipu_bg_overlay_sdc     4001  1 mxc_v412_capture
ov5640_camera          17959  0
ov5645_camera_mipi     19193  0
mxc_dcic               5334  0
```
Why set compatible string as ov564x probes both ov5640 and ov5642 module? See below drivers source codes.

```
...  ov564x: ov564x@3c {
      compatible = "ovti,ov564x";
      reg = <0x3c>;
...
  }

...  static const struct i2c_device_id ov5640_id[] = {
        "ov5640", 0},
        "ov564x", 0},
        {};
  }
  MODULE_DEVICE_TABLE(i2c, ov5640_id);
...
```

```
...  static const struct i2c_device_id ov5642_id[] = {
        "ov5642", 0},
        "ov564x", 0},
        {};
  }
  MODULE_DEVICE_TABLE(i2c, ov5642_id);
...```
OV5645 MIPI

OV5645 MIPI driver is based on freescale TIC SUN Weidong developed driver which is for L3.0.101 with old style platform matching.

Have added device tree support into it. During the porting, I have referred to the ov5640_mipi.c file changes between L3.0.101 and L3.10.53.

Below is the main changes made in ov5645_mipi.c to support device tree.

```c
... static int ov5645_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
...
 /* request power down pin */
 pwn_gpio = of_get_named_gpio(dev->of_node, "pwn-gpios", 0);
...
 retval = devm_gpio_request_one(dev, pwn_gpio, GPIOF_OUT_INIT_HIGH, "ov5645_mipi_pwdn");
...
 rst_gpio = of_get_named_gpio(dev->of_node, "rst-gpios", 0);
...
 retval = devm_gpio_request_one(dev, rst_gpio, GPIOF_OUT_INIT_HIGH, "ov5645_mipi_reset");
...
```
There are still some other tiny modifications like adding below functions, which is not listed in detail here, please refer to the source code:

ov5645_mipi_powerdown
ov5645_mipi_sensor_io_init
ioctl_enum_frameintervals
OV5645 MIPI

```dts
...
-&i2c1 {
 ...
 &i2c-switch@70 {
 compatible = "nxp,pca9543";
 reg = <0x70>;
 }
 &i2c@0 {
 reg = <0>;

 ov5645_mipi: ov5645_mipi@3c { /* i2c2 driver */
 compatible = "ovti,ov5645_mipi";
 reg = <0x3c>;
 clocks = <&clks 201>;
 clock-names = "csi_mclk";
 DOVDD-supply = <&vgen4_reg>; /* 1.8v */
 AVDD-supply = <&vgen3_reg>; /* 2.8v, rev C board is VGEN3
 rev B board is VGEN5 */
 DVDD-supply = <&vgen2_reg>; /* 1.5v*/
 pwn-gpios = <&gpio1 17 1>; /* active low */
 rst-gpios = <&gpio1 19 0>; /* active high */
 csi_id = <1>;
 mclk = <24000000>;
 mclk_source = <0>;
 }
 ...
 }
}
```
Kernel & device tree porting – camera (13)

disegn in cameras commands

We debug cameras use utilities under unit_tests directory.

/unit_tests/mxc_v4l2_overlay.out
Default output /dev/video0, csi0, which is ov5640.

/unit_tests/mxc_v4l2_overlay.out -di /dev/video1
output /dev/video1, csi1, which is ov5645_mipi.

/unit_tests/mxc_v4l2_overlay.out -ot 100 -ol 100 -ow 720 -oh 572 &
set output top, left, width and height

/unit_tests/mxc_v4l2_overlay.out -help
For more parameters
Yocto project porting
Yocto Modification

add a layer (mylayer) for:
1. u-boot and kernel patching
2. support new machines (…)
3. appoint new defconfig files:
   - imx_v7_pianopi_defconfig
   - imx_v7_pianopi_mfg_defconfig

```
yocto-layer create mylayer
```

We could run this command to create our new-add layer under directory sources/
mylayer directory structure

- glance at the added layer (mylayer) under directory sources/

```plaintext
meta-mylayer/
 ├── conf
 │ ├── layer.conf
 │ │ └── machine
 │ │ └── imx6qpi.cpi.conf
 │ └── recipes-bsp
 │ └── linux
 │ ├── linux-imx
 │ │ └── 0001-add-support-for-pianopi.patch
 │ │ └── linux-imx_%._bbappend
 │ │ └── linux-imx-mfgtool_%._bbappend
 │ └── u-boot
 │ └── u-boot-imx
 │ └── 0001-add-support-for-pianopi.patch
 │ └── u-boot-imx_%._bbappend
 │ └── u-boot-imx-mfgtool_%._bbappend
```

yocto-layer create mylayer

`yocto-layer` command is activated after we run:
```bash
source fsl-setup-release.sh
```

if all setting use default value, there will no example recipe and no `bbappend`, and the created layer looks like below:

```
meta-mylayer/
├── conf
│ └── layer.conf
├── COPYING.MIT
└── README
```
# We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"  

