
Bluetooth® Low Energy Application
Developer’s Guide

NXP Semiconductors Document Number: BLEADG

User's Guide Rev 7, 06/2018

Chapter 1
Introduction

This document explains how to integrate the Bluetooth® Low Energy (BLE) Host Stack in a BLE application and provides detailed
explanation of the most commonly used APIs and code examples.

The document also sets out the prerequisites and the initialization of the BLE Host Stack, followed by the presentation of APIs
grouped by layers and by application role, as described below.

First, the Generic Access Profile (GAP) layer is divided into two sections according to the GAP role of the device: Central and
Peripheral.

The basic setup of two such devices is explained with code examples, such as how to prepare the devices for connections, how
to connect them together, and pairing and bonding processes.

Next, the Generic Attribute Profile (GATT) layer introduces the APIs required for data transfer between the two connected devices.
Again, the chapter is divided into two sections according to the GATT role of the device: Client and Server.

The document further describes the usage of the GATT Database APIs in the application to manipulate the data in the GATT
server database.

Then, the document shows a user-friendly method to statically build a GATT Database. The method involves the use of a predefined
set of macros that the application may include to build the database at application compile-time.

The following section contains instructions on how to build a custom profile. The subsequent section is dedicated to the structure
of the typical application.

Additionally, the document has a chapter dedicated to low-power management and how the low-power modes of the hardware
and software can be used by an application.

The next section contains a description of the Over The Air Programming (OTAP) capabilities offered by the Host Stack via a
dedicated Service/Profile and how to use them in an application. This section also contains a detailed description of the
components of the Framework involved in the OTAP process and the Bootloader application, which does the actual upgrade of
the image on a device.

Finally, the document has a section, which describes how to build a BLE application when the Host Stack is running on a separate
processor.

Introduction

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
2 NXP Semiconductors

Chapter 2
Prerequisites

The BLE Host Stack library contains a number of external references that the application must define to provide the full functionality
of the Host.

Failing to do so results in linkage errors when trying to build the application binary.

2.1 RTOS task queues and events
These task queues are declared in the ble_host_tasks.h as follows:

/*! App to Host message queue for the Host Task */
extern msgQueue_t gApp2Host_TaskQueue;
/*! HCI to Host message queue for the Host Task */
extern msgQueue_t gHci2Host_TaskQueue;
/*! Event for the Host Task Queue */
extern osaEventId_t gHost_TaskEvent;

See Host Tasks initialization on page 6 for more details about the RTOS Tasks required by the Host.

2.2 GATT database
For memory efficiency reasons, the Host Stack does not allocate memory for the GATT Database.

Instead, the application must allocate memory, define and populate the database according to its requirements and constraints.
It may do so either statically, at application compile-time, or dynamically.

Regardless of how the GATT Database is created by the application, the following two external references from gatt_database.h
must be defined:

/*! The number of attributes in the GATT Database. */
extern uint16_t gGattDbAttributeCount_c;

/*! Reference to the GATT database */
extern gattDbAttribute_t gattDatabase[];

The attribute template is defined as shown here:

typedef struct gattDbAttribute_tag {
 uint16_t handle ;
/*!< Attribute handle - cannot be 0x0000; attribute handles need not be consecutive, but
must be strictly increasing. */
 uint16_t permissions ;
/*!< Attribute permissions as defined by ATT. */
 uint32_t uuid ;
/*!< The UUID should be read according to the gattDbAttribute_t.uuidType member: for 2-byte
and 4-byte UUIDs, this contains the value of the UUID; for 16-byte UUIDs, this is a pointer
to the allocated 16-byte array containing the UUID. */
 uint8_t * pValue ;
/*!< Pointer to allocated value array. */
 uint16_t valueLength ;
/*!< Size of the value array. */
 uint16_t uuidType : 2;
/*!< Identifies the length of the UUID; the 2-bit values are interpreted according to the
bleUuidType_t enumeration. */
 uint16_t maxVariableValueLength : 10;
/*!< Maximum length of the attribute value array; if this is set to 0, then the attribute's
length (valueLength) is fixed and cannot be changed. */
} gattDbAttribute_t ;

RTOS task queues and events

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 3

2.3 Non-Volatile Memory (NVM) access
The Host Stack contains an internal device information management that relies on accessing the Non-Volatile Memory for storing
and loading bonded devices data.

The application developers determine the NVM access mechanism through the definition of three functions and one variable. The
functions must first preprocess the information and then perform standard NVM operations (erase, write, read). The declarations
are as follows:

extern void App_NvmErase
(
 uint8_t mEntryIdx
);
extern void App_NvmWrite
(
 uint8_t mEntryIdx,
 void* pBondHeader
 void* pBondDataDynamic,
 void* pBondDataStatic,
 void* pBondDataDeviceInfo,
 void* pBondDataDescriptor,
 uint8_t mDescriptorIndex
};
extern void App_NvmRead
(
 uint8_t mEntryIdx,
 void* pBondHeader
 void* pBondDataDynamic,
 void* pBondDataStatic,
 void* pBondDataDeviceInfo,
 void* pBondDataDescriptor,
 uint8_t mDescriptorIndex
};

The device information is divided into several components to ensure that even software wear leveling mechanisms can be used
optimally. The components sizes are fixed (defined in ble_constants.h) and have the following meaning:

API pointer to bond component Component size (ble_constants.h) Description

pBondHeader: points to a
bleBondIdentityHeaderBlob_t element

gBleBondIdentityHeaderSize_c Bonding information which is sufficient
to identify a bonded device.

pBondDataDynamic: points to a
bleBondDataDynamicBlob_t element

gBleBondDataDynamicSize_c Bonding information that might change
frequently.

pBondDataStatic: points to a
bleBondDataStaticBlob_t element

gBleBondDataStaticSize_c Bonding information that is unlikely to
change frequently.

pBondDataDeviceInfo: points to a
bleBondDataDeviceInfoBlob_t element

gBleBondDataDeviceInfoSize_c Additional bonding information that can
be accessed using the host stack API.

pBondDataDescriptor: points to a
bleBondDataDescriptorBlob_t element

gBleBondDataDescriptorSize_c Bonding information used to store one
CCCD.

The application developer need not care about the format of the bonding information as this is handled by the host stack. Each
bonding data slot must contain one bonding header blob, one dynamic data blob, one static data blob, one device information
blob and an array of descriptor blobs equal to gcGapMaximumSavedCccds_c (ble_constants.h). A slot is uniquely identified by
the mEntryIdx parameter. A descriptor is uniquely identified by the pair mEntryIdx - mDescriptorIndex.

If one or more pointers passed as parameters are NULL, the read from or write to the corresponding blob of the bonding slot must
be ignored. The erase function must clear the entire bonding data slot specified by the entry index.

Prerequisites

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
4 NXP Semiconductors

The current implementation of the aforementioned functions use either the framework NVM module or a RAM buffer . Additional
details about the NVM configuration and functionality can be found in the Connectivity Framework Reference Manual.

To enable the NVM mechanism make sure:

• gAppUseNvm_d (app_preinclude.h) is set to 1 and

• gUseNVMLink_d=1 in the linker options of the toolchain.

If gAppUseNvm_d is set to 0 then all bonding data will be stored in RAM and will be accesible until reset or power cycle.

The default NVM module configurations are applied in the app_preinclude.h file if gAppUseNvm_d is set to 1.

 NOTE

Non-Volatile Memory (NVM) access

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 5

Chapter 3
Host Stack Initialization and APIs

3.1 Host Tasks initialization
The application developer is required to configure the Host Task as part of the Host Stack requirement. The task is the context
for running all the Host layers (GAP, GATT, ATT, L2CAP, SM, GATTDB)

The prototype of the task function is located in the ble_host_tasks.h file:

void Host_TaskHandler(void * args);

It should be called with NULL as an argument in the task code from the application.

Application developers are required to define task events and queues as explained in RTOS Task Queues and Events.

The Controller task always has a higher priority than the Host task. The priority values are configured by gHost_TaskPriority_c
(ble_host_task_config.h) and gControllerTaskPriority_c (ble_controller_task_config.h). Note that changing these values can have
a significant impact on the BLE stack.

The priority levels are defined in accordance with the OS Abstraction (OSA) priority levels, where 0 is the maximum priority and
15 is the minimum priority. For additional information, see the Connectivity Framework Reference Manual. Note that RTOS-
specific priority levels may differ from one operating system to another.

3.2 Main function to initialize the host
The Host Stack must be initialized after platform setup is complete and all RTOS tasks have been started.

The function that needs to be called is located in the ble_general.h file and has the following prototype:

bleResult_t Ble_HostInitialize
(
 gapGenericCallback_t genericCallback,
 hciHostToControllerInterface_t hostToControllerInterface
);

The genericCallback is the main callback installed by the application. It receives most of the events from the GAP layer, which
are called generic events. A generic event has a type (see gapGenericEventType_t) and data according to the event type (a
union).

The hostToControllerInterface is the HCI exit point of the Host Stack. This is the function that the Host calls every time it tries to
send an HCI message to the LE Controller.

The completion of the Host Stack initialization is signaled in the genericCallback by the gInitializationComplete_c generic event.

After this event is received, the main application logic may be started.

Host Stack Initialization and APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
6 NXP Semiconductors

Figure 1. BLE Host Stack overview

3.3 HCI entry and exit points
The HCI entry point of the Host Stack is the second function located in the ble_general.h file:

void Ble_HciRecv
(
 hciPacketType_t packetType,
 void* pPacket,
 uint16_t packetSize
);

This is the function that the application must call to insert an HCI message into the Host.

Therefore, the Ble_HciRecv function and the hostToControllerInterface parameter of the Ble_Initialize function represent the two
points that need to be connected to the LE Controller (see Figure 1. on page 7), either directly (if the Controller software runs on
the same chip as the Host) or through a physical interface (for example, UART).

3.4 Host Stack libraries and API availability
All the APIs referenced in this document are available in the Central and Peripheral libraries. For example, ble_host_lib.a is a
full-featured library with complete support for both Central and Peripheral APIs, at GAP level, as well as Client and Server APIs,
at GATT level.

However, some applications may be targeted to memory-constrained devices and do not need the full support. In the interest of
reducing code size and RAM utilization, two more libraries are provided:

HCI entry and exit points

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 7

• ble_host_peripheral_lib.a

— Supports only APIs for the GAP Peripheral and GAP Broadcaster roles

— Supports only APIs for the GATT Server role

• ble_host_central_lib.a

— Supports only APIs for the GAP Central and GAP Observer roles

— Supports only APIs for the GATT Client role

If one attempts to use an API that is not supported (for instance, calling Gap_Connect with the ble_host_peripheral_lib.a), then
the API returns the gBleFeatureNotSupported_c error code.

See the Bluetooth Low Energy Host StackAPI Reference Manual for explicit information regarding API support.

Each function documentation contains this information in the Remarks section.

 NOTE

3.5 Synchronous and asynchronous functions
The vast majority of the GAP and GATT APIs are executed asynchronously. Calling these functions generates an RTOS
message and place is in the Host Task message queue.

Therefore, the actual result of these APIs is signaled in events triggered by specific callbacks installed by the application. See
the Bluetooth Low Energy Host StackAPI Reference Manual for specific information about the events that are triggered by each
API.

However, there are a few APIs which are executed immediately (synchronously). This is explicitely mentioned in the Bluetooth
Low Energy Host StackAPI Reference Manual in the Remarks section of each function documentation.

If nothing is mentioned, then the API is asynchronous.

3.6 Radio TX Power level
The controller interface includes APIs that can be used to set the Radio TX Power to a different level than the default one.

The power level can be set differently for advertising and connection channels with the following macros:

#define Controller_SetAdvertisingTxPowerLevel(level) \
 Controller_SetTxPowerLevel(level,gAdvTxChannel_c)

and

#define Controller_SetConnectionTxPowerLevel(level) \
 Controller_SetTxPowerLevel(level,gConnTxChannel_c)

The numeric power levels are distributed evenly between the minimum and maximum output power values (in dBm). Please refer
the silicon datasheet for more information.

Host Stack Initialization and APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
8 NXP Semiconductors

Chapter 4
Generic Access Profile (GAP) Layer

The GAP layer manages connections, security, and bonded devices.

The GAP layer APIs are built on top of the Host-Controller Interface (HCI), the Security Manager Protocol (SMP), and the Device
Database.

GAP defines four possible roles that a BLE device may have in a BLE system (see Table 1. GAP Security Modes and Levels on
page 13):

• Central

— Scans for advertisers (Peripherals and Broadcasters)

— Initiates connection to Peripherals; Master at Link Layer (LL) level

— Usually acts as a GATT Client, but can also contain a GATT Database itself

• Peripheral

— Advertises and accepts connection requests from Centrals; LL Slave

— Usually contains a GATT Database and acts as a GATT Server, but may also be a Client

• Observer

— Scans for advertisers, but does not initiate connections; Transmit is optional

• Broadcaster

— Advertises, but does not accept connection requests from Centrals; Receive is optional

Figure 2. GAP Topology

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 9

4.1 Central setup
Usually, a Central must start scanning to find Peripherals. When the Central has scanned a Peripheral it wants to connect to, it
stops scanning and initiates a connection to that Peripheral. After the connection has been established, it may start pairing, if the
Peripheral requires it, or directly encrypt the link, if the two devices have already bonded in the past.

4.1.1 Scanning
The most basic setup for a Central device begins with scanning, which is performed by the following function from gap_interface.h:

bleResult_t Gap_StartScanning
(
 gapScanningParameters_t * pScanningParameters,
 gapScanningCallback_t scanningCallback
);

If the pScanningParameters pointer is NULL, the currently set parameters are used. If no parameters have been set after a device
power-up, the standard default values are used:

#define gGapDefaultScanningParameters_d \
{ \
 /* type */ gGapScanTypePassive_c, \
 /* interval */ gGapScanIntervalDefault_d, \
 /* window */ gGapScanWindowDefault_d, \
 /* ownAddressType */ gBleAddrTypePublic_c, \
 /* filterPolicy */ gScanAll_c \
}

The easiest way to define non-default scanning parameters is to initialize a gapScanningParameters_t structure with the above
default and change only the required fields.

For example, to perform active scanning and only scan for devices in the White List, the following code can be used:

gapScanningParameters_t scanningParameters = gGapDefaultScanningParameters_d;
scanningParameters.type = gGapScanTypeActive_c;
scanningParameters.filterPolicy = gScanWhiteListOnly_c;
Gap_StartScanning(&scanningParameters, scanningCallback);

The scanningCallback is triggered by the GAP layer to signal events related to scanning.

The most important event is the gDeviceScanned_c event, which is triggered each time an advertising device is scanned. This
event’s data contains information about the advertiser:

typedef struct gapScannedDevice_tag {
 bleAddressType_t addressType ;
 bleDeviceAddress_t aAddress ;
 int8_t rssi ;
 uint8_t dataLength ;
 uint8_t * data ;
 bleAdvertisingReportEventType_t advEventType ;
} gapScannedDevice_t;

If this information signals a known Peripheral that the Central wants to connect to, the latter must stop scanning and connect to
the Peripheral.

To stop scanning, call this function:

bleResult_t Gap_StopScanning (void);

By default, the GAP layer is configured to report all scanned devices to the application using the gDeviceScanned_c event type.
However, some use cases may require to perform specific GAP Discovery Procedures in which the advertising reports have to
be filtered by the Flags AD value from the advertising data. Other use cases require the Host stack to automatically initiate a
connection when a specific device has been scanned.

To enable filtering based on the Flags AD value or to set device addresses for automatic connections, the following function must
be called before the scanning is started:

Generic Access Profile (GAP) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
10 NXP Semiconductors

bleResult_t Gap_SetScanMode
(
 gapScanMode_t scanMode,
 gapAutoConnectParams_t* pAutoConnectParams
);

The default value for the scan mode is gNoDiscovery_c, which reports all packets regardless of their content and does not perform
any automatic connection.

To enable Limited Discovery, the gLimitedDiscovery_c value must be used, while the gGeneralDiscovery_c value activates
General Discovery.

To enable automatic connection when specific devices are scanned, the gAutoConnect_c value must be set, in which case the
pAutoConnectParams parameter must point to the structure that holds the target device addresses and the connection
parameters to be used by the Host for these devices.

4.1.2 Initiating and closing a connection
To connect to a scanned Peripheral, extract its address and address type from the gDeviceScanned_c event data, stop scanning,
and call the following function:

bleResult_t Gap_Connect
(
 gapConnectionRequestParameters_t * pParameters,
 gapConnectionCallback_t connCallback
);

An easy way to create the connection parameter structure is to initialize it with the defaults, then change only the necessary fields.
The default structure is defined as shown here:

#define gGapDefaultConnectionRequestParameters_d \
{ \
 /* scanInterval */ gGapScanIntervalDefault_d, \
 /* scanWindow */ gGapScanWindowDefault_d, \
 /* filterPolicy */ gUseDeviceAddress_c, \
 /* ownAddressType */ gBleAddrTypePublic_c, \
 /* peerAddressType */ gBleAddrTypePublic_c, \
 /* peerAddress */ { 0, 0, 0, 0, 0, 0 }, \
 /* connIntervalMin */ gGapDefaultMinConnectionInterval_d, \
 /* connIntervalMax */ gGapDefaultMaxConnectionInterval_d, \
 /* connLatency */ gGapDefaultConnectionLatency_d, \
 /* supervisionTimeout */ gGapDefaultSupervisionTimeout_d, \
 /* connEventLengthMin */ gGapConnEventLengthMin_d, \
 /* connEventLengthMax */ gGapConnEventLengthMax_d \
}

In the following example, Central scans for a specific Heart Rate Sensor with a known address. When it finds it, it immediately
connects to it.

static bleDeviceAddress_t heartRateSensorAddress = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe5, 0xf6 };
static bleAddressType_t hrsAddressType = gBleAddrTypePublic_c;
static bleAddressType_t ownAddressType = gBleAddrTypePublic_c;
void gapScanningCallback(gapScanningEvent_t * pScanningEvent)
{
 switch (pScanningEvent-> eventType)
 {
 /* ... */
 casegDeviceScanned_c:
 {
 if (hrsAddressType == pScanningEvent-> eventData . scannedDevice . addressType
&& Ble_DeviceAddressesMatch(heartRateSensorAddress, pScanningEvent-> eventData .
scannedDevice . aAddress))
 {
 gapConnectionRequestParameters_t connReqParams =
gGapDefaultConnectionRequestParameters_d; connReqParams. peerAddressType = hrsAddressType;
Ble_CopyDeviceAddress(connReqParams. peerAddress , heartRateSensorAddress); connReqParams.
ownAddressType = ownAddressType; bleResult_t result = Gap_StopScanning();
 if (gBleSuccess_c != result)

Central setup

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 11

 {
 /* Handle error */
 }
 else
 {
 /* There is no need to wait for the gScanStateChanged_c event because
 * the commands are queued in the host task
 * and executed consecutively. */
 result = Gap_Connect(&connReqParams, connectionCallback);
 if (gBleSuccess_c != result)
 {
 /* Handle error */
 }
 }
 }
 break;
 }
 /* ... */
 }
}

The connCallback is triggered by GAP to send all events related to the active connection. It has the following prototype:

typedef void (* gapConnectionCallback_t)
(
 deviceId_t deviceId,
 gapConnectionEvent_t * pConnectionEvent
);

The very first event that should be listened inside this callback is the gConnEvtConnected_c event. If the application decides to
drop the connection establishment before this event is generated, it should call the following macro:

#define Gap_CancelInitiatingConnection()\
 Gap_Disconnect(gCancelOngoingInitiatingConnection_d)

This is useful, for instance, when the application chooses to use an expiration timer for the connection request.

Upon receiving the gConnEvtConnected_c event, the application may proceed to extract the necessary parameters from the
event data (pConnectionEvent->event.connectedEvent). The most important parameter to be saved is the deviceId.

The deviceId is an unique 8-bit, unsigned integer, used to identify an active connection for subsequent GAP and GATT API calls.
All functions related to a certain connection require a deviceId parameter. For example, to disconnect, call this function:

bleResult_t Gap_Disconnect
(
 deviceId_t deviceId
);

4.1.3 Pairing and bonding
After the user has connected to a Peripheral, use the following function to check whether this device has bonded in the past:

bleResult_t Gap_CheckIfBonded
(
 deviceId_t deviceId,
 bool_t * pOutIsBonded
);

If it has, link encryption can be requested with:

bleResult_t Gap_EncryptLink
(
 deviceId_t deviceId,
);

If the link encryption is successful, the gConnEvtEncryptionChanged_c connection event is triggered. Otherwise, a
gConnEvtAuthenticationRejected_c event is received with the rejectReason event data parameter set to
gLinkEncryptionFailed_c.

On the other hand, if this is a new device (not bonded), pairing may be started as shown here:

Generic Access Profile (GAP) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
12 NXP Semiconductors

bleResult_t Gap_Pair
(
 deviceId_t deviceId,
 gapPairingParameters_t * pPairingParameters
);

The pairing parameters are shown here:

typedef struct gapPairingParameters_tag {
 bool_t withBonding ;
 gapSecurityModeAndLevel_t securityModeAndLevel ;
 uint8_t maxEncryptionKeySize ;
 gapIoCapabilities_t localIoCapabilities ;
 bool_t oobAvailable ;
 gapSmpKeyFlags_t centralKeys ;
 gapSmpKeyFlags_t peripheralKeys ;
 bool_t leSecureConnectionSupported ;
 bool_t useKeypressNotifications ;
} gapPairingParameters_t;

The names of the parameters are self-explanatory. The withBonding flag should be set to TRUE if the Central must/wants to
bond.

For the Security Mode and Level, the GAP layer defines them as follows:

• Security Mode 1 Level 1 stands for no security requirements

• Except for Level 1 (which is only used with Mode 1), Security Mode 1 requires encryption, while Security Mode 2 requires
data signing

• Mode 1 Level 2 and Mode 2 Level 1 do not require authentication (in other words, they allow Just Works pairing, which has
no MITM protection), while Mode 1 Level 3 and Mode 2 Level 2 require authentication (must pair with PIN or OOB data,
which provide MITM protection).

• Starting with Bluetooth specification 4.2 OOB pairing offers MITM protection only in certain conditions. The application
must inform the stack if its the OOB data exchange capabilities offer MITM protection via a dedicated API.

• Security Mode 1 Level 4 is reserved for authenticated pairing (with MITM protection) using a LE Secure Connections
pairing method.

• If a LE Secure Connections pairing method is used but it does not offer MITM protection then the pairing completes with
Security Mode 1 level 2.

Table 1. GAP Security Modes and Levels

— No security No MITM protection Legacy MITM
protection

LE secure
connections with
MITM protection

Mode 1 (encryption)
distributed LTK (EDIV
+RAND) or generated
LTK

Level 1 no security Level 2
unauthenticated
encryption

Level 3 authenticated
encryption

Level 4 LE SC
authenticated
encryption

Mode 2 (data signing)
distributed CSRK

— Level 1
unauthenticated data
signing

Level 2 authenticated
data signing

—

The centralKeys should have the flags set for all the keys that are available in the application. The IRK is mandatory if the Central
is using a Private Resolvable Address, while the CSRK is necessary if the Central wants to use data signing. The LTK is provided
by the Peripheral and should only be included if the Central intends on becoming a Peripheral in future reconnections (GAP role
change).

The peripheralKeys should follow the same guidelines. The LTK is mandatory if encryption is to be performed, while the peer’s
IRK should be requested if the Peripheral is using Private Resolvable Addresses.

Central setup

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 13

See Table 2. Key Distribution guidelines on page 14 for detailed guidelines regarding key distribution.

The first three rows are both guidelines for Pairing Parameters (centralKeys and peripheralKeys) and for distribution of keys with
Gap_SendSmpKeys.

If LE Secure Connections Pairing is performed (BLE 4.2 and above), then the LTK is generated internally, so the corresponding
bits in the key distribution fields from the pairing parameters are ignored by the devices.

The Identity Address shall be distributed if the IRK is also distributed (its flag has been set in the Pairing Parameters). Therefore,
it can be “asked” only by asking for IRK (it does not have a separate flag in a gapSmpKeyFlags_t structure), hence the N/A.

The negotiation of the distributed keys is as follows:

• In the SMP Pairing Request (started by Gap_Pair), the Central sets the flags for the keys it wants to distribute
(centralKeys) and receive (peripheralKeys).

Table 2. Key Distribution guidelines

— CENTRAL PERIPHERAL

Central keys Peripheral keys Peripheral keys Central keys

Long Term Key (LTK)
+EDIV +RAND

If it wants to be a
peripheral in a future
reconnection

If it wants encryption If it wants encryption If it wants to become a
central in a future
reconnection

Identity Resolving
Key (IRK)

If it uses or intends to
use private resolvable
addresses

If a peripheral is using
a private resolvable
address

If it uses or intends to
use private resolvable
addresses

If a central is using a
private resolvable
address

Connection Signature
Resolving Key
(CSRK)

If it wants to sign data
as GATT Client

If it wants the
peripheral to sign data
as GATT Client

If it wants to sign data
as GATT Client

If it wants the Central to
sign data as GATT
Client

Identity address If it distributes the IRK N/A If it distributes the IRK N/A

• The Peripheral examines the two distributions and must send an SMP Pairing Response (started by the
Gap_AcceptPairingRequest) after performing any changes it deems necessary. The Peripheral is only allowed to set to 0
some flags that are set to 1 by the Central, but not the other way around. For example, it cannot request/distribute keys
that were not offered/requested by the Central. If the Peripheral is adverse to the Central’s distributions, it can reject the
pairing by using the Gap_RejectPairing function.

• The Central examines the updated distributions from the Pairing Response. If it is adverse to the changes made by the
Peripheral, it can reject the pairing (Gap_RejectPairing). Otherwise, the pairing continues and, during the key distribution
phase (the gConnEvtKeyExchangeRequest_c event) only the final negotiated keys are included in the key structure sent
with Gap_SendSmpKeys.

• For LE Secure Connections (Both devices set the SC bit in the AuthReq field of the Pairing Request and Pairing Response
packets) the LTK is not distribuited it is generated and the corresponding bit in the Inittiator Key Distribution and Responder
Key Distribution fields of the Pairing Response packet shall be set to 0.

If LE Secure Connections Pairing (BLE 4.2 and above) is used, and OOB data needs to be exchanged, the application must obtain
the local LE SC OOB Data from the host stack by calling the Gap_LeScGetLocalOobData function. The data is contained by the
generic gLeScLocalOobData_c event.

The local LE SC OOB Data is refreshed in the following situations:

• The Gap_LeScRegeneratePublicKey function is called (the gLeScPublicKeyRegenerated_c generic event is also
generated as a result of this API).

• The device is reset (which also causes the Public Key to be regenerated).

If the pairing continues, the following connection events may occur:

• Request events

Generic Access Profile (GAP) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
14 NXP Semiconductors

— gConnEvtPasskeyRequest_c: a PIN is required for pairing; the application must respond with the
Gap_EnterPasskey(deviceId, passkey).

— gConnEvtOobRequest_c: if the pairing started with the oobAvailable set to TRUE by both sides; the application must
respond with the Gap_ProvideOob(deviceId, oob).

— gConnEvtKeyExchangeRequest_c: the pairing has reached the key exchange phase; the application must respond
with the Gap_SendSmpKeys(deviceId, smpKeys).

— gConnEvtLeScOobDataRequest_c: the stack requests the LE SC OOB Data received from the peer (r, Cr and Addr);
the application must respond with Gap_LeScSetPeerOobData(deviceId, leScOobData).

— gConnEvtLeScDisplayNumericValue_c: the stack requests the display and confirmation of the LE SC Numeric
Comparison Value; the application must respond with Gap_LeScValidateNumericValue(deviceId, ncvValidated).

• Informational events

— gConnEvtKeysReceived_c: the key exchange phase is complete; keys are automatically saved in the internal device
database and are also provided to the application for immediate inspection; application does not have to save the
keys in NVM storage because this is done internally if withBonding was set to TRUE by both sides.

— gConnEvtAuthenticationRejected_c: the peer device rejected the pairing; the rejectReason parameter of the event
data indicates the reason that the Peripheral does not agree with the pairing parameters (it cannot be
gLinkEncryptionFailed_c because that reason is reserved for the link encryption failure).

— gConnEvtPairingComplete_c: the pairing process is complete, either successfully, or an error may have occurred
during the SMP packet exchanges; note that this is different from the gConnEvtKeyExchangeRequest_c event; the
latter signals that the pairing was rejected by the peer, while the former is used for failures due to the SMP packet
exchanges.

— gConnEvtLeScKeypressNotification_c: the stack informs the application that a remote SMP Keypress Notification
has been received during Passkey Entry Pairing Method.

After the link encryption or pairing is completed successfully, the Central may immediately start exchanging data using the GATT
APIs.

Central setup

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 15

Figure 3. Central pairing flow – APIs and eventsGap_RejectPairing may be called on any pairing event

4.2 Peripheral setup
The Peripheral starts advertising and waits for scan and connection requests from other Centrals.

4.2.1 Advertising
Before starting advertising, the advertising parameters should be configured. Otherwise, the following defaults are used:

#define gGapDefaultAdvertisingParameters_d \
{ \
 /* minInterval */ gGapAdvertisingIntervalDefault_c, \
 /* maxInterval */ gGapAdvertisingIntervalDefault_c, \
 /* advertisingType */ gConnectableUndirectedAdv_c, \
 /* addressType */ gBleAddrTypePublic_c, \
 /* directedAddressType */ gBleAddrTypePublic_c, \
 /* directedAddress */ {0, 0, 0, 0, 0, 0}, \
 /* channelMap */ (gapAdvertisingChannelMapFlags_t) (gGapAdvChanMapFlag37_c |
gGapAdvChanMapFlag38_c | gGapAdvChanMapFlag39_c), \
 /* filterPolicy */ gProcessAll_c \
}

To set different advertising parameters, a gapAdvertisingParameters_t structure should be allocated and initialized with defaults.
Then, the necessary fields may be modified.

After that, the following function should be called:

bleResult_t Gap_SetAdvertisingParameters
(
 gapAdvertisingParameters_t * pAdvertisingParameters
);

The application should listen to the gAdvertisingParametersSetupComplete_c generic event.

Generic Access Profile (GAP) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
16 NXP Semiconductors

Next, the advertising data should be configured and, if the advertising type supports active scanning, the scan response data
should also be configured. If either of these is not configured, they are defaulted to empty data.

The function used to configure the advertising and/or scan response data is shown here:

bleResult_t Gap_SetAdvertisingData
(
 gapAdvertisingData_t * pAdvertisingData,
 gapScanResponseData_t * pScanResponseData
);

Either of the two pointers may be NULL, in which case they are ignored (the corresponding data is left as it was previously
configured, or empty if it has never been set), but not both at the same time.

The application should listen to the gAdvertisingDataSetupComplete_c generic event.

After all the necessary setup is done, advertising may be started with this function:

bleResult_t Gap_StartAdvertising
(
 gapAdvertisingCallback_t advertisingCallback,
 gapConnectionCallback_t connectionCallback
);

The advertisingCallback is used to receive advertising events (advertising state changed or advertising command failed), while
the connectionCallback is only used if a connection is established during advertising.

The connection callback is the same as the callback used by the Central when calling the Gap_Connect function.

If a Central initiates a connection to this Peripheral, the gConnEvtConnected_c connection event is triggered.

To stop advertising while the Peripheral has not yet received any connection requests, use this function:

bleResult_t Gap_StopAdvertising (void);

This function should not be called after the Peripheral enters a connection.

4.2.2 Pairing and bonding
After a connection has been established to a Central, the Peripheral’s role regarding security is a passive one. It is the Central’s
responsibility to either start the pairing process or, if the devices have already bonded in the past, to encrypt the link using the
shared LTK.

If the Central attempts to access sensitive data without authenticating, the Peripheral sends error responses (at ATT level) with
proper error codes (Insufficient Authentication, Insufficient Encryption, Insufficient Authorization, and so on), thus indicating to the
Central that it needs to perform security procedures.

All security checks are performed internally by the GAP module and the security error responses are sent automatically. All the
application developer needs to do is register the security requirements.

First, when building the GATT Database (see Creating GATT database on page 47), the sensitive attributes should have the
security built into their access permissions (for example, read-only / read with authentication / write with authentication / write with
authorization, and so on.).

Second, if the GATT Database requires additional security besides that already specified in attribute permissions (for example,
certain services require higher security in certain situations), the following function must be called:

bleResult_tGap_RegisterDeviceSecurityRequirements
(
 gapDeviceSecurityRequirements_t * pSecurity
);

The parameter is a pointer to a structure which contains a “device master security setting” and service-specific security settings.
All these security requirements are pointers to gapSecurityRequirements_t structures. The pointers that are to be ignored should
be set to NULL.

Peripheral setup

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 17

Although the Peripheral does not initiate any kind of security procedure, it can inform the Central about its security requirements.
This is usually done immediately after the connection to avoid exchanging useless packets for requests that might be denied
because of insufficient security.

The informing is performed through the Slave Security Request packet at SMP level. To use it, the following GAP API is provided:

bleResult_tGap_SendSlaveSecurityRequest
(
 deviceId_t deviceId,
 bool_t bondAfterPairing,
 gapSecurityModeAndLevel_t securityModeLevel
);

The bondAfterPairing parameter indicates to the Central whether this Peripheral can bond and the securityModeLevel informs
about the required security mode and level that the Central should pair for. See Section 4.1.3 for an explanation about security
modes and levels, as defined by the GAP module.

This request expects no reply, nor any immediate action from the Central. The Central may easily choose to ignore the Slave
Security Request.

If the two devices have bonded in the past, the Peripheral should expect to receive a gConnEvtLongTermKeyRequest_c
connection event (unless LE Secure Connections Pairing was performed, as specified in BLE 4.2 and above), which means that
the Central has also recognized the bond and, instead of pairing, it goes directly to encrypting the link using the previously shared
LTK. At this point, the local LE Controller requests that the Host provides the same LTK it exchanged during pairing.

When the devices have been previously paired, along with the Peripheral’s LTK, the EDIV (2 bytes) and RAND (8 bytes) values
were also sent (their meaning is defined by the SMP). Therefore, before providing the key to the Controller, the application should
check that the two values match with those received in the gConnEvtLongTermKeyRequest_c event. If they do, the application
should reply with:

bleResult_tGap_ProvideLongTermKey
(
 deviceId_t deviceId,
 uint8_t * aLtk,
 uint8_t ltkSize
);

The LTK size cannot exceed the maximum value of 16.

If the EDIV and RAND values do not match, or if the Peripheral does not recognize the bond, it can reject the encryption request
with:

bleResult_tGap_DenyLongTermKey
(
 deviceId_t deviceId
);

If LE SC Pairing was used then the LTK is generated internally by the host stack and it is not requested from the application during
post-bonding link encryption. In this scenario, the application is only notified of the link encryption through the
gConnEvtEncryptionChanged_c connection event.

If the devices are not bonded, the Peripheral should expect to receive the gConnEvtPairingRequest_c, indicating that the Central
has initiated pairing.

If the application agrees with the pairing parameters (see Pairing and bonding on page 12 for detailed explanations), it can reply
with:

bleResult_tGap_AcceptPairingRequest
(
 deviceId_t deviceId,
 gapPairingParameters_t * pPairingParameters
);

This time, the Peripheral sends its own pairing parameters, as defined by the SMP.

After sending this response, the application should expect to receive the same pairing events as the Central (see Pairing and
bonding on page 12), with one exception: the gConnEvtPasskeyRequest_c event is not called if the application sets the Passkey
(PIN) for pairing before the connection by calling the API:

Generic Access Profile (GAP) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
18 NXP Semiconductors

bleResult_tGap_SetLocalPasskey
(
 uint32_t passkey
);

This is done because, usually, the Peripheral has a static secret PIN that it distributes only to trusted devices. If, for any reason,
the Peripheral must dynamically change the PIN, it can call the aforementioned function every time it wants to, before the pairing
starts (for example, right before sending the pairing response with Gap_AcceptPairingRequest).

If the Peripheral application never calls Gap_SetLocalPasskey, then the gConnEvtPasskeyRequest_c event is sent to the
application as usual.

The following API can be used by the Peripheral to reject the pairing process:

bleResult_tGap_RejectPairing
(
deviceId_t deviceId,
gapAuthenticationRejectReason_t reason
);

The reason should indicate why the application rejects the pairing. The value gLinkEncryptionFailed_c is reserved for the
gConnEvtAuthenticationRejected_c connection event to indicate the link encryption failure rather than pairing failures. Therefore,
it is not meant as a pairing reject reason.

The Gap_RejectPairing function may be called not only after the Pairing Request was received, but also during the pairing process,
when handling pairing events or asynchronously, if for any reason the Peripheral decides to abort the pairing. This also holds true
for the Central.

Peripheral setup

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 19

Figure 4. Peripheral pairing flow – APIs and eventsGap_RejectPairing may be called on any pairing event

For both the Central and the Peripheral, bonding is performed internally and is not the application’s concern. The application is
informed about whether or not bonding occurred through the gConnEvtPairingComplete_c event parameters.

4.3 LE data packet length extension
This new feature extends the maximum data channel payload length from 27 to 251 octets.

The length management is done automatically by the link layer immediately after the connection is established. The stack passes
the default values for maximum transmission number of payload octets and maximum packet transmission time that the application
configures at compilation time in ble_globals.c:

#ifndef gBleDefaultTxOctets_c
#define gBleDefaultTxOctets_c 0x00FB
#endif

#ifndef gBleDefaultTxTime_c
#define gBleDefaultTxTime_c 0x0848
#endif

The device can update the data length anytime, while in connection. The function that triggers this mechanism is the following:

Generic Access Profile (GAP) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
20 NXP Semiconductors

bleResult_tGap_UpdateLeDataLength
(
 deviceId_t deviceId,
 uint16_t txOctets,
 uint16_t txTime
);

After the procedure executes, a gConnEvtLeDataLengthChanged_c connection event is triggered with the maximum values for
number of payload octets and time to transmit and receive a link layer data channel PDU. The event is send event if the remote
device initiates the procedure. This procedure is detailed below:

Figure 5. Data Length Update Procedure

4.4 Enhanced privacy feature

4.4.1 Introduction
The Bluetooth 4.2 Host Stack introduces support for the Enhanced Privacy feature.

Privacy can be enabled either in the Host or in the Controller:

• Host Privacy consists of:

— Periodically regenerating a random address (Resolvable or Non-Resolvable Private Address) inside the Host and the
applying it into the Controller

— Keeping a list of peer IRKs in the Host and trying to resolve any incoming RPA

• Controller Privacy, introduced by Bluetooth 4.2, consists of writing the local IRK in the Controller, together with all known
peer IRKs, and letting the Controller perform hardware, fully automatic IRK generation and resolution

Either Host Privacy or Controller Privacy can be enabled at any time. Trying to enable one while the other is in progress generates
a gBleInvalidState_c error. The same error is returned when trying to enable the same privacy type twice, or when trying to
disable privacy when it is not enabled.

Enhanced privacy feature

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 21

4.4.1.1 Resolvable private addresses
A Resolvable Private Address (RPA) is a random address generated using a Identity Resolving Key (IRK). This address appears
completely random to an outside observer, so a device may periodically regenerate its RPA to maintain privacy, as there is no
correlation between any two different RPAs generated using the same IRK.

On the other hand, an IRK can also be used to resolve an RPA, in other words, to check if this RPA has been generated with this
IRK. This process is called “resolving the identity of a device”. Whoever has the IRK of a device can always try to resolve its identity
against an RPA.

For example, let’s assume device A is frequently changing its RPA using IRKA. At some point, A bonds with B. A must give B a
way to recognize it in a subsequent connection when it (A) has a different address. To achieve this purpose, A distributes the
IRKA during the Key Distribution phase of the pairing process. B stores the IRKA it received from A.

Later, B connects to a device X that uses RPAX. This address appears completely random, but B can try to resolve RPAX using
IRKA. If the resolving operation is successful, it means that IRKA was used to generate RPAX, and since IRKA belongs to device
A, it means that X is A. So B was able to recognize the identity of device X, but nobody else can do that since they don’t have
IRKA.

4.4.1.2 Non-resolvable private addresses
A Non-Resolvable Private Address (NRPA) is a completely random address that has no generation pattern and thus cannot be
resolved by a peer.

A device that uses an NRPA that is changed frequently is impossible to track because each new address appears to belong to a
new device.

4.4.1.3 Multiple identity resolving keys
If a device bonds with multiple peers, all of which are using RPAs, it needs to store the IRK of each in order to be able to recognize
them later (see previous section).

This means that whenever the device connects to a peer that uses an unknown RPA, it needs to try and resolve the RPA with
each of the stored IRKs. If the number of IRKs is large, then this introduces a lot of computation.

Performing all these resolving operations in the Host can be costly. It is much more efficient to take advantage of hardware
acceleration and enable the Controller Privacy.

4.4.2 Host privacy
To enable or disable Host Privacy, the following API may be used:

bleResult_tGap_EnableHostPrivacy
(
 bool_t enable,
 uint8_t * aIrk
);

When enable is set to TRUE, the aIrk parameter defines which type of Private Address to generate. If aIrk is NULL, then a new
NRPA is generated periodically and written into the Controller. Otherwise, an IRK is copied internally from the aIrk address and
it is used to periodically generate a new RPA.

The lifetime of the Private Address (NRPA or RPA) is a number of seconds contained by the gGapHostPrivacyTimeout external
constant, which is defined in the ble_config.c source file. The default value for this is 900 (15 minutes).

4.4.3 Controller privacy
To enable or disable Controller Privacy, the following API may be used:

bleResult_tGap_EnableControllerPrivacy
(

Generic Access Profile (GAP) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
22 NXP Semiconductors

 bool_t enable,
 uint8_t * aOwnIrk,
 uint8_t peerIdCount,
 gapIdentityInformation_t* aPeerIdentities
);

When enable is set to TRUE, aOwnIrk parameter shall not be NULL, peerIdCount shall not be zero or greater than
gcGapControllerResolvingListSize_c, and aPeerIdentities shall not be NULL.

The IRK defined by aOwnIrk is used by the Controller to periodically generate a new RPA. The lifetime of the RPA is a number
of seconds contained by the gGapControllerPrivacyTimeout external constant, which is defined in the ble_config.c source file.
The default value for this is 900 (15 minutes).

The aPeerIdentities is an array of identity information for each bonded device. The identity information contains the device’s
identity address (public or random static address) and the device’s IRK. This array can be obtained from the Host with the
Gap_GetBondedDevicesIdentityInformation API.

Enabling Controller Privacy involves a quick sequence of commands to the Controller. When the sequence is complete, the
gControllerPrivacyStateChanged_c generic event is triggered.

4.4.3.1 Scanning and initiating
When a Central device is scanning while Controller Privacy is enabled, the Controller actively tries to resolve any PRA contained
in the Advertising Address field of advertising packets. If any match is found against the peer IRK list, then the
advertisingAddressResolved parameter from the scanned device structure is equal to TRUE.

In this case, the addressType and aAddress fields no longer contain the actual Advertising Address as seen over the air, but
instead they contain the identity address of the device whose IRK was able to resolve the Advertising Address. In order to connect
to this device, these fields shall be used to complete the peerAddressType and peerAddress fields of the connection request
parameter structure, and the usePeerIdentityAddress field shall be set to TRUE.