# We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \  
${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "meta-mylayer"
BBFILE_PATTERN_meta-mylayer = "^${LAYERDIR}/"
BBFILE_PRIORITY_meta-mylayer = "6"
if we create layer with sample recipe and sample bbappend, the created layer looks like this:
example_0.1.bb

# This file was derived from the 'Hello World!' example recipe in the
# Yocto Project Development Manual.
#

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b8506ecda2f7b4f302"
PR = "r0"

SRC_URI = "file://helloworld.c"

S = "$\{WORKDIR\}"

do_compile() {
    \{CC\} helloworld.c -o helloworld
}

do_install() {
    install -d \{D\}\{bindir\}
    install -m 0755 helloworld \{D\}\{bindir\}
}
yocto-layer create mylayer (cont.)

```bash
example_0.1.bbappend

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}-${PV}:

This .bbappend doesn't yet do anything - replace this text with
modifications to the example_0.1.bb recipe, or whatever recipe it is
that you want to modify with this .bbappend (make sure you change
the recipe name (PN) and version (PV) to match).
#
```

```
recipes-example-bbappend
 └── example-bbappend
 └── example-0.1
 └── example.patch
 └── example_0.1.bbappend
```
mylayer directory structure

- add a layer (mylayer) under directory sources/

```
meta-mylayer/
 └── conf
 ├── layer.conf
 │ └── machine
 │ └── imx6qpiopnode.conf
 └── recipes-bsp
 └── linux
 ├── linux-imx
 │ └── 0001-add-support-for-pianopi.patch
 │ └── linux-imx_%_.bbappend
 │ └── linux-imx-mfgtool_%_.bbappend
 └── u-boot
 └── u-boot-imx
 └── 0001-add-support-for-pianopi.patch
 └── u-boot-imx_%_.bbappend
 └── u-boot-imx-mfgtool_%_.bbappend
```
1, u-boot and kernel patching

• layer.conf:

```bash
We have a conf and classes directory, add to BBPATH
BBPATH := "${LAYERDIR}"

We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/**/*.bb \
 ${LAYERDIR}/recipes-*/**/*.bbappend"

BBFILE_COLLECTIONS += "mylayer"
BBFILE_PATTERN_mylayer = "^${LAYERDIR}/"
BBFILE_PRIORITY_mylayer = "5"
```

This file is created manually.
1, u-boot and kernel patching (cont.)

- **u-boot-imx_%..bbappend:**

```
FILESEXTARPATHS_prepend := "${THISDIR}/${PN}:":

SRC_URI += "file://0001-add-support-for-pianopi.patch"
```

- **u-boot-imx-mfgtool_%..bbappend:**

```
FILESEXTARPATHS_prepend := "${THISDIR}/u-boot-imx:":

SRC_URI += "file://0001-add-support-for-pianopi.patch"
```
1. u-boot and kernel patching (cont.)

- **linux-imx_%_.bbappend:**

```bash
FILESEXTREAPATHS_prepend := "${THISDIR}/${PN}:"
```

```bash
SRC_URI += "file://0001-add-support-for-pianopi.patch"
...
```

- if file name is `linux-imx_3.10.53.bbappend`, it also works as the preferred `linux-imx` version is 3.10.53. But suppose we bitbake `linux-imx_3.14.38.bb`, this patch will not be appended.

- we could add more than one patches here.
1. u-boot and kernel patching (cont.)

- **linux-imx_% .bbappend:**

  FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:":

  SRC_URI += "file://0001-add-support-for-pianopi.patch"

  ...

- **linux-imx-mfgtool_% .bbappend:**

  FILESEXTRAPATHS_prepend := "${THISDIR}/linux-imx:"

  SRC_URI += "file://0001-add-support-for-pianopi.patch"

  ...
1, u-boot and kernel patching (cont.)

- add a layer (mylayer) under directory sources/

```plaintext
meta-mylayer/
 conf
 layer.conf
 machine
 imx6qpi2anopi.conf
 recipes-bsp
 linux
 linux-imx
 0001-add-support-for-pianopi.patch
 linux-imx_%_.bbappend
 linux-imx-mfgtool_%_.bbappend
 u-boot
 u-boot-imx
 0001-add-support-for-pianopi.patch
 u-boot-imx_%_.bbappend
 u-boot-imx-mfgtool_%_.bbappend
```

If in the bbappend file, the dir use `${PN}`, the directory name should be same with the bbappend file name prefix. Or, the bitbake process cannot get the patch file.
2, support new machine

- add a layer (mylayer) under directory sources/

```
meta-mylayer/
├── conf
│ ├── layer.conf
│ └── machine
│ └── imx6qpi-pianopi.conf
└── recipes-bsp
 ├── linux
 │ ├── linux-imx
 │ └── 0001-add-support-for-pianopi.patch
 │ └── linux-imx_%_.bbappend
 │ └── linux-imx-mfgtool_%_.bbappend
 └── u-boot
 ├── u-boot-imx
 │ └── 0001-add-support-for-pianopi.patch
 │ └── u-boot-imx_%_.bbappend
 │ └── u-boot-imx-mfgtool_%_.bbappend
```
2, support new machines (cont.)