If advertisingAddressResolved is equal to FALSE, then the advertiser is using a Public or Random Static Address, a NRPA or a
PRA that could not be resolved. Therefore, the connection to this device is initiated as if Controller Privacy was not enabled, by
setting usePeerIdentityAddress to FALSE.

4.4.3.2 Advertising
When a Peripheral starts advertising while Controller Privacy is enabled, the ownAddressType field of the advertising parameter
structure is unused. Instead, the Controller always generates an RPA and advertises with it as Advertising Address.

4.4.3.3 Connected
When a device connects while Controller Privacy is enable, the gConnEvtConnected_c connection event parameter structure
contains more relevant fields than without Controller Privacy.

The peerRpaResolved field equals TRUE if the peer was using an RPA that was resolved using an IRK from the list. In that case,
the peerAddressType and peerAddress fields contain the identity address of the resolved device, and the actual RPA used to
create the connection (the RPA that a Central used when initiating the connection, or the RPA that the Peripheral advertised with)
is contained by the peerRpa field.

The localRpaUsed field equals TRUE if the local Controller was automatically generating an RPA when the connection was
created, and the actual RPA is contained by the localRpa field.

Enhanced privacy feature

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 23

Chapter 5
Generic Attribute Profile (GATT) Layer

The GATT layer contains the APIs for discovering services and characteristics and transferring data between devices.

The GATT layer is built on top of the Attribute Protocol (ATT), which transfers data between BLE devices on a dedicated L2CAP
channel (channel ID 0x04).

As soon as a connection is established between devices, the GATT APIs are readily available. No initialization is required because
the L2CAP channel is automatically created.

To identify the GATT peer instance, the same deviceId value from the GAP layer (obtained in the
gConnEvtConnected_cconnection event) is used.

There are two GATT roles that define the two devices exchanging data over ATT:

• GATT Server – the device that contains a GATT Database, which is a collection of services and characteristics exposing
meaningful data. Usually, the Server responds to requests and commands sent by the Client, but it can be configured to
send data on its own through notifications and indications.

• GATT Client – the “active” device that usually sends requests and commands to the Server to discover Services and
Characteristics on the Server’s Database and to exchange data.

There is no fixed rule deciding which device is the Client and which one is the Server. Any device may initiate a request at any
moment, thus temporarily acting as a Client, at which the peer device may respond, provided it has the Server support and a
GATT Database.

Often, a GAP Central acts as a GATT Client to discover Services and Characteristics and obtain data from the GAP Peripheral,
which usually has a GATT Database. Many standard BLE profiles assume that the Peripheral has a database and must act as a
Server. However, this is by no means a general rule.

5.1 Client APIs
A Client can configure the ATT MTU, discover Services and Characteristics, and initiate data exchanges.

All the functions have the same first parameter: a deviceId which identifies the connected device whose GATT Server is targeted
in the GATT procedure. This is necessary because a Client may be connected to multiple Servers at the same time.

First, however, the application must install the necessary callbacks.

5.1.1 Installing client callbacks
There are three callbacks that the Client application must install.

5.1.1.1 Client procedure callback
All the procedures initiated by a Client are asynchronous. They rely on exchanging ATT packets over the air.

To be informed of the procedure completion, the application must install a callback with the following signature:

typedefvoid (* gattClientProcedureCallback_t)
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
);

To install this callback, the following function must be called:

bleResult_tGattClient_RegisterProcedureCallback
(

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
24 NXP Semiconductors

 gattClientProcedureCallback_t callback
);

The procedureType parameter may be used to identify the procedure that was started and has reached completion. Only one
procedure may be active at a given moment. Trying to start another procedure while a procedure is already in progress returns
the error gGattAnotherProcedureInProgress_c.

The procedureResult parameter indicates whether the procedure completes successfully or an error occurs. In the latter case,
the error parameter contains the error code.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 }
}
GattClient_RegisterProcedureCallback(gattClientProcedureCallback);

5.1.1.2 Notification and indication callbacks
When the Client receives a notification from the Server, it triggers a callback with the following prototype:

typedefvoid (* gattClientNotificationCallback_t)
(
 deviceId_t deviceId,
 uint16_t characteristicValueHandle,
 uint8_t * aValue,
 uint16_t valueLength
);

The deviceId identifies the Server connection (for multiple connections at the same time). The characteristicValueHandle is the
attribute handle of the Characteristic Value declaration in the GATT Database. The Client must have discovered it previously to
be able recognize it.

The callback must be installed with:

bleResult_tGattClient_RegisterNotificationCallback
(
 gattClientNotificationCallback_t callback
);

Very similar definitions exist for indications.

When receiving a notification or indication, the Client uses the characteristicValueHandle to identify which Characteristic was
notified. The Client must be aware of the possible Characteristic Value handles that can be notified/indicated at any time, because
it has previously activated them by writing its CCCD (see Reading and writing characteristic descriptors on page 39).

5.1.2 MTU exchange
A radio packet sent over the BLE contains a maximum of 27 bytes of data for the L2CAP layer. Because the L2CAP header is 4
bytes long (including the Channel ID), all layers above L2CAP, including ATT and GATT, may only send 23 bytes of data in a radio
packet (as per Bluetooth 4.1 Specification for Bluetooth Low Energy).

This number is fixed and cannot be increased in BLE 4.1.

 NOTE

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 25

To maintain a logical mapping between radio packets and ATT packets, the Standard has set the default length of an ATT packet
(the so-called ATT_MTU) also equal to 23. Thus, any ATT request fits in a single radio packet. If the layer above ATT wishes to
send more than 23 bytes of data, it needs to fragment the data into smaller packets and issue multiple ATT requests.

However, the ATT protocol allows devices to increase the ATT_MTU, only if both can support it. Increasing the ATT_MTU has
only one effect: the application does not have to fragment long data, however it can send more than 23 bytes in a single transaction.
The fragmentation is moved on to the L2CAP layer. Over the air though, there would still be more than one radio packet sent.

If the GATT Client supports a larger than default MTU, it should start an MTU exchange as soon as it connects to any Server.
During the MTU exchange, both devices would send their maximum MTU to the other, and the minimum of the two is chosen as
the new MTU.

For example, if the Client supports a maximum ATT_MTU of 250, and the Server supports maximum 120, after the exchange,
both devices set the new ATT_MTU value equal to 120.

To initiate the MTU exchange, call the following function from gatt_client_interface.h:

bleResult_t result = GattClient_ExchangeMtu(deviceId);

if (gBleSuccess_c != result)
{
 /* Treat error */
}

The value of the maximum supported ATT_MTU of the local device does not have to be included in the request because it is
static. It is defined in the ble_constants.h file under the name gAttMaxMtu_c. Inside the GATT implementation, the ATT Exchange
MTU Request (and Response, for Servers) uses that value.

When the exchange is complete, the Client callback is triggered by the gGattProcExchangeMtu_c procedure type.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcExchangeMtu_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* To obtain the new MTU */
 uint16_t newMtu;
 bleResult_t result = Gatt_GetMtu(deviceId, &newMtu);
 if (gBleSuccess_c == result)
 {
 /* Use the value of the new MTU */
 (void) newMtu;
 }
 }
 else
 {
 /* Handle error */
 }
 break;

 /* ... */
 }
}

5.1.3 Service and characteristic discovery
There are multiple APIs that can be used for Discovery. The application may use any of them, according to its necessities.

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
26 NXP Semiconductors

5.1.3.1 Discover all primary services
The following API can be used to discover all the Primary Services in a Server’s database:

bleResult_tGattClient_DiscoverAllPrimaryServices
(
 deviceId_t deviceId,
 gattService_t * aOutPrimaryServices,
 uint8_t maxServiceCount,
 uint8_t * pOutDiscoveredCount
);

The aOutPrimaryServices parameter must point to an allocated array of services. The size of the array must be equal to the value
of the maxServiceCount parameter, which is passed to make sure the GATT module does not attempt to write past the end of the
array if more Services are discovered than expected.

The pOutDiscoveredCount parameter must point to a static variable because the GATT module uses it to write the number of
Services discovered at the end of the procedure. This number is less than or equal to the maxServiceCount.

If there is equality, it is possible that the Server contains more than maxServiceCount Services, but they could not be discovered
as a result of the array size limitation. It is the application developer’s responsibility to allocate a large enough number according
to the expected contents of the Server’s database.

In the following example, the application expects to find no more than 10 Services on the Server.

#define mcMaxPrimaryServices_c 10
static gattService_t primaryServices[mcMaxPrimaryServices_c];
uint8_t mcPrimaryServices;

bleResult_t result = GattClient_DiscoverAllPrimaryServices
(
 deviceId,
 primaryServices,
 mcMaxPrimaryServices_c,
 &mcPrimaryServices
);

if (gBleSuccess_c != result)
{
 /* Treat error */
}

The operation triggers the Client Procedure Callback when complete. The application may read the number of discovered services
and each service’s handle range and UUID.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverAllPrimaryServices_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read number of discovered services */
 PRINT(mcPrimaryServices);
 /* Read each service's handle range and UUID */
 for (int j = 0; j < mcPrimaryServices; j++)
 {
 PRINT(primaryServices[j]. startHandle);
 PRINT(primaryServices[j]. endHandle);
 PRINT(primaryServices[j]. uuidType);
 PRINT(primaryServices[j]. uuid);
 }

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 27

 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.3.2 Discover primary services by UUID
To discover only Primary Services of a known type (Service UUID), the following API can be used:

bleResult_tGattClient_DiscoverPrimaryServicesByUuid
(
 deviceId_t deviceId,
 bleUuidType_t uuidType,
 bleUuid_t * pUuid,
 gattService_t * aOutPrimaryServices,
 uint8_t maxServiceCount,
 uint8_t * pOutDiscoveredCount
);

The procedure is very similar to the one described in Discover all primary services on page 27. The only difference is this time
we are filtering the search according to a Service UUID described by two extra parameters: pUuid and uuidType.

This procedure is useful when the Client is only interested in a specific type of Services. Usually, it is performed on Servers that
are known to contain a certain Service, which is specific to a certain profile. Therefore most of the times the search is expected
to find a single Service of the given type. As a result, only one structure is usually allocated.

For example, when two devices implement the Heart Rate (HR) Profile, an HR Collector connects to an HR Sensor and may only
be interested in discovering the Heart Rate Service (HRS) to work with its Characteristics. The following code example shows
how to achieve this. Standard values for Service and Characteristic UUIDs, as defined by the Bluetooth SIG, are located in the
ble_sig_defines.h file.

static gattService_t heartRateService;
static uint8_t mcHrs;

bleResult_t result = GattClient_DiscoverPrimaryServicesByUuid
(
 deviceId,
 gBleUuidType16_c, /* Service UUID type */
 gBleSig_HeartRateService_d, /* Service UUID */
 &heartRateService, /* Only one HRS is expected to be found */
 1,
 &mcHrs /* Will be equal to 1 at the end of the procedure
 if the HRS is found, 0 otherwise */
);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

In the Client Procedure Callback, the application should check if any Service with the given UUID was found and read its handle
range (also perhaps proceed with Characteristic Discovery within that service range).

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
28 NXP Semiconductors

 /* ... */
 case gGattProcDiscoverPrimaryServicesByUuid_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 if (1 == mcHrs)
 {
 /* HRS found, read the handle range */
 PRINT(heartRateService. startHandle);
 PRINT(heartRateService. endHandle);
 }
 else
 {
 /* HRS not found! */
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.3.3 Discover included services
Discover all primary services on page 27 shows how to discover Primary Services. However, a Server may also contain Secondary
Services, which are not meant to be used standalone and are usually included in the Primary Services. The inclusion means that
all the Secondary Service’s Characteristics may be used by the profile that requires the Primary Service.

Therefore, after a Primary Service has been discovered, the following procedure may be used to discover services (usually
Secondary Services) included in it:

bleResult_tGattClient_FindIncludedServices
(
 deviceId_t deviceId,
 gattService_t * pIoService,
 uint8_t maxServiceCount
);

The service structure that pIoService points to must have the aIncludedServices field linked to an allocated array of services, of
size maxServiceCount, chosen according to the expected number of included services to be found. This is the application’s choice,
usually following profile specifications.

Also, the service’s range must be set (the startHandle and endHandle fields), which may have already been done by the previous
Service Discovery procedure (as described in Discover all primary services on page 27 and Discover primary services by UUID
on page 28).

The number of discovered included services is written by the GATT module in the cNumIncludedServices field of the structure
from pIoService. Obviously, a maximum of maxServiceCount included services is discovered.

The following example assumes the Heart Rate Service was discovered using the code provided in Discover primary services by
UUID on page 28.

/* Finding services included in the Heart Rate Primary Service */
gattService_t * pPrimaryService = &heartRateService;

#define mxMaxIncludedServices_c 3
static gattService_t includedServices[mxMaxIncludedServices_c];

/* Linking the array */
pPrimaryService-> aIncludedServices = includedServices;

bleResult_t result = GattClient_FindIncludedServices
(
 deviceId,

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 29

 pPrimaryService,
 mxMaxIncludedServices_c
);

if (gBleSuccess_c != result)
{
 /* Treat error */
}

When the Client Procedure Callback is triggered, if any included services are found, the application can read their handle range
and their UUIDs.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 case gGattProcFindIncludedServices_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read included services data */
 PRINT(pPrimaryService-> cNumIncludedServices);
 for (int j = 0; j < pPrimaryService-> cNumIncludedServices ; j++)
 {
 PRINT(pPrimaryService-> aIncludedServices [j]. startHandle);
 PRINT(pPrimaryService-> aIncludedServices [j]. endHandle);
 PRINT(pPrimaryService-> aIncludedServices [j]. uuidType);
 PRINT(pPrimaryService-> aIncludedServices [j]. uuid);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.3.4 Discover all characteristics of a service
The main API for Characteristic Discovery has the following prototype:

bleResult_tGattClient_DiscoverAllCharacteristicsOfService
(
 deviceId_t deviceId,
 gattService_t * pIoService,
 uint8_t maxCharacteristicCount
);

All required information is contained in the service structure pointed to by pIoService, most importantly being the service range
(startHandle and endHandle) which is usually already filled out by a Service Discovery procedure. If not, they need to be written
manually.

Also, the service structure’s aCharacteristics field must be linked to an allocated characteristic array.

The following example discovers all Characteristics contained in the Heart Rate Service discovered in Section Discover primary
services by UUID on page 28.

gattService_t* pService = &heartRateService

#define mcMaxCharacteristics_c 10

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
30 NXP Semiconductors

static gattCharacteristic_t hrsCharacteristics[mcMaxCharacteristics_c];

pService->aCharacteristics = hrsCharacteristics;

bleResult_t result = GattClient_DiscoverAllCharacteristicsOfService
(
 deviceId,
 pService,
 mcMaxCharacteristics_c
);

The Client Procedure Callback is triggered when the procedure completes.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverAllCharacteristics_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read number of discovered Characteristics */
 PRINT(pService-> cNumCharacteristics);
 /* Read discovered Characteristics data */
 for (uint8_t j = 0; j < pService-> cNumCharacteristics ; j++)
 {
 /* Characteristic UUID is found inside the value field
 * to avoid duplication */
 PRINT(pService-> aCharacteristics [j]. value . uuidType);
 PRINT(pService-> aCharacteristics [j]. value . uuid);

 /* Characteristic Properties indicating the supported operations:
 * - Read
 * - Write
 * - Write Without Response
 * - Notify
 * - Indicate
 */
 PRINT(pService-> aCharacteristics [j]. properties);

 /* Characteristic Value Handle - used to identify
 * the Characteristic in future operations */
 PRINT(pService-> aCharacteristics [j]. value . handle);
 }

 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.3.5 Discover characteristics by UUID
This procedure is useful when the Client intends to discover a specific Characteristic in a specific Service. The API allows for
multiple Characteristics of the same type to be discovered, but most often it is used when a single Characteristic of the given type
is expected to be found.

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 31

Continuing the example from Discover primary services by UUID on page 28, let’s assume the Client wants to discover the Heart
Rate Control Point Characteristic inside the Heart Rate Service, as shown in the following code.

gattService_t * pService = &heartRateService;

static gattCharacteristic_t hrcpCharacteristic;
static uint8_t mcHrcpChar;

bleResult_t result = GattClient_DiscoverCharacteristicOfServiceByUuid
(
 deviceId,
 gBleUuidType16_c,
 gBleSig_HrControlPoint_d,
 pService,
 &hrcpCharacteristic,
 1,
 &mcHrcpChar
);

This API can be used as in the previous examples, in other words, following a Service Discovery procedure. However, the user
may want to perform a Characteristic search with UUID over the entire database, skipping the Service Discovery entirely. To do
so, a dummy service structure must be defined and its range must be set to maximum, as shown in the following example:

gattService_t dummyService;
dummyService. startHandle = 0x0001;
dummyService. endHandle = 0xFFFF;
static gattCharacteristic_t hrcpCharacteristic;
static uint8_t mcHrcpChar;

bleResult_t result = GattClient_DiscoverCharacteristicOfServiceByUuid
(
 deviceId,
 gBleUuidType16_c,
 gBleSig_HrControlPoint_d,
 &dummyService,
 &hrcpCharacteristic,
 1,
 &mcHrcpChar
);

In either case, the value of the mcHrcpChar variable should be checked in the procedure callback.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverCharacteristicByUuid_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 if (1 == mcHrcpChar)
 {
 /* HRCP found, read discovered data */
 PRINT(hrcpCharacteristic. properties);
 PRINT(hrcpCharacteristic. value . handle);
 }
 else
 {
 /* HRCP not found! */
 }
 }
 else
 {
 /* Handle error */

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
32 NXP Semiconductors

 PRINT(error);
 }
 break;

 /* ... */
 }
}

5.1.3.6 Discover characteristic descriptors
To discover all descriptors of a Characteristic, the following API is provided:

bleResult_tGattClient_DiscoverAllCharacteristicDescriptors
(
 deviceId_t deviceId,
 gattCharacteristic_t * pIoCharacteristic,
 uint16_t endingHandle,
 uint8_t maxDescriptorCount
);

The pIoCharacteristic pointer must point to a Characteristic structure with the value.handle field set (either by a discovery
operation or by the application) and the aDescriptors field pointed to an allocated array of Descriptor structures.

The endingHandle should be set to the handle of the next Characteristic or Service declaration in the database to indicate when
the search for descriptors must stop. The GATT Client module uses ATT Find Information Requests to discover the descriptors,
and it does so until it discovers a Characteristic or Service declaration or until endingHandle is reached. Thus, by providing a
correct ending handle, the search for descriptors is optimized, sparing unnecessary extra air packets.

If, however, the application does not know where the next declaration lies and cannot provide this optimization hint, the
endingHandle should be set to 0xFFFF.

Continuing the example from Discover characteristics by UUID on page 31, the following code assumes that the Heart Rate
Control Point Characteristic has no more than 5 descriptors and performs Descriptor Discovery.

#define mcMaxDescriptors_c 5
static gattAttribute_t aDescriptors[mcMaxDescriptors_c];
hrcpCharacteristic. aDescriptors = aDescriptors;

bleResult_t result = GattClient_DiscoverAllCharacteristicDescriptors
(
 deviceId,
 &hrcpCharacteristic,
 0xFFFF, /* We don’t know where the next Characterstic/Service begins */
 mcMaxDescriptors_c
);

if (gBleSuccess_c != result)
{
 /* Handle error */
}

The Client Procedure Callback is triggered at the end of the procedure.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverAllCharacteristicDescriptors_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read number of discovered descriptors */

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 33

 PRINT(hrcpCharacteristic. cNumDescriptors);
 /* Read descriptor data */
 for (uint8_t j = 0; j < hrcpCharacteristic. cNumDescriptors ; j++)
 {
 PRINT(hrcpCharacteristic. aDescriptors [j]. handle);
 PRINT(hrcpCharacteristic. aDescriptors [j]. uuidType);
 PRINT(hrcpCharacteristic. aDescriptors [j]. uuid);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;

 /* ... */
 }
}

5.1.4 Reading and writing characteristics

5.1.4.1 Characteristic value read procedure
The main API for reading a Characteristic Value is shown here:

bleResult_tGattClient_ReadCharacteristicValue
(
 deviceId_t deviceId,
 gattCharacteristic_t * pIoCharacteristic,
 uint16_t maxReadBytes
);

This procedure assumes that the application knows the Characteristic Value Handle, usually from a previous Characteristic
Discovery procedure. Therefore, the value.handle field of the structure pointed by pIoCharacteristic must be completed.

Also, the application must allocate a large enough array of bytes where the received value (from the ATT packet exchange) is
written. The maxReadBytes parameter is set to the size of this allocated array.

The GATT Client module takes care of long characteristics, whose values have a greater length than can fit in a single ATT packet,
transparently by issuing repeated ATT Read Blob Requests when needed.

The following examples assume that the application knows the Characteristic Value Handle and that the value length is variable,
but limited to 50 bytes.

gattCharacteristic_t myCharacteristic;
myCharacteristic. value . handle = 0x10AB;

#define mcMaxValueLength_c 50
static uint8_t aValue[mcMaxValueLength_c];

myCharacteristic. value . paValue = aValue;

bleResult_t result = GattClient_ReadCharacteristicValue
(
 deviceId,
 &myCharacteristic,
 mcMaxValueLength_c
);

if (gBleSuccess_c != result)
{
 /* Handle error */
}

Regardless of the value length, the Client Procedure Callback is triggered when the reading is complete. The received value length
is also filled in the value structure.