imx6qpianopi.conf:

```
... require conf/machine/include/imx6sabresd-common.inc

SOC_FAMILY = "mx6:mx6q"
KERNEL_IMAGETYPE = "zImage"
KERNEL_DEVICETREE = "imx6q-pianopi.dtb"

UBOOT_CONFIG ??= "emmc"
UBOOT_CONFIG[emmc] = "mx6qpianopi"
UBOOT_CONFIG[mfgtool] = "mx6qpianopi"
```

Kernel image type, default uImage

Device tree to build
3, appoint new defconfig file

- `linux-imx_3.10.53.bb` has defined below function:

```c
... do_configure_prepend() {
 # copy latest defconfig for imx_v7_defconfig to use
 cp ${S}/arch/arm/configs/imx_v7_defconfig ${S}/.config
 cp ${S}/arch/arm/configs/imx_v7_defconfig ${S}/../defconfig
 fi
}
```

- however, PianoPI use `imx_v7_pianopi_defconfig` instead of `imx_v7_defconfig` due to the specific HW configuration (see next page).
Why we need new defconfig:
On mx6q sabresd board there is max11801 for touch screen. PianoPI board has no such component. So in the kernel the serial console will keep printing below:
FAIL max11801_client not initialize
or
max11801_ts 1-0048: FIFO_RD_AUX_MSB read fails

Besides, the release BSP original imx_v7_defconfig has incorporated almost all probably needed drivers, like SCSI, SPI-NOR, digital acceleremeter, proximity/opto sensor, ambient light sensor… For PMIC, several vendor’s PMIC drivers including PFUSE100 are built into the kernel. Actually on PianoPI board none of them are used.

So, we reconfigured base on the imx_v7_defconfig for PianoPI board, which is imx_v7_pianopi_defconfig.
3, appoint new defconfig file (cont.)

• in `linux-imx_%.bbappend` add below:

```bash
...
do_configure_append() {
 if ["${MACHINE}" = "imx6qpianopi"] ; then
 # copy latest defconfig for imx_v7_pianopi_defconfig to use
 cp ${S}/arch/arm/configs/imx_v7_pianopi_defconfig
 ${S}/.config
 cp ${S}/arch/arm/configs/imx_v7_pianopi_defconfig
 ${S}/../defconfig
 fi
}
```
3, appoint new defconfig file (cont.)

• Similarly, in `linux-imx-mfgtool_%.bbappend` add:

```c
... do_configure_append() {
 if ["${MACHINE}" = "imx6qpiandopi"] ; then
 # copy latest defconfig for imx_v7_pianopi_defconfig to use
 cp ${S}/arch/arm/configs/imx_v7_pianopi_mfg_defconfig
 ${S}/.config
 cp ${S}/arch/arm/configs/imx_v7_pianopi_mfg_defconfig
 ${S}/../defconfig
 fi
}
```
the last step of adding a layer

After creating the build directory and before bitbaking any image, we need to modify build/conf/bblayer.conf to add below line:

```
BBLAYERS += "${BSPDIR}/sources/meta-mylayer"
```
Image Building Instructions

1. get Yocto L3.10.53_1.1.0_GA source code, following user's guide
   
   mkdir ~/fsl-release-bsp
   cd ~/fsl-release-bsp
   git config --global user.name "vmuser"
   git config --global user.email "vmuser@freescale.com"
   git config --list
   repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git -b imx-3.10.53-1.1.0_ga
   repo sync

2. apply the addon tarball in directory ~/fsl-release-bsp
   
   tar xvjf fsl-release-bsp_L3.10.53_1.1.0_GA_addon.tar.bz2
Image Building Instructions (cont.)

3. configure for pianopi board:

```
MACHINE=imx6q pianopi source fsl-setup-release.sh -b
build-x11 -e x11
```

4. modify build/conf/bblayers.conf, add below line

```
BBLAYERS += "${BSPDIR}/sources/meta-mylayer"
```

5. bitbake images

<table>
<thead>
<tr>
<th>Commands</th>
<th>Generated Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>bitbake fsl-image-gui</td>
<td>Gui Image</td>
</tr>
<tr>
<td>bitbake fsl-image-qt5</td>
<td>QT5 Image</td>
</tr>
<tr>
<td>bitbake u-boot-imx</td>
<td>U-boot image only</td>
</tr>
<tr>
<td>bitbake linux-imx</td>
<td>Kernel and device tree only</td>
</tr>
<tr>
<td>bitbake fsl-image-mfgtool-initramfs</td>
<td>MFGTool firmware images: u-boot, kernel, device tree and init ramfs.</td>
</tr>
</tbody>
</table>