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
34 NXP Semiconductors

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcReadCharacteristicValue_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read value length */
 PRINT(myCharacteristic. value . valueLength);
 /* Read data */
 for (uint16_t j = 0; j < myCharacteristic. value . valueLength ; j++)
 {
 PRINT(myCharacteristic. value . paValue [j]);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;

 /* ... */
 }
}

5.1.4.2 Characteristic read by UUID procedure
This API for this procedure is shown here:

bleResult_tGattClient_ReadUsingCharacteristicUuid
(
 deviceId_t deviceId,
 bleUuidType_t uuidType,
 bleUuid_t * pUuid,
 uint8_t * aOutBuffer,
 uint16_t maxReadBytes,
 uint16_t * pOutActualReadBytes
);

This provides support for an important optimization, which involves reading a Characteristic Value without performing any Service
or Characteristic Discovery.

For example, the following is the process to write an application that connects to any Server and wants to read the device name.

The device name is contained in the Device Name Characteristic from the GAP Service. Therefore, the necessary steps involve
discovering all primary services, identifying the GAP Service by its UUID, discovering all Characteristics of the GAP Service and
identifying the Device Name Characteristic (alternatively, discovering Characteristic by UUID inside GAP Service), and, finally,
reading the device name by using the Characteristic Read Procedure.

Instead, the Characteristic Read by UUID Procedure allows reading a Characteristic with a specified UUID, assuming one exists
on the Server, without knowing the Characteristic Value Handle.

The described example is implemented as follows:

#define mcMaxValueLength_c 20
static uint8_t aValue[2 + mcMaxValueLength_c]; //First 2 bytes are the handle
static uint16_t deviceNameLength;

bleUuid_t uuid = {
 .uuid16 = gBleSig_GapDeviceName_d

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 35

};

bleResult_t result = GattClient_ReadUsingCharacteristicUuid
(
 deviceId,
 gBleUuidType16_c,
 &uuid,
 aValue,
 mcMaxValueLength_c,
 &deviceNameLength
);

if (gBleSuccess_c != result)
{
 /* Handle error */
}

The Client Procedure Callback is triggered when the reading is complete. Because only one air packet is exchanged during this
procedure, it can only be used as a quick reading of Characteristic Values with length no greater than ATT_MTU – 1.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcReadUsingCharacteristicUuid_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read characteristic value handle */
 PRINT(aValue[0] | (aValue[1] << 8));
 deviceNameLength -= 2;

 /* Read value length */
 PRINT(deviceNameLength);
 /* Read data */
 for (uint8_t j = 0; j < deviceNameLength; j++)
 {
 PRINT(aValue[2 + j]);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;

 /* ... */
 }
}

5.1.4.3 Characteristic read multiple procedure
The API for this procedure is shown here:

bleResult_tGattClient_ReadMultipleCharacteristicValues
(
 deviceId_t deviceId,
 uint8_t cNumCharacteristics,
 gattCharacteristic_t * aIoCharacteristics
);

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
36 NXP Semiconductors

This procedure also allows an optimization for a specific situation, which occurs when multiple Characteristics, whose values are
of known, fixed-length, can be all read in one single ATT transaction (usually one single over-the-air packet).

The application must know the value handle and value length of each Characteristic. It must also write the value.handle and
value.maxValueLength with the aforementioned values, respectively, and then link the value.paValue field with an allocated array
of size maxValueLength.

The following example involves reading three characteristics in a single packet.

#define mcNumCharacteristics_c 3

#define mcChar1Length_c 4
#define mcChar2Length_c 5
#define mcChar3Length_c 6

static uint8_t aValue1[mcChar1Length_c];
static uint8_t aValue2[mcChar2Length_c];
static uint8_t aValue3[mcChar3Length_c];

static gattCharacteristic_t myChars[mcNumCharacteristics_c];

myChars[0]. value . handle = 0x0015;
myChars[1]. value . handle = 0x0025;
myChars[2]. value . handle = 0x0035;

myChars[0]. value . maxValueLength = mcChar1Length_c;
myChars[1]. value . maxValueLength = mcChar2Length_c;
myChars[2]. value . maxValueLength = mcChar3Length_c;

myChars[0]. value . paValue = aValue1;
myChars[1]. value . paValue = aValue2;
myChars[2]. value . paValue = aValue3;

bleResult_t result = GattClient_ReadMultipleCharacteristicValues
(
 deviceId,
 mcNumCharacteristics_c,
 myChars
);

if (gBleSuccess_c != result)
{
 /* Handle error */
}

When the Client Procedure Callback is triggered, if no error occurs, each Characteristic’s value length should be equal to the
requested lengths.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t p rocedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcReadMultipleCharacteristicValues_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 for (uint8_t i = 0; i < mcNumCharacteristics_c; i++)
 {
 /* Read value length */
 PRINT(myChars[i]. value . valueLength);
 /* Read data */
 for (uint8_t j = 0; j < myChars[i]. value . valueLength ; j++)

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 37

 {
 PRINT(myChars[i]. value . paValue [j]);
 }
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;

 /* ... */
 }
}

5.1.4.4 Characteristic write procedure
There is a general API that may be used for writing Characteristic Values:

bleResult_tGattClient_WriteCharacteristicValue
(
 deviceId_t deviceId,
 gattCharacteristic_t * pCharacteristic,
 uint16_t valueLength,
 uint8_t * aValue,
 bool_t withoutResponse,
 bool_t signedWrite,
 bool_t doReliableLongCharWrites,
 uint8_t * aCsrk
);

It has many parameters to support different combinations of Characteristic Write Procedures.

The structure pointed to by the pCharacteristic is only used for the value.handle field which indicates the Characteristic Value
Handle. The value to be written is contained in the aValue array of size valueLength.

The withoutResponse parameter can be set to TRUE if the application wishes to perform a Write Without Response Procedure,
which translates into an ATT Write Command. If this value is selected, the signedWrite parameter indicates whether data should
be signed (Signed Write Procedure over ATT Signed Write Command), in which case the aCsrk parameters must not be NULL
and contains the CSRK to sign the data with. Otherwise, both signedWrite and aCsrk are ignored.

Finally, doReliableLongCharWrites should be sent to TRUE if the application is writing a long Characteristic Value (one that
requires multiple air packets due to ATT_MTU limitations) and wants the Server to confirm each part of the attribute that is sent
over the air.

To simplify the application code, the following macros are defined:

#define GattClient_SimpleCharacteristicWrite(deviceId, pChar, valueLength, aValue) \
 GattClient_WriteCharacteristicValue\
 (deviceId, pChar, valueLength, aValue, FALSE, FALSE, FALSE, NULL)

This is the simplest usage for writing a Characteristic. It sends an ATT Write Request if the value length does not exceed the
maximum space for an over-the-air packet (ATT_MTU – 3). Otherwise, it sends ATT Prepare Write Requests with parts of the
attribute, without checking the ATT Prepare Write Response data for consistency, and in the end an ATT Execute Write Request.

#define GattClient_CharacteristicWriteWithoutResponse(deviceId, pChar, valueLength, aValue) \
 GattClient_WriteCharacteristicValue\
 (deviceId, pChar, valueLength, aValue, TRUE, FALSE, FALSE, NULL)

This usage sends an ATT Write Command. Long Characteristic values are not allowed here and trigger a gBleInvalidParameter_c
error.

#define GattClient_CharacteristicSignedWrite(deviceId, pChar, valueLength, aValue, aCsrk) \
 GattClient_WriteCharacteristicValue\
 (deviceId, pChar, valueLength, aValue, TRUE, TRUE, FALSE, aCsrk)

This usage sends an ATT Signed Write Command. The CSRK used to sign data must be provided.

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
38 NXP Semiconductors

This is a short example to write a 3-byte long Characteristic Value.

gattCharacteristic_t myChar;
myChar. value . handle = 0x00A0; /* Or maybe it was previously discovered? */

#define mcValueLength_c 3
uint8_t aValue[mcValueLength_c] = { 0x01, 0x02, 0x03 };

bleResult_t result = GattClient_SimpleCharacteristicWrite
(
 deviceId,
 &myChar,
 mcValueLength_c,
 aValue
);

if (gBleSuccess_c != result)
{
 /* Handle error */
}

The Client Procedure Callback is triggered when writing is complete.

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcWriteCharacteristicValue_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Continue */
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;

 /* ... */
 }
}

5.1.5 Reading and writing characteristic descriptors
Two APIs are provided for these procedures which are very similar to Characteristic Read and Write.

The only difference is that the handle of the attribute to be read/written is provided through a pointer to an gattAttribute_t structure
(same type as the gattCharacteristic_t.value field).

bleResult_tGattClient_ReadCharacteristicDescriptor
(
 deviceId_t deviceId,
 gattAttribute_t * pIoDescriptor,
 uint16_t maxReadBytes
);

The pIoDescriptor->handle is required (it may have been discovered previously by
GattClient_DiscoverAllCharacteristicDescriptors). The GATT module fills the value that was read in the fields pIoDescriptor-
>aValue (must be linked to an allocated array) and pIoDescriptor->valueLength (size of the array).

Writing a descriptor is also performed similarly with this function:

Client APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 39

bleResult_tGattClient_WriteCharacteristicDescriptor
(
 deviceId_t deviceId,
 gattAttribute_t * pDescriptor,
 uint16_t valueLength,
 uint8_t * aValue
);

Only the pDescriptor->handle must be filled before calling the function.

One of the most frequently written descriptors is the Client Characteristic Configuration Descriptor (CCCD). It has a well-defined
UUID (gBleSig_CCCD_d) and a 2-byte long value that can be written to enable/disable notifications and/or indications.

In the following example, a Characteristic’s descriptors are discovered and its CCCD written to activate notifications.

static gattCharacteristic_t myChar;
myChar. value . handle = 0x00A0; /* Or maybe it was previously discovered? */

#define mcMaxDescriptors_c 5
static gattAttribute_t aDescriptors[mcMaxDescriptors_c];
myChar. aDescriptors = aDescriptors;

/* ... */

{
 bleResult_t result = GattClient_DiscoverAllCharacteristicDescriptors
 (
 deviceId,
 &myChar,
 0xFFFF,
 mcMaxDescriptors_c
);

 if (gBleSuccess_c != result)
 {
 /* Handle error */
 }
}

/* ... */

voidgattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverAllCharacteristicDescriptors_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Find CCCD */
 for (uint8_t j = 0; j < myChar. cNumDescriptors ; j++)
 {
 if (gBleUuidType16_c == myChar. aDescriptors [j]. uuidType
 && gBleSig_CCCD_d == myChar. aDescriptors [j]. uuid .
uuid16)
 {
 uint8_t cccdValue[2];
 packTwoByteValue(gCccdNotification_c, cccdValue);
 bleResult_t result = GattClient_WriteCharacteristicDescriptor
 (
 deviceId,
 &myChar. aDescriptors [j],
 2,
 cccdValue

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
40 NXP Semiconductors

);

 if (gBleSuccess_c != result)
 {
 /* Handle error */
 }
 break;
 }
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;

 casegGattProcWriteCharacteristicDescriptor_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Notification successfully activated */
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }

 /* ... */
 }
}

5.1.6 Resetting procedures
To cancel an ongoing Client Procedure, the following API can be called:

bleResult_tGattClient_ResetProcedure (void);

It resets the internal state of the GATT Client and new procedure may be started at any time.

5.2 Server APIs
Once the GATT Database has been created and the required security settings have been registered with
Gap_RegisterDeviceSecurityRequirements, all ATT Requests and Commands and attribute access security checks are handled
internally by the GATT Server module.

Besides this automatic functionality, the application may use GATT Server APIs to send Notifications and Indication and, optionally,
to intercept Clients’ attempts to write certain attributes.

5.2.1 Server callback
The first GATT Server call is the installation of the Server Callback, which has the following prototype:

typedefvoid (* gattServerCallback_t)
(
 deviceId_t deviceId, /*!< Device ID identifying the active connection. */
 gattServerEvent_t * pServerEvent /*!< Server event. */
);

The callback can be installed with:

bleResult_tGattServer_RegisterCallback
(

Server APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 41

 gattServerCallback_t callback
);

The first member of the gattServerEvent_t structure is the eventType, an enumeration type with the following possible values:

• gEvtMtuChanged_c : Signals that the Client-initiated MTU Exchange Procedure has completed successfully and the
ATT_MTU has been increased. The event data contains the new value of the ATT_MTU. Is it possible that the application
flow depends on the value of the ATT_MTU, for example, there may be specific optimizations for different ATT_MTU
ranges. This event is not triggered if the ATT_MTU was not changed during the procedure.

• gEvtHandleValueConfirmation_c : A Confirmation was received from the Client after an Indication was sent by the Server.

• gEvtAttributeWritten_c, gEvtAttributeWrittenWithoutResponse_c : See Attribute write notifications on page 43.

• gEvtCharacteristicCccdWritten_c : The Client has written a CCCD. The application should save the CCCD value for
bonded devices with Gap_SaveCccd.

• gEvtError_c : An error occurred during a Server-initiated procedure.

5.2.2 Sending notifications and indications
The APIs provided for these Server-initiated operations are very similar:

bleResult_tGattServer_SendNotification
(
 deviceId_t deviceId,
 uint16_t handle
);
bleResult_tGattServer_SendIndication
(
 deviceId_t deviceId,
 uint16_t q handle
);

Only the attribute handle needs to be provided to these functions. The attribute value is automatically retrieved from the GATT
Database.

Note that is it the application developer’s responsibility to check if the Client designated by the deviceId has previously activated
Notifications/Indications by writing the corresponding CCCD value. To do that, the following GAP APIs should be used:

bleResult_tGap_CheckNotificationStatus
(
 deviceId_t deviceId,
 uint16_t handle,
 bool_t * pOutIsActive
);
bleResult_tGap_CheckIndicationStatus
(
 deviceId_t deviceId,
 uint16_t handle,
 bool_t * pOutIsActive
);

It is necessary to use these two functions with the Gap_SaveCccd only for bonded devices, because the data is

saved in NVM and reloaded at reconnection. For devices that do not bond, the application may also use its own

bookkeeping mechanism.

 NOTE

There is an important difference between sending Notifications and Indications: the latter can only be sent one at a time and the
application must wait for the Client Confirmation (signaled by the gEvtHandleValueConfirmation_c Server event, or by a
gEvtError_c event with gGattClientConfirmationTimeout_c error code) before sending a new Indication. Otherwise, a gEvtError_c
event with gGattIndicationAlreadyInProgress_c error code is triggered. The Notifications can be sent consecutively.

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
42 NXP Semiconductors

5.2.3 Attribute write notifications
When the GATT Client reads and writes values from/into the Server’s GATT Database, it uses ATT Requests.

The GATT Server module implementation manages these requests and, according to the database security settings and the
Client’s security status (authenticated, authorized, and so on), automatically sends the ATT Responses without notifying the
application.

There are however some situations where the application needs to be informed of ATT packet exchanges. For example, a lot of
standard profiles define, for certain Services, some, so-called, Control-Point Characteristics. These are Characteristics whose
values are only of immediate significance to the application. Writing these Characteristics usually triggers specific actions.

For example, consider a fictitious Smart Lamp. It has BLE connectivity in the Peripheral role and it contains a small GATT Database
with a Lamp Service (among other Services). The Lamp Service contains two Characteristics: the Lamp State Characteristic
(LSC) and the Lamp Action Characteristic (LAC).

LSC is a “normal” Characteristic with Read and Write properties. Its value is either 0, lamp off, or 1, lamp on). Writing the value
sets the lamp in the desired state. Reading it provides its current state, which is only useful when passing the information remotely.

The LAC has only one property, which is Write Without Response. The user can use the Write Without Response procedure to
write only the value 0x01 (all other values are invalid). Whenever the user writes 0x01 in LAC, the lamp switches its state.

The LAC is a good example of a Control-Point Characteristic for these reasons:

• Writing a certain value (in this case 0x01) triggers an action on the lamp.

• The value the user writes has immediate significance only (“0x01 switches the lamp”) and is never used again in the future.
For this reason, it does not need to be stored in the database.

Obviously, whenever a Control-Point Characteristic is written, the application must be notified to trigger some application-specific
action.

The GATT Server allows the application to register a set of attribute handles as “write-notifiable”, in other words, the application
wants to receive an event each time any of these attributes is written by the peer Client.

All Control-Point Characteristics in the GATT Database must have their Value handle registered. In fact, the application may
register any other handle for write notifications for its own purposes with the following API:

bleResult_tGattServer_RegisterHandlesForWriteNotifications
(
 uint8_t handleCount,
 uint16_t * aAttributeHandles
);

The handleCount is the size of the aAttributeHandles array and it cannot exceed
gcGattMaxHandleCountForWriteNotifications_c.

After an attribute handle has been registered with this function, whenever the Client attempts to write its value, the GATT Server
Callback is triggered with one of the following event types:

• gEvtAttributeWritten_c is triggered when the attribute is written with a Write procedure (ATT Write Request). In this
instance, the application has to decide whether the written value is valid and whether it must be written in the database,
and, if so, the application must write the value with the GattDb_WriteAttribute, see Chapter 6. At this point, the GATT
Server module does not automatically send the ATT Write Response over the air. Instead, it waits for the application to call
this function:

bleResult_tGattServer_SendAttributeWrittenStatus
(
 deviceId_t deviceId,
 uint16_t attributeHandle,
 uint8_t status
);

The value of the status parameter is interpreted as an ATT Error Code. It must be equal to the gAttErrCodeNoError_c (0x00) if
the value is valid and it is successfully processed by the application. Otherwise, it must be equal to a profile-specific error code
(in interval 0xE0-0xFF) or an application-specific error code (in interval 0x80-0x9F).

Server APIs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 43

• gEvtAttributeWrittenWithoutResponse_c is triggered when the attribute is written with a Write Without Response procedure
(ATT Write Command). Because this procedure expects no response, the application may process it and, if necessary,
write it in the database. Regardless of whether the value is valid or not, no response is needed from the application.

• gEvtLongCharacteristicWritten_c is triggered when the Client has completed writing a Long Characteristic value; the event
data includes the handle of the Characteristic Value attribute and a pointer to its value in the database.

Generic Attribute Profile (GATT) Layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
44 NXP Semiconductors

Chapter 6
GATT database application interface

For over-the-air packet exchanges between a Client and a Server, the GATT Server module automatically retrieves data from the
GATT Database and responds to all ATT Requests from the peer Client, provided it passes the security checks. This ensures that
the Server application does not have to perform any kind of searches over the database.

However, the application must have access to the database to write meaningful data into its Characteristics. For example, a
temperature sensor must periodically write the temperature, which is measured by an external thermometer, into the Temperature
Characteristic.

For these kinds of situations, a few APIs are provided in the gatt_db_app_interface.h file.

All functions provided by this interface are executed synchronously. The result of the operation is saved in the return

value and it generates no event.

 NOTE

6.1 Writing and reading attributes
These are the two functions to perform basic attribute operations from the application:

bleResult_tGattDb_WriteAttribute
(
 uint16_t handle,
 uint16_t valueLength,
 uint8_t * aValue
);

The value length must be valid, as defined when the database is created. Otherwise, a gGattInvalidValueLength_c error is
returned.

Also, if the database is created statically, as explained in Creating GATT database on page 47, the handle may be referenced
through the enumeration member with a friendly name defined in the gatt_db.h.

bleResult_tGattDb_ReadAttribute
(
 uint16_t handle,
 uint16_t maxBytes,
 uint8_t * aOutValue,
 uint16_t * pOutValueLength
);

The aOutValue array must be allocated with the size equal to maxBytes.

6.2 Finding attribute handles
Although the application should be fully aware of the contents of the GATT Database, in certain situations it might be useful to
perform some dynamic searches of certain attribute handles.

To find a specific Characteristic Value Handle in a Service whose declaration handle is known, the following API is provided:

bleResult_tGattDb_FindCharValueHandleInService
(
 uint16_t serviceHandle,
 bleUuidType_t characteristicUuidType,
 bleUuid_t * pCharacteristicUuid,
 uint16_t * pOutCharValueHandle
);

Writing and reading attributes

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 45

If the return value is gBleSuccess_c, the handle is written at pOutCharValueHandle. If the serviceHandle is invalid or not a valid
Service declaration, the gBleGattDbInvalidHandle_c is returned. Otherwise, the search is performed starting with the
serviceHandle+1. If no Characteristic of the given UUID is found, the function returns the gBleGattDbCharacteristicNotFound_c
value.

To find a Characteristic Descriptor of a given type in a Characteristic, when the Characteristic Value Handle is known, the following
API is provided:

bleResult_tGattDb_FindDescriptorHandleForCharValueHandle
(
 uint16_t charValueHandle,
 bleUuidType_t descriptorUuidType,
 bleUuid_t * pDescriptorUuid,
 uint16_t * pOutDescriptorHandle
);

Similarly, the function returns gBleGattDbInvalidHandle_c is the handle is invalid. Otherwise, it starts searching from the
charValueHandle+1. Then, gBleGattDbDescriptorNotFound_c is returned if no Descriptor of the specified type is found.
Otherwise, its attribute handle is written at the pOutDescriptorHandle and the function returns gBleSuccess_c.

One of the most commonly used Characteristic Descriptor is the Client Configuration Characteristic Descriptor (CCCD), which
has the UUID equal to gBleSig_CCCD_d. For this specific type, a special API is used as a shortcut:

bleResult_tGattDb_FindCccdHandleForCharValueHandle
(
 uint16_t charValueHandle,
 uint16_t * pOutCccdHandle
);

GATT database application interface

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
46 NXP Semiconductors

Chapter 7
Creating GATT database

The GATT Database contains several GATT Services where each Service must contain at least one GATT Characteristic.

The Attribute Database contains a collection of attributes. Each attribute has four fields:

• The attribute handle – a 2-byte database index, which starts from 0x0001 and increases with each new attribute, not
necessarily consecutive; maximum value is 0xFFFF.

• The attribute type or UUID – a 2-byte, 4-byte, or 16-byte UUID.

• The attribute permissions – 1 byte containing access flags; this defines whether the attribute’s value can be read or written
and the security requirements for each operation type

• The attribute value – an array of maximum 512 bytes.

The ATT does not interpret the UUIDs and values contained in the database. It only deals with data transfer based on the attributes’
handles.

The GATT gives meaning to the attributes based on their UUIDs and groups them into Characteristics and Services.

There are two possible ways of defining the GATT Database: at compile-time (statically) or at run-time (dynamically).

7.1 Creating static GATT database
To define a GATT Database at compile-time, several macros are provided by the GATT_DB API. These macros expand in many
different ways at compilation, generating the corresponding Attribute Database on which the Attribute Protocol (ATT) may operate.

This is the default way of defining the database.

The GATT Database definition is written in two files that are required to be added to the application project together with all macro
expansion files:

• gatt_db.h - contains the actual declaration of Services and Characteristics

• gat_uuid128.h – contains the declaration of Custom UUIDs (16-byte wide); these UUIDs are given a user-friendly name
that is used in gatt_db.h file instead of the entire 16-byte sequence

7.1.1 Declaring custom 128-bit UUIDs
All Custom 128-bit UUIDs are declared in the required file gatt_uuid128.h.

Each line in this file contains a single UUID declaration. The declaration uses the following macro:

• UUID128 (name, byte1, byte2, …, byte16)

The name parameter is the user-friendly handle that references this UUID in the gatt_db.h file.

The 16 bytes are written in the LSB-first order each one using the 0xZZ format.

On some occasions, it is desired to reuse an 128-bit UUID declared in gatt_uuid128.h. The 16 byte array is available

through its friendly name and be accessed by including gatt_db_handles.h in the application. It is strongly advised

to use it only in read-only operations. For example:

 NOTE

(gatt_uuid128.h)
UID128(uuid_service_wireless_uart, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE,
0xF4, 0x5E, 0xBA, 0x00, 0x01, 0xFF, 0x01)
(app.c)
#include "gatt_db_handles.h"

Creating static GATT database

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 47

........
/* Start Service Discovery*/
BleServDisc_FindService(peerDeviceId, gBleUuidType128_c, (bleUuid_t*)
&uuid_service_wireless_uart);

7.1.2 Declaring a service
There are two types of Services:

• Primary Services

• Secondary Services - these are only to be included by other Primary or Secondary Services

The Service declaration attribute has one of these UUIDs, as defined by the Bluetooth SIG:

• 0x2800 a.k.a. <<Primary Service>> - for a Primary Service declaration

• 0x2801 a.k.a. <Secondary Service>> - for a Secondary Service declaration

The Service declaration attribute permissions are read-only and no authentication required. The Service declaration attribute
value contains the Service UUID. The Service Range starts from the Service declaration and ends at the next service declaration.
All the Characteristics declared within the Service Range are considered to belong to that Service.

7.1.2.1 Service declaration macros
The following macros are to be used for declaring a Service:

• PRIMARY_SERVICE (name, uuid16)

— Most often used.

— The name parameter is common to all macros; it is a universal, user-friendly identifier for the generated attribute.

— The uuid16 is a 2-byte SIG-defined UUID, written in 0xZZZZ format.

• PRIMARY_SERVICE_UUID32 (name, uuid32)

— This macro is used for a 4-byte, SIG-defined UUID, written in 0xZZZZZZZZ format.

• PRIMARY_SERVICE_UUID128 (name, uuid128)

— The uuid128 is the friendly name given to the custom UUID in the gatt_uuid128.h file.

• SECONDARY _SERVICE (name, uuid16)

• SECONDARY_SERVICE_UUID32 (name, uuid32)

• SECONDARY _SERVICE_UUID128 (name, uuid128)

— All three are similar to Primary Service declarations.

7.1.2.2 Include declaration macros
Secondary Services are meant to be included by other Services, usually by Primary Services. Primary Services may also be
included by other Primary Services. The inclusion is done using the Include declaration macro:

• INCLUDE (service_name)

— The service_name parameter is the friendly name used to declare the Secondary Service.

— This macro is used only for Secondary Services with a SIG-defined, 2-byte, Service UUID.

• INCLUDE_CUSTOM (service_name)

— This macro is used for Secondary Services that have either a 4-byte UUID or a 16-byte UUID.

The effect of the service inclusion is that the including Service is considered to contain all the Characteristics of the included
Service.

Creating GATT database

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
48 NXP Semiconductors

7.1.3 Declaring a characteristic
A Characteristic must only be declared inside a Service. It belongs to the most recently declared Service, so the GATT Database
must always begin with a Service declaration.

The Characteristic declaration attribute has the following UUID, as defined by the Bluetooth SIG:

• 0x2803 a.k.a. <<Characteristic>>

The Characteristic declaration attribute permissions are: read-only, no authentication required.

The Characteristic declaration attribute value contains:

• the Characteristic UUID

• the Characteristic Value ’s declaration handle

• the Characteristic Properties – Read, Write, Notify, and so on. (1 byte of flags)

The Characteristic Range starts from the Characteristic declaration and ends before a new Characteristic or a Service declaration.

After the Characteristic declaration these follow:

• A Characteristic Value declaration (mandatory; immediately after the Characteristic declaration).

• Zero or more Characteristic Descriptor declarations.

7.1.3.1 Characteristic declaration macros
The following macros are used to declare Characteristics:

• CHARACTERISTIC (name, uuid16, properties)

• CHARACTERISTIC_UUID32 (name, uuid32, properties)

• CHARACTERISTIC _UUID128 (name, uuid128,properties)

— See Service declaration for uuidXXX parameter explanation.

The properties parameter is a bit mask. The flags are defined in the gattCharacteristicPropertiesBitFields_t.

7.1.3.2 Declaring characteristic values
The Characteristic Value declaration immediately follows the Characteristic declaration and uses one of the following macros:

• VALUE (name, uuid16, permissions, valueLength, valueByte1, valueByte2, …)

• VALUE_UUID32 (name, uuid32, permissions, valueLength, valueByte1, valueByte2, …)

• VALUE _UUID128(name, uuid128, permissions, valueLength, valueByte1, valueByte2, …)

— See Service declaration for uuidXXX parameter explanation.

— The permissions parameter is a bit mask; the flags are defined in gattAttributePermissionsBitFields_t .

◦ The valueLength is the number of bytes to be allocated for the Characteristic Value. After this parameter, exactly
[valueLength] bytes follow in 0xZZ format, representing the initial value of this Characteristic.

These macros are used to declare Characteristic Values of fixed lengths.

Some Characteristics have variable length values. For those, the following macros are used:

• VALUE_VARLEN (name, uuid16, permissions, maximumValueLength, initialValueLength, valueByte1, valueByte2, …)

• VALUE_UUID32_VARLEN (name, uuid32, permissions, maximumValueLength, initialValueLength, valueByte1,
valueByte2, …)

Creating static GATT database

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 49

• VALUE_UUID128_VARLEN (name, uuid128, permissions, maximumValueLength, initialValueLength, valueByte1,
valueByte2, …)

— The number of bytes allocated for this Characteristic Value is maximumValueLength .

— The number of valueByteXXX parameters shall be equal to initialValueLength .

Obviously, initialValueLength is, at most, equal to maximumValueLength.

7.1.3.3 Declaring characteristic descriptors
Characteristic’s Descriptors are declared after the Characteristic Value declaration and before the next Characteristic declaration.

The macros used to declare Characteristic Descriptors are very similar to those used to declare fixed-length Characteristic Values:

• DESCRIPTOR (name, uuid16, permissions, descriptorValueLength, descriptorValueByte1, descriptorValueByte2, …)

• DESCRIPTOR_UUID32 (name, uuid32, permissions, descriptorValueLength, descriptorValueByte1,
descriptorValueByte2, …)

• DESCRIPTOR_UUID128(name, uuid128, permissions, descriptorValueLength, descriptorValueByte1,
descriptorValueByte2, …)

A special Characteristic Descriptor that is used very often is the Client Characteristic Configuration Descriptor (CCCD). This is
the descriptor where clients write some of the bits to activate Server notifications and/or indications. It has a reserved, 2-byte,
SIG-defined UUID (0x2902), and its attribute value consists of only 1 byte (out of which 2 bits are used for configuration, the other
6 are reserved).

Because the CCCD appears very often in Characteristic definitions for standard BLE profiles, a special macro is used for CCCD
declaration:

• CCCD (name)

This simple macro is basically equivalent to the following Descriptor declaration:

 DESCRIPTOR (name,
 0x2902,
 (gGattAttPermAccessReadable_c
 | gGattAttPermAccessWritable_c),
 2, 0x00, 0x00)

7.1.4 Static GATT database definition examples
The GAP Service must be present on any GATT Database. It has the Service UUID equal to 0x1800, <<GAP Service>>, and it
contains three read-only Characteristics no authentication required: Device Name, Appearance, and Peripheral Preferred
Connection Parameters. These also have well defined UUIDs in the SIG documents.

The definition for this Service is shown here:

PRIMARY_SERVICE(service_gap, 0x1800)

 CHARACTERISTIC(char_device_name, 0x2A00, (gGattCharPropRead_c))
 VALUE(value_device_name, 0x2A00, (gGattAttPermAccessReadable_c),
 6, “Sensor”)

 CHARACTERISTIC(char_appearance, 0x2A01, (gGattCharPropRead_c))
 VALUE(value_appearance, 0x2A01, (gGattAttPermAccessReadable_c), 2, 0xC2, 0x03)

 CHARACTERISTIC(char_ppcp, 0x2A04, (gGattCharPropRead_c))
 VALUE(value_ppcp, 0x2A04, (gGattAttPermAccessReadable_c),
 8, 0x0A, 0x00, 0x10, 0x00, 0x64, 0x00, 0xE2, 0x04)

Another often encountered Service is the Scan Parameters Service:

PRIMARY_SERVICE(service_scan_parameters, 0x1813)

Creating GATT database

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
50 NXP Semiconductors

 CHARACTERISTIC(char_scan_interval_window, 0x2A4F, (gGattCharPropWriteWithoutRsp_c))
 VALUE(value_scan_interval_window, 0x2A4F, (gGattAttPermAccessWritable),
 4, 0x00, 0x00, 0x00, 0x00)

 CHARACTERISTIC(char_scan_refresh, 0x2A31, (gGattCharPropRead_c | gGattCharPropNotify_c))
 VALUE(value_scan_refresh, 0x2A31, (gGattAttPermAccessReadable_c), 1, 0x00)
 CCCD(cccd_scan_refresh)

All “user-friendly” names given in declarations are statically defined as enum members, numerically equal to the

attribute handle of the declaration. This means that one of those names can be used in code wherever an attribute

handle is required as a parameter of a function if gatt_db_handles.h is included in the application source file. For

example, to write the value of the Scan Refresh Characteristic from the application-level code, use these

instructions:

 NOTE

#include "gatt_db_handles.h"
...
uint8_t scan_refresh_value = 0x12;
GattDb_WriteAttribute(char_scan_refresh, &scan_refresh_value, 1);

7.2 Creating a GATT database dynamically
To define a GATT Database at run-time, the gGattDbDynamic_d macro must be defined in app_preinclude.h with the value equal
to 1.

Then, the application must use the APIs provided by the gatt_db_dynamic.h interface to add and remove Services and
Characteristics as needed.

See section 7.1 for a detailed description of Service and Characteristic parameters.

7.2.1 Memory considerations
The GATT Dynamic database module requires allocating memory from the memory pools configured in the connectivity
framework. Two buffers need to be reserved in the memory configuration by the user for this purpose: an attribute buffer and a
value buffer. The attribute buffer size increases with addition of each attribute to the database. Each entry requires 16 bytes. The
value buffer size increases depending on the UUID type and value lengths required by the application, indications are given below
for each of the APIs. The two buffers start with a minimum size and will try to reallocate memory whenever new requests to add
entries are received. The buffers are not available until the user releases the database. However, if the user removes entries from
the database, the space reserved for those entries is shifted, leaving room for new entries. An add operation after a remove
operation may not necessarily reallocate the buffer if the new entries fit. Else, a reallocation will have to occur.

7.2.2 Initialization and release
Before anything can be added to the database, it must be initialized with an empty collection of attributes.

The GattDbDynamic_Init() API is automatically called by the GattDb_Init() implementation provided in the gatt_database.c source
file. Application-specific code does not need to call this API again, unless at some point it destroys the database with
GattDb_ReleaseDatabase().

7.2.3 Adding services
The APIs that can be used to add Services are self-explanatory:

• GattDbDynamic_AddPrimaryServiceDeclaration

— The Service UUID is specified as parameter.

Memory requirements: one entry in the attribute buffer and UUID size in value buffer.

Creating a GATT database dynamically

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 51

• GattDbDynamic_AddSecondaryServiceDeclaration

— The Service UUID is specified as parameter.

Memory requirements: one entry in the attribute buffer and UUID size in value buffer.

• GattDbDynamic_AddIncludeDeclaration

— The Service UUID and handle range are specified as parameters.

Memory requirements: one entry in the attribute buffer and 6 bytes in value buffer.

The functions have an optional out parameter pOutHandle. If its value is not NULL, the execution writes a 16-bit value in the
pointed location representing the attribute handle of the added declaration.

This handle can be used by the application as parameter in some GattDbApp APIs or in the Service removal functions.

At least one Service needs to be added before any Characteristic.

7.2.4 Adding characteristics and descriptors
The APIs for adding Characteristics and Descriptors are enumerated below:

• GattDbDynamic_AddCharacteristicDeclarationAndValue

— The Characteristic UUID, properties, access permissions and initial value are specified as parameters.

Memory requirements: 2 entries in the attribute buffer and 3 bytes + value length + twice UUID size in value buffer.

• GattDbDynamic_AddCharacteristicDeclarationWithUniqueValue

— The first call to this API will allocate an unique 512-byte value buffer as an optimization for application that deal with
large value buffers that do not always need to be stored separately. The following calls to this API will point the value in
the DB to the first call allocated memory area. Memory requirements: same as the above except for the value length,
a 512 byte area in the value buffer is reserved one time only.

• GattDbDynamic_AddCharacteristicDescriptor

— The Descriptor UUID, access permissions and initial value are specified as parameters.

Memory requirements: one entry in the attribute buffer and descriptor value length + UUID size in value buffer.

• GattDbDynamic_AddCccd

— Shortcut for a CCCD.

Memory requirements: one entry in the attribute buffer and descriptor value length + UUID size in value buffer.

7.2.5 Removing services and characteristics
To remove a Service or a Characteristic, the following APIs may be used, both of which only require the declaration handle as
parameter:

• GattDbDynamic_RemoveService

• GattDbDynamic_RemoveCharacteristic

Creating GATT database

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
52 NXP Semiconductors

Chapter 8
Creating a Custom Profile

This chapter describes how the user can create customizable functionality over the BLE host stack by defining profiles and
services. The Temperature Profile, used by the Temeprature Sensor and Collector applications (found in the BLE SDK) is used
as a reference to explain the steps of building custom functionality.

8.1 Defining custom UUIDs
The first step when defining a new service included in a profile is to define the custom 128-bit UUID for the service and the included
characteristics. These values are defined in gatt_uuid128.h which is located in the application folder. For example, the Temperature
Profile uses the following UUID for the service:

/* Temperature */
UUID128(uuid_service_temperature, 0xfb ,0x34 ,0x9b ,0x5f ,0x80 ,0x00 ,0x00 ,0x80 ,0x00 ,
0x10 ,0x00 ,0x02 ,0x00 ,0xfe ,0x00 ,0x00)

The definition of the services and characteristics are made in gattdb.h, as explained in Creating GATT database on page 47. For
more details on how to structure the database, see Application Structure on page 56.

8.2 Creating service functionality
All defined services in the SDK have a common template which helps the application to act accordingly.

The service locally stores the device identification for the connected client. This value is changed on subscription and non-
subscription events.

/*! Temperature Service - Subscribed Client*/
static deviceId_t mTms_SubscribedClientId;

The service is initialized and changed by the application through a service configuration structure. It usually contains the service
handle, initialization values for the service (for example, the initial temperature for the Temperature Service) and in some cases
user-specific structures that can store saved measurements (for example, the Blood Pressure Service). Below is an example for
the custom Temperature Service:

/*! Temperature Service - Configuration */
typedef struct tmsConfig_tag
{
 uint16_t serviceHandle ;
 int16_t initialTemperature ;
} tmsConfig_t ;

The initialization of the service is made by calling the start procedure. The function requires as input a pointer to the service
configuration structure. This function is usually called when the application is initialized. It resets the static device identification
for the subscribed client and initializes both dynamic and static characteristic values. An example for the Temperature Service
(TMS) is shown below:

bleResult_t Tms_Start (tmsConfig_t *pServiceConfig)
{
 mTms_SubscribedClientId = gInvalidDeviceId_c;

 return Tms_RecordTemperatureMeasurement (pServiceConfig-> serviceHandle ,
 pServiceConfig-> initialTemperature);
}

The service subscription is triggered when a device connects to the server. It requires the peer device identification as an input
parameter to update the local variable. On disconnect, the unsubscribe function is called to reset the device identification. For the
Temperature Service:

Defining custom UUIDs

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 53

bleResult_t Tms_Subscribe (deviceId_t deviceId)
{
 mTms_SubscribedClientId = deviceId;
 return gBleSuccess_c;
}

bleResult_t Tms_Unsubscribe (void)
{
 mTms_SubscribedClientId = gInvalidDeviceId_c;
 return gBleSuccess_c;
}

Depending on the complexity of the service, the API implements additional functions. For the Temperature Service, there is only
a temperature characteristic that is notifiable by the server. The API implements the record measurement function which saves
the new measured value in the GATT database and send the notification to the client device if possible. The function needs the
service handle and the new temperature value as input parameters:

bleResult_t Tms_RecordTemperatureMeasurement (uint16_t serviceHandle, int16_t temperature)
{
 uint16_t handle;
 bleResult_t result;
 bleUuid_t uuid = Uuid16(gBleSig_Temperature_d);

 /* Get handle of Temperature characteristic */
 result = GattDb_FindCharValueHandleInService(serviceHandle,
 gBleUuidType16_c, &uuid, &handle);

 if (result != gBleSuccess_c)
 return result;

 /* Update characteristic value */
 result = GattDb_WriteAttribute(handle, sizeof(uint16_t), (uint8_t *)&temperature);

 if (result != gBleSuccess_c)
 return result;

 Hts_SendTemperatureMeasurementNotification(handle);

 return gBleSuccess_c;
}

To accommodate some use cases where the service is reset, the stop function is called. The reset also implies a service
unsubscribe. Below is an example for the Temperature Service:

bleResult_t Tms_Stop (tmsConfig_t *pServiceConfig)
{
 return Tms_Unsubscribe();
}

8.3 GATT client interactions
The client side of the service, which includes the service discovery, notification configuration, attribute reads and others are left
to be handled by the application. The application calls the GATT client APIs and reacts accordingly. The only exception for this
rule is that the service interface declares the client configuration structure. This structure usually contains the service handle and
the handles of all the characteristic values and descriptors discovered. Additionally it can contain values that the client can use
to interact with the server. For the Temperature Service client, the structure is as follows:

/*! Temperature Client - Configuration */
typedef struct tmcConfig_tag
{
 uint16_t hService;
 uint16_t hTemperature ;
 uint16_t hTempCccd ;
 uint16_t hTempDesc ;

Creating a Custom Profile

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
54 NXP Semiconductors

 gattDbCharPresFormat_t tempFormat ;
} tmcConfig_t ;

GATT client interactions

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 55

Chapter 9
Application Structure

This chapter describes the organization of the Bluetooth Low Energy demo applications that can be found in the SDK. By
familiarizing with the application structure, the user is able to quickly adapt its design to an existing demo or create a new
application.

The Temperature Sensor application is used as a reference to showcase the architecture.

9.1 Folder structure
This figure shows the application folder structure:

Figure 6. Application Folder structure in workspace

The app folder follows a specific structure which is recommended for any application developed using the BLE Host Stack:

• the common group contains the application framework shared by all profiles and demo applications:

— Application Main Framework

— BLE Connection Manager

— BLE Stack and Task Initialization and Configuration

— GATT Database

Application Structure

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
56 NXP Semiconductors

• the source group contains code specific to the HRS application

The bluetooth folder/group contains:

• controller/interface and host/interface – public interfaces for the Controller and the Host; Functionality is included in the
libraries located in subfolders controller/lib and host/lib, not shown in the IAR project structure, but added into the toolchain
linker settings under the library category.

• hci_transport contains header files and sources for the HCI transport, when the application uses a serial interface to
communicate with an external Controller. In example demos both the Host and the Controller are located on the same
chip.

• profiles contains profile-specific code; it is used by each demo application of standard profiles.

The framework folder/group contains framework components used by the demo applications. For additional information, see the
Connectivity Framework Reference Manual.

The freertos folder contains sources for the supported operating system or for bare metal configuration.

9.2 Application main framework
The Application Main module contains common code used by all the applications, such as:

• The Main Task.

• Messaging framework between the Host Stack Task and the Application Task.

• The Idle Task used in low-power enabled applications.

9.2.1 Main task
The Main Task (main_task) is the first task created by the operation system and is also the one that initializes the rest of the
system. It initializes framework components (Memory Manager, Timer Manager, etc.) and the Bluetooth Host Stack
(Ble_Initialize). It also calls BleApp_Init from app.c, which is used to initialize peripheral drivers specific to the implemented
application.

The function calls App_Thread which represents the Application Task. This task reuses the stack allocated for the Main Task and
is called to process all the events and messages sent by the Host Stack.

The stack size and priority of the main task are defined in fsl_os_abstraction_config.h:

#ifndef gMainThreadStackSize_c
#define gMainThreadStackSize_c 1024
#endif
#ifndef gMainThreadPriority_c
#define gMainThreadPriority_c 7
#endif

9.2.2 Application messaging
The module contains a wrapper that is used to create messages for events generated by the Host Stack in the Host Task context
and send them to be processed by the application in the context of the Application Task.

For example, connection events generated by the Host are received by App_ConnectionCallback. The function creates a
message, places it in the Host to Application queue and signals the Application with gAppEvtMsgFromHostStack_c. The
Application Task de-queues the message and calls App_HandleHostMessageInput, which calls the corresponding callback
implemented the application specific code (app.c), in this example: BleApp_ConnectionCallback.

It is strongly recommended that the application developer use the app.c module to add custom code on this type of callbacks.

Application main framework

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 57

9.2.3 Idle task
The Idle task is created when applications enable the usage of the Framework Low-Power module. It contains code to be executed
before node enters and right after it exits sleep mode. For more details on the low-power functionality, review Low-Power
Management on page 67.

When running FreeRTOS as the operating system, the application will hook the idle task implemented in the FreeRTOS library,
by linking vApplicationIdleHook.

The application developer should use this function as container for application specific code:

static void App_Idle(void);

The stack size is defined in ApplMain.h:

#ifndef gAppIdleTaskStackSize_c
#define gAppIdleTaskStackSize_c (400)
#endif

9.3 BLE connection manager
The connection manager is a helper module that contains common application configurations and interactions with the Bluetooth
host stack. It implements the following events and methods:

• Host Stack GAP Generic Event

• Host Stack Connection Event on both GAP Peripheral and GAP Central configuration

• Host Stack configuration for GAP Peripheral or GAP Central

9.3.1 GAP generic event
The GAP Generic Event is triggered by the Host Stack and sent to the application via the generic callback. Before any application-
specific interactions, the Connection Manager callback is called to handle common application events, such as device address
storage.

void BleApp_GenericCallback (gapGenericEvent_t * pGenericEvent)
{
 /* Call BLE Conn Manager */
 BleConnManager_GenericEvent(pGenericEvent);

 switch (pGenericEvent-> eventType)
 {
 ...
 }
}

9.3.2 GAP configuration
The GAP Central or Peripheral Configuration is used to create common configurations (such as setting the public address,
registering the security requirements, adding bonds in whitelist), that can be customized by the application afterwards. It is called
inside the BleApp_Config function, before any application-specific configuration GAP Connection Event:

static void BleApp_Config()
{
 /* Configure as GAP peripheral */
 BleConnManager_GapPeripheralConfig();
 ...
}

Application Structure

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
58 NXP Semiconductors

9.3.3 GAP connection event
The GAP Connection Event is triggered by the Host Stack and sent to the application via the connection callback. Before any
application-specific interactions, the Connection Manager callback is called to handle common application events, such as device
connect, disconnect or pairing related requests It is called inside the registered connection like below:

static void BleApp_ConnectionCallback (deviceId_t peerDeviceId, gapConnectionEvent_t *
pConnectionEvent)
{
 /* Connection Manager to handle Host Stack interactions */
 BleConnManager_GapPeripheralEvent(peerDeviceId, pConnectionEvent);

 switch (pConnectionEvent-> eventType)
 {
 ...
 }
}

It is strongly recommended that the application developer use the app.c module to add custom code.

9.3.4 Privacy
To enable or disable Privacy, the following APIs may be used:

bleResult_t BleConnManager_EnablePrivacy
 (
 void
);

bleResult_t BleConnManager_DisablePrivacy
 (
 void
);

The function BleConnManager_EnablePrivacy will call BleConnManager_EnablePrivacyInternal after checking if the privacy is
enabled.

static bleResult_t BleConnManager_EnablePrivacyInternal
 (
 bool_t bCheckNewBond
);

If the privacy feature is supported (gAppUsePrivacy_d = 1), the Connection Manager will activate Controller Privacy or Host Privacy
depending on the board capabilities.

The bCheckNewBond is a boolean that tells the Manager whether it should check or not if a bond between the devices already
exists.

At the application layer, for privacy usage, the user must be aware that when connecting with more than one device, the privacy
must be turned off before the second and subsequent connections are established and enabled right after the establishment. This
does not apply to the first connection.

Below is an example that enables and disables the Privacy by requests (reqOff_c == mAppPrivacyChangeReq and reqOn_c ==
mAppPrivacyChangeReq) or until the timer expires (mPrivacyDisableDurationSec_c seconds).

if(reqOff_c == mAppPrivacyChangeReq)
{
 if(gBleSuccess_c == BleConnManager_DisablePrivacy())
 {
 TMR_StartLowPowerTimer(mPrivacyDisableTimerId, gTmrLowPowerSingleShotMillisTimer_c,
 TmrSeconds(mPrivacyDisableDurationSec_c), PrivacyEnableTimerCallback, NULL);
 }
 mAppPrivacyChangeReq = reqDisabled_c;
}
else if(reqOn_c == mAppPrivacyChangeReq)
{
 BleConnManager_EnablePrivacy();

BLE connection manager

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 59

 mAppPrivacyChangeReq = reqDisabled_c;
}

9.4 GATT database
The gatt_db contains a set of header files grouped in the macros subfolder. These macros are used for static code generation
for the GATT Database by expanding the contents of the gatt_db.h file in different ways. Creating GATT database on page 47
explains how to write the gatt_db.h file using user-friendly macros that define the GATT Database.

At application compile-time, the gatt_database.c file is populated with enumerations, structures and initialization code used to
allocate and properly populate the GATT Database. In this way, the the gattDatabasearray and the gGattDbAttributeCount_c
variable (see GATT database on page 3) are created and properly initialized.

Do not modify any of the file contained in the gatt_db folder and its subfolder.

 NOTE

To complete the GATT Database initialization, this demo application includes the required gatt_db.h and gatt_uuid128.h files in
its specific application folder, along with other profile-specific configuration and code files.

9.5 RTOS specifics

9.5.1 Operating system selection
The SDK offers different projects for each supported operating system (FreeRTOS OS) and for bare metal configuration. To switch
between systems, the user needs to switch the workspace.

The RTOS source code is found in the KSDK package and is linked in the workspace in the freertos virtual folder, as shown below:

Figure 7. Location of FreeRTOS souce code in workspace

9.5.2 BLE tasks configuration
Application developers are provided with four files for RTOS task initialization:

• ble_controller_task_config.h and ble_controller_task.c for the Controller,

• ble_host_task_config.h, and ble_host_tasks.c for the Host.

Reusing these files is recommended because they perform all the necessary RTOS-related work. The application developer
should only modify the macros from *_config.h files whenever tasks need a bigger stack size or different priority settings. The
new values should be overrided in the app_preinclude.h file.

Application Structure

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
60 NXP Semiconductors

9.6 Board configuration
The configuration files for the supported boards can be found in the ConnSw/boards folder. The files contain clock and pin
configurations that are used by the drivers. The user can customize the board files by modifying the configuration of the pins and
clock source according to his design.

Figure 8. Board configuration files

9.7 BLE initialization
The ble_init.h and ble_init.c files contain the declaration and the implementation of the following function:

bleResult_t Ble_Initialize
(
 gapGenericCallback_t gapGenericCallback
)
{

#if (gUseHciTransportDownward_d == 1)

#elif (gUseHciTransportUpward_d == 1)

#else
 /* BLE Host Stack Init */
 return Ble_HostInitialize(gapGenericCallback,
 (hciHostToControllerInterface_t) Controller_RecvPacket);

#endif
}

This function should be used by your application because it correctly performs all the necessary BLE initialization.

 NOTE

Step-by-step analysis is provided below:

• First, the Ble_HostTaskInit function from ble_host_task_config.h is called. This creates the two tasks required by the BLE
Host Stack.

• Next, the initialization is split in two paths based on the gUseHciTransportDownward_d compiler switch

— If it is activated (equal to 1), the Host stack communicates with an external Controller through an HCI interface. In this
example, the HCI interface is initialized using the Serial Manager (USB). Then, the Ble_HostInitialize function
initializes the Host with the transport packet transmit function used as the hciHostToControllerInterface_t parameter.

Board configuration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 61

— If the compiler switch is not activated (equal to 0), which is the default setting for the demos, the Controller library is
available and the Controller task is initialized by the Controller_TaskInit. Then, the two stacks with Controller_Init and
Ble_HostInitialize are initialized linking the Controller’s HCI interface with the Host’s.

9.8 BLE host stack configuration
The BLE host stack is pre-configured into four available libraries:

• Peripheral Host Stack library

• Central Host Stack library

• Central and Peripheral Host Stack library

• FSCI Central and Peripheral Host Stack library

The libraries are found in the ConnSw/bluetooth/libs folder. The user should add the best matching library for its use case to the
linker options of its project. For example, the temperature sensor uses the Peripheral Host Stack library, as shown below:

Figure 9. Linker configuration for Temperature Sensor

Application Structure

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
62 NXP Semiconductors

9.9 Profile configuration
The implemented profiles and services are located in ConnSw/bluetooth/profiles folder. The application links every service source
file and interface it needs to implement the profile. For example, for the Temperature Sensor the tree looks as follows:

Figure 10. Linker configuration for Temperature Sensor

The Temperature Profile implements the custom Temperature service, the Battery, and Device Information services.

9.10 Application code
The application folder contains the following modules:

• app.c and app.h. This module stores the application-specific functionality (APIs for specific triggers, handling of
peripherals, callbacks from the stack, handling of low-power, and so on).

Before initializing the BLE Host stack, the main task calls BleApp_Init. This functions can store initializations of modules that work
independently of the host stack. For example, the Temeprature Sensor application initializes the temperature sensor driver:

void BleApp_Init(void)
{
 TempSensor_Init();
}

After the stack is initialized, the generic callback the application calls BleApp_Config. The function contains configurations made
to the host stack after the initialization. This includes registering callbacks, seting securityfor services, starting services, allocating
timers, adding devices to white list, and so on. For example, the temperature sensor configures the following:

static void BleApp_Config()
{
 /* Configure as GAP peripheral */
 BleConnManager_GapPeripheralConfig();

 /* Register for callbacks */
 App_RegisterGattServerCallback(BleApp_GattServerCallback);

 mAdvState. advOn = FALSE;

 /* Start services */
 tmsServiceConfig. initialTemperature = 100 * BOARD_GetTemperature();

Profile configuration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 63

 Tms_Start(&tmsServiceConfig);

 basServiceConfig. batteryLevel = BOARD_GetBatteryLevel();
 Bas_Start(&basServiceConfig);
 Dis_Start(&disServiceConfig);

 /* Allocate aplication timer */
 appTimerId = TMR_AllocateTimer();

#if (cPWR_UsePowerDownMode)
 PWR_ChangeDeepSleepMode(3);
 PWR_AllowDeviceToSleep();
#endif
}

To start the application functionality, BleApp_Start is called. This function usually contains code to start advertising for sensor
nodes or scanning for central devices. In the example of the Temperature Sensor, the function is the following:

void BleApp_Start(void)
{
 Led1On();

 if (mPeerDeviceId == gInvalidDeviceId_c)
 {
 /* Device is not connected and not advertising*/
 if (!mAdvState. advOn)
 {
 BleApp_Advertise();
 }
 }
 else
 {
 BleApp_SendTemperature();
 }
}

• app_config.c. This file contains data structures that are used to configure the stack.

This includes advertising data, scanning data, connection parameters, advertising parameters, SMP keys, security requirements,
and so on.

• app_preinclude.h.

This header file contains macros to override the default configuration of any module in the application. It is added as a preinclude
file in the preprocessor command line in IAR:

Application Structure

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
64 NXP Semiconductors

Figure 11. Preinclude file

• gatt_db.h and gatt_uuid128.h. The two header files contain the definition of the GATT database and the custom UUIDs
used by the application. See Creating GATT database on page 47 for more information.

9.11 Multiple connections
Applications can be configured to support multiple connections by setting gAppMaxConnections_c to a value up to the chip
specific maximum number of connections. After the user has reached the maximum number of connections it can still start
scanning or advertising and by doing this, if it wants, it can disconnect an existing connection and create a new one.See the chip
documentation for the supported number of connections. By configuring this, one can also configure the maximum number of
connections in the BLE Host library, resulting in memory saving.The application can save information about the peer devices it
connects to according to the value of gAppMaxConnections_c The BLE profile associated to the application use case should be
instantiated to support the use of its functionality for each peer device. When handling multiple connections, the applications can
behave as either the GAP central, GAP peripheral, or both at the same time. It is up to the application code to decide whether to
start the advertising or scanning before creating the next connection. The supported combinations enable a device to connect as
a slave to multiple masters, as a master to multiple slaves, or for it to be a master for some peers and a slave to others. The demo
applications provide this functionality as an example of exercising multiple connection support, where the GAP role can be
changed from central to peripheral and the information is saved for each peer device.

Multiple connections

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 65

9.12 Bluetooth address generation
BD_ADDR is represented by 48 bits that uniquely identify a device and consist of a 24-bit OUI (Organziationally Unique Identifier)
and a 24-bit random part that varies between devices. There are multiple options of storing and using the BD_ADDR. Depending
on the chip, it may be read from a device specific register (if supported), from the global hardware parameters stored in the flash,
or generated randomly based on the processor-unique identifier. The demo applications provide a combination of the last two
options. Before calling the Controller_Init function, the global hardware parameters are read from the flash. If a useful value is
found (which has at least one byte different than 0xFF), the value is used and set in an array that is used by the controller as an
external reference outside the library code and set in the Controller_Init function. Otherwise, if all the values found in flash hardware
parameters are 0xFF, a random address is generated. The OUI is configured at the compile time through BD_ADDR_OUI, while
the random device part is generated using SHA-256 with an input from a board-unique identifier. The result is concatenated and
stored in the flash hardware parameters for a later use. At any point after the controller initialization is complete, you may set a
new BD_ADDR by calling bleResult_t Controller_SetDeviceAddress(uint8_t* bdAddr) , but the system with both a Host and
Controller will bypass the Host by calling this function. The preferred way to set the address is at Controller Init as the Host will
read that value at Host Init.

Application Structure

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
66 NXP Semiconductors

Chapter 10
Low-Power Management

10.1 System considerations
The ARM® Cortex® CPU and the BLE core have their own power modes. Thus, the low-power mode is a combination between
a BLE Link Layer power mode and an MCU low-power mode.

For the MCU, there are two types of low-power modes defined, sleep modes (based on the ARM architecture sleep modes) and
deep sleep modes (based on the ARM architecture deep sleep modes). Only deep sleep modes are of interest in this document,
and the MCU deep sleep modes used by this component are LLS2/3 and VLLS0/1 for the Kinetis MCUs and PD0/1 for the QN908X
MCUs .

For Kinetis MCU-based platforms, the BLE Link Layer also has a sleep and a deep sleep mode, but only deep sleep mode is
used by this component. To function, the BLE Link layer needs a clock from the RF Reference Oscillator and requests it through
a signal called BLE Sysclk Request. This signal is monitored by the RSIM module, and, when it is asserted high an interrupt
request is generated by RSIM. This interrupt can be configured in LLWU to wake up the system. Upon entering deep sleep, the
BLE Link Layer de-asserts the BLE Sysclk Request since the RF clock is not needed in deep sleep. With a programmable timeout
before BLE reference clock register reaches the value in the BLE wakeup instant register during deep sleep, the BLE link Layer
asserts BLE Sysclk Request again. If the RSIM module is enabled to generate an interrupt on this event, and this interrupt is
configured in LLWU module to wake up the chip, the BLE link layer wakes up the entire SoC just before it exits DSM.

For the QN908x MCU-based platforms, the BLE core has only one deep sleep mode. When in the deep sleep mode, the BLE
core uses the 32k clock to track the time. It can wake itself and the chip up if a BLE event is expected. For a proper functionality,
the BLE core needs a stable AHB clock, which is derived from the 32 MHz crystal. This is why the BLE core uses the NVDS value
of "Crystal wake-up time" to wake-up the chip in advance, so that the crystal is stable at the BLE event time (the crystal wake-up
value can be modified by the user; lower values decrease power consumption but can make the BLE unstable or unusable if too
low).

10.2 When/how to enter low-power
The system should enter low-power when the entire system is idle and all software layers agree on that. For this use case, an idle
task which must have the lowest priority in the system is defined and used to enter and exit low-power. Therefore, the system
enters low-power on idle task, which runs when there are no events for other tasks.

In that task, the low-power examples call the static function AppIdle. The following steps explains this example:

• The device checks if the device can enter sleep (all software layers that called PWR_DisallowDeviceToSleep have called
back PWR_AllowDeviceToSleep).

• The device enters low-power by calling PWR_EnterLowPower.

• When returning from sleep, the application checks up for the wake up reason. In this example, the node handles the
keyboard press that caused the wake up.

static void App_Idle(void)
{
 if(PWR_CheckIfDeviceCanGoToSleep())
 {
 /* Enter Low Power */
 PWR_EnterLowPower();

#if gFSCI_IncludeLpmCommands_c
 /* Send Wake Up indication to FSCI */
 FSCI_SendWakeUpIndication();

System considerations

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 67

#endif

#if gKBD_KeysCount_c > 0
 /* Woke up on Keyboard Press */
 if(PWRLib_MCU_WakeupReason.Bits.FromKeyBoard)
 {
 KBD_SwitchPressedOnWakeUp();
 }
#endif
 }
 else
 {
 /* Enter MCU Sleep */
 PWR_EnterSleep();
 }
}

• The node re-enters sleep when the idle task runs again.

Each software layer/entity running on the system can prevent it from entering low-power by calling
PWR_DisallowDeviceToSleep. The system stays awake until all software layers that called PWR_DisallowDeviceToSleep call
back PWR_AllowDeviceToSleep and the system reaches idle task. The MCU enters either sleep or deep sleep depending on the
type of the timers started. Low-power timers are the only timers that do not prevent the system from entering deep sleep. If any
other timers are started, the MCU enters sleep instead of deep sleep. The user should stop all timers other than the low-power
ones. The functions that start timers, like LED_StartFlash, prevent the system from entering deep sleep.

10.3 Deep sleep modes for Kinetis MCU-based platforms
See the Kinetis Wireless Dual Mode (Bluetooth LE and IEEE® 802.15.4) Microcontrollers Low-power Library Overview section
of Connectivity Framework Reference Manual for the list of supported deep sleep modes and their description.

A summary of the available power modes can be found in the table below:

Table 3. Available power modes

Low-Power
Mode

Required State Wake Up Sources

MCU BLE Link
Layer

GPIO BLE LL LPTMR DCDC** UART

1 LLS3 DSM x x x

2 LLS2 IDLE x x x

3 LLS3 IDLE x x x

4 VLLS0/1* IDLE x x

5 VLLS2 IDLE x x

6 STOP IDLE/RUN x x x x x

* VLLS0 if DCDC bypassed/ VLLS1 otherwise

** Available in buck mode only

The application can decide to configure cMCU_SleepDuringBleEvents to allow better power consumption when the LL performs
an action. For instance, if the user configures the system to use low power mode 1 and this configuration is enabled, during BLE
events, the low power mode 6 will be used. After LL completed the event, the user selected low power mode will be restored, as
in this example low power mode 1.

Low-Power Management

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
68 NXP Semiconductors

10.4 Deep sleep modes for QN908X MCU-based platforms
QN908x has only two deep sleep modes called power down 0 (PD0) and power down 1 (PD1). See “UM11023 QN908x User
Manual” for details. For both modes the required RAM memory blocks are powered up (the user can configure the blocks that
stay powered up and powered down during deep sleep). CPU registers values can be retained during deep sleep (the user can
disable this feature).

See Low power library for QN908X MCU based platforms section of Connectivity Framework Reference Manual for the list of
supported deep sleep modes and their description.

10.5 Low-power usage examples

10.5.1 Using low-power when BLE stack is idle
The most efficient low-power mode to be used in this scenario, while retaining the SRAM is deep sleep mode 3. The user can
configure the MCU deep sleep duration through cPWR_DeepSleepDurationMs at compile time or by calling
PWR_SetDeepSleepTimeInMs at run time. This value affects the application low power timers callback execution time as the
system will not wake up until the deep sleep duration expires. The user could set the deep sleep duration to the application's
lowest power timer duration, but it is recommended to let the system do this by enabling cPWR_CheckLowPowerTimers. This
way, the deep sleep duration is adjusted automatically by the low power module to the shortest LP timer duration, if any LP timer
is active. This is not applicable for the QN908X MCU based platforms.

To allow the device to enter sleep, call PWR_ChangeDeepSleepMode and PWR_AllowDeviceToSleep after the stack is initialized.

PWR_ChangeDeepSleepMode(3);
PWR_AllowDeviceToSleep();

10.5.2 Using low-power when advertising
Advertising requires the BLE Link Layer to send the advertising packet and listen for connection requests on configured interval,
without the intervention of the higher layers. Thus, deep sleep mode 1 is the best candidate for this use case.

To allow the device to enter deep sleep mode 1, call PWR_ChangeDeepSleepMode before calling the function to start advertising.

PWR_ChangeDeepSleepMode(1);
BleApp_Advertise();

MCU enters sleep and wakes up on advertising events. The BLE enters DSM between advertising events.

10.5.3 Using low-power when scanning
Scanning requires the BLE Link Layer to be in running mode during the whole procedure. The device enters sleep after the
scanning is finished or remain active if a suitable device is found. So, the deep sleep mode 6 is the best candidate for this use
case.

To allow the device to enter deep sleep mode 6, call PWR_ChangeDeepSleepMode before starting a scan.

PWR_ChangeDeepSleepMode(6);
App_StartScanning();

10.5.4 Using low-power in connection
Low-power during a connection needs to take into account the connection interval, the slave latency and the supervision timeout.
The BLE link layer must periodically send empty PDUs to maintain the connection, so it must be in DSM. Thus, deep sleep mode
1 is the best candidate for this use case.

Deep sleep modes for QN908X MCU-based platforms

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 69

https://www.nxp.com/docs/en/nxp/user-guides/UM11023.pdf
https://www.nxp.com/docs/en/nxp/user-guides/UM11023.pdf

When a connection is created, the application is notified in BLE_SignalFromISRCallback to deny sleep and be ready for other
procedures like service discovery.

PWR_DisallowDeviceToSleep();

These functions are called on the gConnEvtConnected_c event. It needs to allow the system to sleep on account of the callback
executed previously that denied device to sleep.

casegConnEvtConnected_c:
{
 PWR_ChangeDeepSleepMode(1);
 PWR_AllowDeviceToSleep();
}

Low-Power Management

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
70 NXP Semiconductors

Chapter 11
Over the Air Programming (OTAP)

This chapter contains a detailed description of the Over The Air Programming capabilities of the BLE Host Stack enabled by
dedicated GATT Service/Profile, the support modules needed for OTA programming and the Bootloader application which
performs the actual image upgrade on a device.

The image transfer is done using a dedicated protocol which is designed to run on both the BLE transport and serial transport.

The container for the upgrade image is an image file which has a predefined format which is described in detail. The image file
format is independent of the protocol but must contain information specific to the image upgrade infrastructure on an OTAP Client
device. Detailed information on how to build an image file starting from a generic format executable generated by an embedded
cross-compiling toolchain is shown.

The demo applications implement a typical scenario where a new image is sent from a PC via serial interface to a BLE OTAP
Server and then over the air to an OTAP Client which is the target of the upgrade image. There are 3 applications involved in the
OTAP demo: 1 PC application which builds the image file and serves it to the embedded OTAP Server and 2 embedded
applications (OTAP Server and OTAP Client). This chapter contains enough information for building BLE OTAP applications which
implement different image upgrade scenarios specific to other use cases.

11.1 General functionality
A BLE OTAP system consists of an OTAP Server and an OTAP Client which exchange an image file over the air using the
infrastructure provided by BLE (GAP, GATT, SM) via a custom GATT Service and GATT Profile. Additionally, a third application
may be used to serve an image to the embedded OTAP Server.

The OTAP Server runs on the GATT Client via the BLE OTAP Profile and the OTAP Client runs on the GATT Server via the BLE
OTAP Service. For the moment the OTAP Server runs on the GAP Central and the OTAP Client runs on the GAP Peripheral.

The diagram below shows a typical image upgrade scenario.

General functionality

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 71

Figure 12. Typical BLE OTAP Image Upgrade Scenario

11.2 BLE OTAP service-profile
The BLE OTAP Service is implemented using the BLE GATT Server which runs on the OTAP Client (GAP Peripheral).

The BLE OTAP Service does not require any other BLE services. Because it is a custom service it has a 128-bit UUID. The service
has 2 custom characteristics which also have 128-bit UUIDs.

The service must be included in the GATT Database of the GATT Server as described in the Creating a GATT Database section
of this document.

11.2.1 OTAP service and characteristics
The OTAP Service has a custom 128-bit UUID which is shown below. The UUID is based on a base 128-bit UUID used for BLE
custom services and characteristics. These are shown in the tables below.

Table 4. Base BLE 128-bit UUID

Base BLE 128-bit UUID 00000000 -ba5e-f4ee-5ca1-eb1e5e4b1ce0

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
72 NXP Semiconductors

The OTAP Service custom 128-bit UUID is built using the base UUID by replacing the most significant 4 bytes which are 0 with
a value specific to the OTAP Service which is 01FF5550 in hexadecimal format.

Table 5. BLE OTAP Service UUID

Service UUID (128-bit)

BLE OTAP Service 01ff5550 -ba5e-f4ee-5ca1-eb1e5e4b1ce0

The BLE OTAP Service Characteristics UUIDs are built the same as the BLE OTAP Service UUID starting from the base 128-bit
UUID but using other values for the most significant 4 bytes.

Table 6. BLE OTAP Service Characteristics

Characteristic UUID (128-bit) Properties Descriptors

BLE OTAP Control Point 01ff5551 -ba5e-f4ee-5ca1-
eb1e5e4b1ce0

Write, Indicate CCC

BLE OTAP Data 01ff5552 -ba5e-f4ee-5ca1-
eb1e5e4b1ce0

Write Without Response -

Both characteristics are implemented as variable length characteristics.

The BLE OTAP Control Point Characteristic is used for exchanging OTAP commands between the OTAP Server and the OTAP
Client. The OTAP Client sends commands to the OTAP Server using ATT Notifications for this characteristic and the OTAP Server
sends commands to the OTAP Client by making ATT Write Requests to this characteristic. Both ATT Writes and ATT Notifications
are acknowledged operations via ATT Write Responses and ATT Confirmations.

The BLE OTAP Data characteristic is used by the OTAP Server to send parts of the OTAP image file to the OTAP Client when the
ATT transfer method is chosen by the application. The ATT Write Commands (GATT Write Without Response operation) is not
an acknowledged operation.

The BLE OTAP service and characteristics 128-bit UUIDs are defined in the gatt_uuid128.h just as shown below.

UUID128(uuid_service_otap, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E,
0xBA, 0x50, 0x55, 0xFF, 0x01)
UUID128(uuid_char_otap_control_point, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE,
0xF4, 0x5E, 0xBA, 0x51, 0x55, 0xFF, 0x01)
UUID128(uuid_char_otap_data, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4,
0x5E, 0xBA, 0x52, 0x55, 0xFF, 0x01)

The service is included into the GATT database of the device. It is declared in the gatt_db.h file as shown below.

PRIMARY_SERVICE_UUID128(service_otap, uuid_service_otap)
CHARACTERISTIC_UUID128(char_otap_control_point, uuid_char_otap_control_point,
(gGattCharPropWrite_c | gGattCharPropIndicate_c))
VALUE_UUID128_VARLEN(value_otap_control_point, uuid_char_otap_control_point,
(gPermissionFlagWritable_c), 16, 16, 0x00)
CCCD(cccd_otap_control_point)
CHARACTERISTIC_UUID128(char_otap_data, uuid_char_otap_data, (gGattCharPropWriteWithoutRsp_c))
VALUE_UUID128_VARLEN(value_otap_data, uuid_char_otap_data, (gPermissionFlagWritable_c),
gAttMaxMtu_c - 3, gAttMaxMtu_c - 3, 0x00)

The BLE OTAP Control Point characteristic should be large enough for the longest command which can be exchanged between
the OTAP Server and The OTAP Client.

The BLE OTAP Data characteristic should be large enough for the longest data chunk command the OTAP Client expects from
the OTAP Server to be sent via ATT. The maximum length of the OTAP Data Characteristic value is ATT_MTU- 3. 1 byte is used
for the ATT OpCode and 2 bytes are used for the Attribute Handle when performing a Write Without Response, the only operation
permitted for this characteristic value.

BLE OTAP service-profile

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 73

11.2.2 OTAP server and OTAP client interactions
The OTAP Server application scans for devices advertising the OTAP Service. When it finds one it connects to that device and
notifies it of the available image files or waits for requests regarding available image files. The behavior is specific to the each
application which needs the OTAP functionality. The BLE OTAP Protocol described below details how to do this.

After an OTAP Server (GAP Central, GATT Client) connects to an OTAP Client (GAP Peripheral, GATT Server) it scans the device
database and identifies the handles of the OTAP Control Point and OTAP Data characteristics and their descriptors. Then it writes
the CCC Descriptor of the OTAP Control point to allow the OTAP Client to send it commands via ATT Indications. It can send
commands to the OTAP Client by using ATT Write Commands to the OTAP Control Point characteristic.

After the connection is established, if the OTAP Client wants to use the L2CAP CoC transfer method it must register a L2CAP
PSM with the OTAP Server.

The OTAP Client only starts any image information request or image transfer request procedures only after the OTAP Server
writes the OTAP Control Point CCCD to ensure there is bidirectional communication between the devices.

11.3 BLE OTAP protocol
The protocol consists of a set of commands (messages) which allow the OTAP Client to request or be notified about the available
images on an OTAP Server and to request the transfer of parts of images from the OTAP Server.

All commands with the exception of the image data transfer commands are exchanged through the OTAP Control Point
characteristic of the OTAP Service. The data transfer commands are sent only from the OTAP Server to the OTAP Client either
via the OTAP Data characteristic of the OTAP Service or via a dedicated Credit Based Channel assigned to a L2CAP PSM.

11.3.1 Protocol design considerations
The OTAP Client is a GAP Peripheral thus a device which has limited resources. This is why the OTAP Protocol was designed in
such a way that it is at the discretion of the OTAP Client if, when, how fast and how much of an available upgrade image is
transferred from the OTAP Server. The OTAP Client also decides which is the image transfer method based on its capabilities.
Two image transfer methods are supported at this moment: the ATT Transfer Method and the L2CAP PSM CoC Transfer Method.

The ATT Transfer Method is supported by all devices which support Bluetooth Low Energy but it has the disadvantage of a small
data payload size and a larger BLE stack protocols overhead leading to a lower throughput. This disadvantage has been somewhat
reduced by the introduction of the Long Frames feature in the Bluetooth Low Energy specification 4.2 Link Layer which allows for
a larger ATT_MTU value. The L2CAP PSM CoC Transfer Method is an optional feature available for devices running a Bluetooth
stack version 4.1 and later. The protocol overhead is smaller and the data payload is higher leading to a high throughput. The
L2CAP PSM Transfer Method is the preferred transfer method and it is available on all BLE Devices if the application requires it.

Based on application requirements and device resources and capabilities the OTAP Clients can request blocks of OTAP images
divided into chunks. To minimize the protocol overhead and maximize throughput an OTAP Client makes a data block request
specifying the block size and the chunk size and the OTAP Server sends the requested data chunks (which have a sequence
number) without waiting for confirmation. The block size, chunk size and number of chunks per block are limited and suitable
values must be used based on application needs.

The OTAP Client can stop or restart an image block transfer at any time if the application requires it or a transfer error occurs.
The OTAP Server implementation can be almost completely stateless. The OTAP Server does not need to remember what parts
of an image have been transferred, this is the job of the OTAP Client which can request any part of an image at any time. This
allows it to download parts of the image whenever and how fast its resources allow it. The OTAP Server simply sends image
information and image parts on request.

The BLE OTAP Protocol is designed to be used not only on BLE transport medium but on any transport medium, for example a
serial communication interface or another type of wireless interface. This may be useful when transferring an upgrade image from
a PC or a mobile device to the OTAP Server to be sent via BLE to the OTAP Clients which require it. In the OTAP Demo Applications
the embedded OTAP Server relays OTAP commands between an OTAP Client and a PC via a serial interface and using a FSCI

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
74 NXP Semiconductors

type protocol. Effectively the OTAP Client downloads the upgrade image from the PC and not from the OTAP Server. Other transfer
methods may be used based on application needs.

11.3.2 BLE OTAP commands
The BLE OTAP Commands general format is shown below. A command consists of two parts, a Command ID and a Command
Payload as shown in the table below.

Table 7. BLE OTAP General Command Format

Field Name CmdId CmdPayload

Size (Bytes) 1 variable

Commands are sent over the transport medium starting with the Command ID and continuing with the Command Payload.

All multibyte command parameters in the Command Payload are sent in a least significant octet first order (little endian).

A summary of the commands supported by the BLE OTAP Protocol is shown in the table below. Each of the commands is then
detailed in its own section.

Table 8. BLE OTAP Commands Summary

CmdId Command Name

0x01 New Image Notification

0x02 New Image Info Request

0x03 New Image Info Response

0x04 Image Block Request

0x05 Image Chunk

0x06 Image Transfer Complete

0x07 Error Notification

0x08 Stop Image Transfer

11.3.2.1 New image notification command
This command can be sent by an OTAP Server to an OTAP Client, usually immediately after the first connection, to notify the
OTAP Client of the available images on the OTAP Server.

Table 9. New Image Notification Command Parameters

CmdId Name Dir Parameters Param Size

(Bytes)

Description Total Size
(CmdId
+Payload)

Table continues on the next page...

BLE OTAP protocol

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 75

Table 9. New Image Notification Command Parameters (continued)

0x01 New Image
Notification

S->C ImageId 2 Short image
identifier used
for transactions
between the
OTAP Server
and OTAP
Client. Should
be unique for all
images on a
server.

15

ImageVersion 8 Image file
version.
Contains
sufficient
information to
identify the
target hardware,
stack version
and build
version.

ImageFileSize 4 Image file size
in bytes.

The ImageId parameter should not be 0x0000 which is the reserved value for the current running image or 0xFFFF which is the
reserved value for “no image available”.

11.3.2.2 New image info request command
This command can be sent by an OTAP Client to an OTAP Server to inquire about available upgrade images on the OTAP Server.

Table 10. New Image Info Request Command Parameters

CmdId Name Dir Parameters Param Size

(Bytes)

Description Total Size
(CmdId
+Payload)

0x02 New Image Info
Request

C->S CurrImageId 2 Id of the
currently
running image.
Should be
0x0000.

11

Table continues on the next page...

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
76 NXP Semiconductors

Table 10. New Image Info Request Command Parameters (continued)

CurrImageVer 8 Version of the
currently
running image.
A value of all
zeroes signals
that the client is
looking for all
images
available on an
OTAP Server. A
value of all
zeroes requests
information
about all
images on the
server.

The CurrImageId parameter should be set to 0x0000 to signify the current running image.

The CurrImageVer parameter should contain sufficient information about the target device for the OTAP Server to determine if it
has an upgrade image available for the requesting OTAP Client.

A value of all zeroes for the CurrImageVer means that an OTAP Client is requesting information about all available images on an
OTAP Server and the OTAP Server should send a New Image Info Response for each image.

11.3.2.3 New image info response command
This command is sent by the OTAP Server to the OTAP Client as a response to a New Image Information Request Command.

Table 11. New Image Info Response Command Parameters

CmdId Name Dir Parameters Param Size

(Bytes)

Description Total Size
(CmdId
+Payload)

0x03 New Image Info
Response

S->C ImageId 2 Image Id. Value
0xFFFF is
reserved as “no
image available”

15

ImageVersion 8 Image file
version.

ImageFileSize 4 Image file size.

The ImageId parameter with a value of 0xFFFF is reserved for the situation where no upgrade image is available for the requesting
device.

11.3.2.4 Image block request command
This command is sent by the OTAP Client to the OTAP Server to request a part of the upgrade image after it has determined the
OTAP Server has an upgrade image available.

When an OTAP Server Receives this command it should stop any image file chunk transfer sequences in progress.

BLE OTAP protocol

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 77

Table 12. Image Block Request Command Parameters

CmdId Name Dir Parameters Param Size

(Bytes)

Description Total Size
(CmdId
+Payload)

0x04 Image Block
Request

C->S ImageId 2 Image Id 16

StartPosition 4 Start position of
the image block
to be
transferred.

BlockSize 4 Requested total
block size in
bytes.

ChunkSize 2 Should be
optimized to the
TransferChanne
l type. The
maximum
number of
chunks per
block is 256.
Value is in
bytes.

TransferMethod 1 0x00 - ATT

0x01 – L2CAP
PSM Credit
based channel

L2capChannelO
rPsm

2 0x0004 - ATT

Other values –
PSM for credit
based channels

The ImageId parameter contains the ID of the upgrade image.

The StartPosition parameter specifies the location in the image upgrade file at which the requested block starts.

The BlockSize and ChunkSize parameters specify the size in bytes of the block to be transferred and the size of the chunks into
which a block is separated. The ChunkSize value must be chosen in such a way that the total number of chunks can be represented
by the SeqNumber parameter of the Image Chunk Command. At the moment this parameter is 1 byte in size so there are a
maximum of 256 chunks per block. The chunk sequence number goes from 0 to 255 (0x00 to 0xFF). If this condition is not met
or the requested block is not entirely into the image file bounds an error is sent to the OTAP Client when the OTAP Server receives
this misconfigured Image Block Request Command.

The maximum value of the ChunkSize parameter depends on the maximum ATT_MTU and L2CAP_MTU supported by the BLE
stack version and implementation.

The TransferMethod parameter is used to select the transfer method which can be ATT or L2CAP PSM CoC. The
L2capChannelOrPsm parameter must contain the value 0x0004 for the ATT transfer method and another value representing the
chosen PSM for the L2CAP PSM transfer method. The default PSM for the BLE OTAP demo applications is 0x004F for both the
OTAP Server and the OTAP Client although the specification allows different values at the 2 ends of the L2CAP PSM connection.
The PSM must be in the range reserved by the Bluetooth specification which is 0x0040 to 0x007F.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
78 NXP Semiconductors

The optimal value of the ChunkSize parameter depends on the chosen transfer method and the Link Layer payload size. Ideally
it must be chosen in such a way that full packets are sent for every chunk in the block.

The default Link Layer payload is 27 bytes form which we subtract 4 for the L2CAP layer and 3 for the ATT layer (1 for the ATT
Cmd Opcode and 2 for the Handle) leaving us with a 20 byte OTAP protocol payload. From these 20 bytes we subtract 1 for the
OTAP CmdId and 1 for the chunk sequence number leaving us with an optimum chink size of 18 for the ATT transfer method –
which is the default in the demo applications. For the L2CAP PSM transfer method the chosen default chunk size is 111. This was
chosen so as a chunk fits exactly 5 link layer packets. The default L2CAP payload of 23 (27 - 4) multiplied by 5 gives us 115 from
which we subtract 2 bytes for the SDU Length (which is only sent in the first packet), 1 byte for the OTAP CmdId and 1 byte for
the chunk sequence number which leaves exactly 111 bytes for the actual payload.

If the Link layer supports Long Frames feature then the chunk size should be set according to the negotiated ATT MTU for the
ATT transfer method. From the negotiated ATT MTU (att_mtu) substract 3 bytes for the ATT layer (1 for the ATT Cmd Opcode and
2 for the Handle) then substract 2 bytes for the OTAP protocol (1 for the CmdId and 1 for the chunk sequence number) to determine
the optimum chunk size (optimum_att_chunk_size = att_mtu – 3 – 2). For the L2CAP PSM transfer method the chunk size can
be set based on the maximum L2CAP SDU size (max_l2cap_sdu_size) from which 4 bytes should be subtracted, 2 for the SDU
Length and 2 for the OTAP protocol (optimum_l2cap_chunk_size = max_l2cap_sdu_size – 3 – 2). In some particular cases
reducing the L2CAP chunk size could lead to better performance. If the L2CAP chunk size needs to be reduced it should be
reduced so it fits exactly a number of link layer packets. An example of how to compute an optimal reduced L2CAP chunk size is
given in the previous paragraph.

11.3.2.5 Image chunk command
One or more Image Chunk Commands are sent from the OTAP Server to the OTAP Client after an Image Block Request is received
by the former. The image chunks are sent via the ATT Write Without Response mechanism if the ATT transfer method is chosen
and directly via L2CAP if the L2CAP PSM CoC transfer method is chosen.

Table 13. Image Chunk Command Parameters

CmdId Name Dir Parameters Param Size

(Bytes)

Description Total Size
(CmdId
+Payload)

0x05 Image Chunk S->C SeqNumber 1 In the range 0 ->
BlockSize/
ChunkSize -
calculated by
Server, checked
by Client.

The command
code is present
even when ATT
is used.

3

or more

Data var. Actual data.

The SeqNumber parameter is the chunk sequence number and it has incremental values from 0 to 255 (0x00 to 0x FF) for a
maximum of 256 chunks per block.

The Data parameter is an array containing the actual image part being transferred starting from the BlockStartPosition +
SeqNumber * ChunkSize position in the image file and containing ChunkSize or less bytes depending on the position in the block.
Only the last chunk in a block can have less than ChunkSize bytes in the Image Chunk Command data payload.

11.3.2.6 Image transfer complete command
This command is sent by the OTAP Client to the OTAP Server when an image file has been completely transferred and its integrity
has been checked.

BLE OTAP protocol

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 79

Table 14. Image Transfer Complete Command Parameters

CmdId Name Dir Parameters Param Size

(Bytes)

Description Total Size
(CmdId
+Payload)

0x06 Image Transfer
Complete

C->S ImageId 2 Image Id 4

Status 1 Status of the
image transfer.
0x00 - Success

The ImageId parameter contains the ID of the image file that was transferred.

The Status parameter is 0x00 (Success) if image integrity and possibly other checks have been successfully made after the image
is transferred and another value if integrity or other kind of errors have occurred.

If the status is 0x00 the OTAP Client can trigger the Bootloader to start flashing the new image. The image flashing should take
about 15 seconds for a 160 KB flash memory.

11.3.2.7 Error notification command
This command can be sent by both the OTAP Server and the OTAP Client when an error of any kind occurs. When an OTAP
Server Receives this command it should stop any image file chunk transfer sequences in progress.

Table 15. Error Notification Command Parameters

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

0x07 Error
Notification

Bidir CmdId 1 Id of the
command which
generated the
error.

3

ErrorStatus 1 Error Status:

Ex: out of image
bounds, chunk
too small, chunk
too large, image
verification
failure, bad
command
format, image
not available,
unknown
command

The CmdId parameter contains the ID of the command which caused the error (if applicable).

The ErrorStatus parameter contains the source of the error. All error statuses are defined in the otapStatus_t enumerated type
in the otap_interface.h file.

11.3.2.8 Stop image transfer command
This command is sent from the OTAP Client to the OTAP Server whenever the former wants to stop the transfer of an image block
which is currently in progress.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
80 NXP Semiconductors

Table 16. Stop Image Transfer Command Parameters

CmdId Name Dir Parameters Param Size

(Bytes)

Description Total Size
(CmdId
+Payload)

0x08 Stop Image
Transfer

C->S ImageId 2 Image Id 3

The ImageId parameter contains the ID of the image being transferred.

11.3.3 OTAP client–server interactions
The interactions between the OTAP Server and OTAP Client start immediately after the connection, discovery of the OTAP Service
characteristics and writing of the OTAP Control Point CCC Descriptor by the OTAP Server.

The first command sent could be a New Image Notification sent by the OTAP Server to the OTAP Client or a New Image Info
Request sent by the OTAP Client. The OTAP Server can respond with a New Image Info response if it has a new image for the
device which sent the request (this can be determined from the ImageVerison parameter). The best strategy depends on
application requirements.

After the OTAP Client has determined that the OTAP Sever has a newer image it can start downloading the image. This is done
by Sending Image Block Request commands to retrieve parts of the image file. The OATP Server answers to these requests with
one or more Image Chunk Commands via the requested transfer method or with an Error Notification if there are improper
parameters in the Image Block Request. The OTAP Clients makes as many Image Block Requests as it is necessary to transfer
the entire image file.

The OTAP Client decides how often Image Block Request Commands are sent and can even stop a block transfer which is in
progress via the Stop Image Transfer Command. The OTAP Client is in complete control of the image download process and can
stop it and restart it at any time based on its resources and application requirements.

A typical BLE OTAP Image Transfer scenario is shown in the message sequence chart below.

BLE OTAP protocol

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 81

Figure 13. Typical BLE OTAP Image Transfer Scenario Message Sequence Chart

11.4 BLE OTAP image file format
The BLE OTAP Image file has a binary file format. It is composed of a header followed by a number of sub-elements. The header
describes general information about the file. There are some predefined sub-elements of a file but an end manufacturer could
add manufacturer-specific sub-elements. The header does not have details of the sub-elements. Each element is described by
its type.

The general format of an image file is shown in the table below.

Table 17. BLE OTAP Image File General Format

Image File Element Value Field Length (bytes) Description

Header Variable The header contains general
information about the image file.

Upgrade Image Sub-element Variable This sub-element contains the actual
binary executable image which is copied
into the flash memory of the target
device. The maximum size of this sub-
element depends on the target
hardware.

Table continues on the next page...

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
82 NXP Semiconductors

Table 17. BLE OTAP Image File General Format (continued)

Sector Bitmap Sub-element 32 This sub-element contains a sector
bitmap of the flash memory of the target
device which tells the bootloader which
sectors to overwrite and which to leave
intact. The Bootloader can be configured
not to overwrite itself regardless of the
sector bitmap settings of the flash area it
resides in. The size and granularity of this
sub-element are target hardware
dependent.

The format of this field is least significant
byte first and least significant bit first for
each byte with the least significant bytes
and bits standing for the lowest memory
sections of the flash.

Image File CRC Sub-element 2 This is a 16 bit CCITT type CRC which
is calculated over all elements of the
image file with the exception of the
Image File CRC sub-element itself. This
must be the last sub-element in an
image file.

Each sub-element in a BLE OTAP Image File has a Type-Length-Value (TLV) format. The type identifier provides forward and
backward compatibility as new sub-elements are introduced. Existing devices that do not understand newer sub-elements may
ignore the data.

The following table shows the general format of a BLE Image File sub-element.

Table 18. BLE OTAP IMage File Sub-element Format

Subfield Size (Bytes) Format Description

Type 2 uint16 Type Identifier – determines
the format of the data
contained in the value field.

Length 4 uint32 Length of the Value field of
the sub-element.

Value var. uint8[] Data payload.

Some sub-element type identifiers are reserved while others are left for manufacturer-specific use. The table below shows the
reserved type identifiers and the manufacturer-specific ranges.

Table 19. Sub-element Type Identifiers Ranges

Type Identifiers Description

0x0000 Upgrade Image

0x0001 – 0xefff Reserved

0xf000 – 0xffff Manufacturer-Specific Use

The OTAP Demo applications use two of the manufacturer-specific sub-element type identifiers while the rest remain free to use.
The two are shown in the table below along with a short description.

BLE OTAP image file format

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 83

Table 20. Manufacturer-Specific Sub-element Type Identifiers Used by OTAP Demo Applications

Manufacturer-Specific Type Identifiers Sub-Element Name Notes

0xf000 Sector Bitmap Bitmap signaling the bootloader which
sectors of the internal flash to overwrite
and which not.

0xf100 Image File CRC 16 bit CRC which is computed over the
image file with the exception of the CRC
sub-element itself.

11.4.1 BLE OTAP header
The format and fields of the BLE OTAP Header are summarized in the table below.

Table 21. BLE OTAP Header Fields

Octets Data Types Field Name Mandatory/Optional

4 Unsigned 32-bit integer Upgrade File Identifier M

2 Unsigned 16-bit integer Header Version M

2 Unsigned 16-bit integer Header Length M

2 Unsigned 16-bit integer Header Field Control M

2 Unsigned 16-bit integer Company Identifier M

2 Unsigned 16-bit integer Image ID M

8 8 byte array Image Version M

32 Character string Header String M

4 Unsigned 32-bit integer Total Image File Size

(including header)

M

The fields are shown in the order they are placed in memory from the first location to the last.

The total size of the header without the optional fields (if defined by the Header Field Control) is 58 bytes.

All the fields in the header have a little endian format with the exception of the Header String field which is an ASCII character
string.

A packed structure type definition for the contents of the BLE OTAP Header can be found in the otap_interface.h file.

11.4.1.1 Upgrade file identifier
Fixed value 4 byte field used to identify the file as being a BLE OTAP Image File. The predefined value is “0x0B1EF11E”.

11.4.1.2 Header version
This 2 byte field contains the major and minor version number. The high byte contains the major version and the low byte contains
the minor version. The current value is “0x0100” with the major version “01” and the minor version “00”. A change to the minor
version means the OTA upgrade file format is still backward compatible, while a change to the major version suggests
incompatibility.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
84 NXP Semiconductors

11.4.1.3 Header length
Length of all the fields in the header including the Upgrade File Identifier field, Header Length field and all the optional fields.
The value insulates existing software against new fields that may be added to the header. If new header fields added are not
compatible with current running software, the implementations should process all fields they understand and then skip over any
remaining bytes in the header to process the image or CRC sub-element. The value of the Header Length field depends on the
value of the Header Field Control field, which dictates which optional header fields are included.

11.4.1.4 Header field control
This is a 2 byte bit mask which indicates which optional fields are present in the OTAP Header.

At this moment no optional fields are defined, this whole field is reserved and should be set to “0x0000”.

11.4.1.5 Company identifier
This is the company identifier assigned by the Bluetooth SIG. The Company Identifier used for the OTAp demo applications is
“0x01FF”.

11.4.1.6 Image ID
This is a unique short identifier for the image file. It is used to request parts of an image file. This number should be unique for
all images available on a BLE OTAP Server.

The value 0x0000 is reserved for the current running image.

The value 0xFFFF is reserved as a “no image available” code for New Image Info Response commands.

This field value must be used in the ImageID field in the New Image Notification and New Image Info Response commands.

11.4.1.7 Image version
This is the full identifier of the image file. It should allow a BLE OTAP Client to identify the target hardware, stack version, image
file build version and other parameters if necessary. The recommended format of this field (which is used by the OTAP Demo
applications) is shown below but an end device manufacturer could choose different format. The subfields are shown in the order
they are placed in memory from the first location to the last. Each subfield has a little endian format if applicable.

Table 22. Suggested Image Version Field Format

Subfield Size (bytes) Format Description

Build Version 3 uint8[] Image build version.

Stack Version 1 uint8 0x41 for example for BLE
Stack version 4.1.

Hardware ID 3 uint8[] Unique hardware identifier.

End Manufacturer Id 1 uint8 ID of the hardware–specific to
the end manufacturer

This field value must be used in the ImageVersion field in the New Image Notification and New Image Info Response commands.

11.4.1.8 Header string
This is a manufacturer-specific string that may be used to store other necessary information as seen fit by each manufacturer.
The idea is to have a human readable string that can prove helpful during the development cycle. The string is defined to occupy
32 bytes of space in the OTAP Header. The default string used for the BLE OTAP demo application is “BLE OTAP Demo Image
File”.

BLE OTAP image file format

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 85

11.4.1.9 Total image file size
The value represents the total image size in bytes. This is the total of data in bytes that is transferred over-the-air from the server
to the client. In most cases, the total image size of an OTAP upgrade image file is the sum of the sizes of the OTAP Header and
all the other sub-elements on the file. If the image contains any integrity and/or source identity verification fields then the Total
Image File Size also includes the sizes of these fields.

11.5 Building BLE OTAP image file from SREC file
A SREC (Motorola S-record) file is an ASCII format file which contains binary information. Common extensions
are: .srec, .s19, .s28, .s37 and others. Most modern compiler toolchains can output a SREC format executable.

To enable the creation of a SREC file for your embedded application in IAR Embedded Workbench®, open the target properties
and go to the Output Converter tab. Activate the “Generate additional output” checkbox and choose the Motorola option from
the “Output format” drop down menu. From the same pane you can also override the name of the output file. A screenshot of the
described configuration is shown below.

Figure 14. Enabling SREC Output in IAR Embedded Workbench

The format of the SREC file is very simple. It contains lines of text called records which have a specific format. An example of the
contents of a SREC file is shown below.

S02000006F7461705F636C69656E745F6174745F4672656552544F532E73726563A1
S1130000F83F0020EB0500007506000075060000AF

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
86 NXP Semiconductors

S113001075060000750600007506000075060000F0
S113002075060000750600007506000075060000E0
S113003075060000750600007506000075060000D0
S113004000000000000000000000000000000000AC
S1130050000000000000000000000000000000009C
.............
S2140117900121380004F05FF8002866D12A003100E4
S2140117A06846008804F022F8A689002E16D0002884
S2140117B014D12569278801A868A11022F7F782FCB1
S2140117C06B4601AA0121380004F045F800284CD1E7
S2140117D02A0031006846008804F008F8A68A002E20

All records start with the ASCII letter ‘S’ followed by an ASCII digit from ‘0’ to ‘9’. These two characters from the record type which
identifies the format of the data field of the record.

The next 2 ASCII characters are 2 hex digits which indicate the number of bytes (hex digit pairs) which follow the rest of the record
(address, data and checksum).

The address follows next which can have 4, 6 or 8 ASCII hex digits depending on the record type.

The data field is placed after the address and it contains 2 * n ASCII hex digits for n bytes of actual data.

The last element of the S record is the checksum which comprises of 2 ASCII hex digits. The checksum is computed by adding
all the bytes of the byte count, address and data fields then computing the ones complement of the least significant octet of the
sum.

Table 23. Format of an S Record

Field Record Type Count Address Data Checksum Line Terminator

Format “Sn”,

n=0..9

ASCII

hex digits

ASCII

hex digits

ASCII

hex digits

ASCII

hex digits

“\r\n”

Length
(characters)

2 2 4,6,8 Count –
len(Address) –
len(Checksum)

2 2

More details about the SREC file format can be found at this location: en.wikipedia.org/wiki/SREC_(file_format)

We are only interested in records which contain actual data. These are S1, S2 and S3 records. The other types of records can
be ignored.

The S1, S2 and S3 records are used to build the Upgrade Image Sub-element of the image file simply by placing the record data
at the location specified by the record address in the Value field of the Sub-element. It is recommended to fill all gaps in S record
addresses with 0xFF.

To build an OTAP Image File from a SREC file follow the procedure:

• Generate the SREC file by correctly configuring your toolchain to do so

• Create the image file header

— Set the Image ID field of the header to be unique on the OTAP Server.

— Leave the Total Image File Size Field blank for the moment.

• Create the Upgrade Image Sub-element

— Read the S1, S2 and S3 records from the SREC file and place the binary record data to the record addresses in the
Value filed of the sub-element. Fill all address gaps in the S records with 0xFF.

— Fill in the Length field of the sub-element with the length of the written Value filed.

• Create the Sector Bitmap Sub-element

— A default working setting would be all byes 0xFF for the Value field of this sub-element

Building BLE OTAP image file from SREC file

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 87

https://en.wikipedia.org/wiki/SREC_%28file_format%29

• Create the Image File CRC Sub-element

— Compute the total image file size as the length of the header + the length of all 3 sub-elements and fill in the
appropriate filed in the header with this value

— Compute and write the Value field of this sub-element using the header and all sub-elements except this one

— The OTA_CrcCompute() function in the OtaSupport.c file can be used to incrementally compute the CRC

If the Image ID is not available when the image file is created then the CRC cannot be computed. It can be computed later after
the Image ID is established and written in the appropriate field in the header.

11.6 Building BLE OTAP image file from BIN file
A BIN file is an binary file which contains an executable image. The most commn extension for this type of file is .bin. Most modern
compiler toolchains can output a BIN format executable.

To enable the creation of a BIN file for your embedded application in IAR Embedded Workbench open the target properties and
go to the Output Converter tab. Activate the “Generate additional output” checkbox and choose the binary option from the “Output
format” drop down menu. From the same pane you can also override the name of the output file. A screenshot of the described
configuration is shown below.

Figure 15. Enabling BIN Output in IAR Embedded Workbench

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
88 NXP Semiconductors

The format of the BIN file is very simple. It contains the executable image in binary format as is, starting from address 0 and up
to the highest address. This type of file does not have any explicit address information.

To build an OTAP Image File from a BIN file follow the procedure:

• Generate the BIN file by correctly configuring your toolchain to do so

• Create the image file header

— Set the Image ID field of the header to be unique on the OTAP Server.

— Leave the Total Image File Size Field blank for the moment.

• Create the Upgrade Image Sub-element

— Compy the entire contents of the BIN file as is into the Value filed of the sub-element.

— Fill in the Length field of the sub-element with the length of the written Value filed.

• Create the Sector Bitmap Sub-element

— A default working setting would be all byes 0xFF for the Value field of this sub-element

• Create the Image File CRC Sub-element

— Compute the total image file size as the length of the header + the length of all 3 sub-elements and fill in the
appropriate filed in the header with this value

— Compute and write the Value field of this sub-element using the header and all sub-elements except this one

— The OTA_CrcCompute() function in the OtaSupport.c file can be used to incrementally compute the CRC

If the Image ID is not available when the image file is created then the CRC cannot be computed. It can be computed later after
the Image ID is established and written in the appropriate field in the header.

11.7 BLE OTAP application integration
The BLE OTAP demo applications are standalone applications which only run the OTAP Server and the OTAP Client. In practice
however the OTAP Server and OTAP Client are used alongside with other functionalities. The OTAP functionality is used as a tool
alongside the main application on a device.

This section contains some guidelines on how to integrate OTAP functionality into other BLE applications.

11.7.1 OTAP server
Before any OTAP transactions can be done the application which acts as an OTAP Server must connect to a peer device and
perform ATT service and characteristic discovery. Once the handles of the OTAP Service, OTAP Control Point and OTAP Data
characteristics and their descriptors are found then OTAP communication can begin.

A good starting point for OTAP transactions for both the OTAP Server and The OTAP client is the moment the Server writes the
OTAP Control Point CCCD to receive ATT Indications from the OTAP Client. At that point the Server can send a New Image
Notification to the Client if it finds out what kind of device the client is through other means than the OTAP server. How this can
be done is entirely application-specific. If the OTAP Server does not know exactly what kind of device is the OTAP Client it can
wait for the Client to send a New Image Info Request. Again, the best behavior depends on application requirements.

Once OTAP communication begins then the OTAP Server just has to wait for commands from the OTAP Client and answer them.
This behavior is almost completely stateless. An example state diagram for the OTAP Server application is shown below.

BLE OTAP application integration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 89

Figure 16. OTAP Server Example State Diagram

The OTAP Server waits in an idle state until a valid Image Block Request command is received and then moves to a pseudo-state
and starts sending the requested block. The transfer can be interrupted by some commands (Error Notification, Stop Image
Transfer, and so on) or other events (disconnection, user interruption, and so on).

The otap_interface.h file contains infrastructure for sending and receiving OTAP Commands and parsing OTAP image files.
Packed structure types are defined for all OTAP commands and type enumerations are defined for command parameter values
and some configuration values like the data payloads for the different transfer methods.

To receive ATT Indications and ATT Write Confirmations from the OTAP Client the OTAP Server application registers a set of
callbacks in the stack. This is done in the BleApp_Config() function.

App_RegisterGattClientProcedureCallback (BleApp_GattClientCallback);
App_RegisterGattClientIndicationCallback (BleApp_GattIndicationCallback);

This BleApp_GattIndicationCallback() function is called when any attribute is indicated so the handle of the indicated attribute
must be checked against a list of expected handles. In our case we are looking for the OTAP Control Point handle which was
obtained during the discovery procedure.

The BleApp_GattIndicationCallback() function from the demo calls an application-specific function called
BleApp_AttributeIndicated() in which the OTAP Commands are handled.

static void BleApp_AttributeIndicated
(
 deviceId_t deviceId,
 uint16_t handle,
 uint8_t* pValue,
 uint16_t length
)
{
 if (handle == mPeerInformation.customInfo.otapServerConfig.hControlPoint)
 {
 /* Handle OTAP Commands here */
 otapCommand_t* pOtaCmd = (otapCommand_t*)pValue;

 App_HandleOtapCmd (pOtaCmd->cmdId,
 (uint8_t*)(&(pOtaCmd->cmd)),
 length);
 }
 elseif (handle == otherHandle)
 {
 /* Handle other attribute indications here */
 /* ... Missing code here ... */

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
90 NXP Semiconductors

 }
 else
 {
 /*! A GATT Client is trying to GATT Indicate an unknown attribute value.
 * This should not happen. Disconnect the link. */
 Gap_Disconnect (deviceId);
 }
}

The App_HandleOtapCmd() function is the one which deals with the received command, sending responses if necessary or
starting an image block transfer.

To send OTAP Commands to the OTAP Client the application running the OTAP Server calls the
OtapServer_SendCommandToOtapClient() function which performs an ATT Write operation on the OTAP Control Point attribute.

static void OtapServer_SendCommandToOtapClient (deviceId_t otapClientDevId,
 void* pCommand,
 uint16_t
cmdLength)
{
 /* GATT Characteristic to be written - OTAP Client Control Point */
 gattCharacteristic_t otapCtrlPointChar;
 bleResult_t bleResult;

 /* Only the value handle element of this structure is relevant for this operation. */
 otapCtrlPointChar.value.handle =
 mPeerInformation.customInfo.otapServerConfig.hControlPoint;

 bleResult = GattClient_SimpleCharacteristicWrite (mPeerInformation.deviceId,
 &otapCtrlPointChar,
 cmdLength,
 pCommand);

 if (gBleSuccess_c == bleResult)
 {
 otapServerData.lastCmdSentToOtapClient =
 (otapCmdIdt_t)(((otapCommand_t*)pCommand)->cmdId);
 }
 else
 {
 /*! A BLE error has occured - Disconnect */
 Gap_Disconnect (otapClientDevId);
 }
}

The ATT Confirmation for the ATT Write is received in the BleApp_GattClientCallback() set up earlier which receives a GATT
procedure success message for a gGattProcWriteCharacteristicValue_c procedure type.

static void BleApp_GattClientCallback (deviceId_t serverDeviceId,
 gattProcedureType_t
procedureType,
 gattProcedureResult_t
procedureResult,
 bleResult_t error)
{
 if (procedureResult == gGattProcError_c)
 {
 attErrorCode_t attError = (attErrorCode_t) (error & 0xFF);
 if (attError == gAttErrCodeInsufficientEncryption_c ||
 attError == gAttErrCodeInsufficientAuthorization_c ||
 attError == gAttErrCodeInsufficientAuthentication_c)
 {
 /* Start Pairing Procedure */
 Gap_Pair(serverDeviceId, &gPairingParams);
 }

 BleApp_StateMachineHandler(serverDeviceId, mAppEvt_GattProcError_c);
 }

 else if (procedureResult == gGattProcSuccess_c)

BLE OTAP application integration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 91

 {
 switch(procedureType)
 {

 /* ... Missing code here... */

 case gGattProcWriteCharacteristicValue_c:
 BleApp_HandleValueWriteConfirmations (serverDeviceId);
 break;

 default:
 break;
 }

 BleApp_StateMachineHandler(serverDeviceId, mAppEvt_GattProcComplete_c);
 }
}

The BleApp_HandleValueWriteConfirmations() function deals with ATT Write Confirmations based on the requirements of the
application.

There are 2 possible transfer methods for Image Chunks, the ATT transfer method and the L2CAP transfer method. The OTAP
server is prepared to handle both, as requested by the OTAP Client.

To be able to use the L2CAP transfer method the OTAP Server application must register a L2CAP LE PSM and 2 callbacks: a
data callback and a control callback. This is done in the BleApp_Config() function.

 /* Register OTAP L2CAP PSM */
 L2ca_RegisterLePsm (gOtap_L2capLePsm_c,
 gOtapCmdImageChunkCocLength_c); /*!< The negotiated MTU must be
higher than the biggest data chunk that will be sent fragmented */
...
 App_RegisterLeCbCallbacks(BleApp_L2capPsmDataCallback, BleApp_L2capPsmControlCallback);

The data callback BleApp_L2capPsmDataCallback() is not used by the OTAP Server.

The control callback is used to handle L2CAP LE PSM connection requests from the OTAP Client and other events: PSM
disconnections, No peer credits, and so on. The OTAP Client must initiate the L2CAP PSM connection if it wants to use the L2CAP
transfer method.

static void BleApp_L2capPsmControlCallback(l2capControlMessageType_t messageType,
 void*
pMessage)
{
 switch (messageType)
 {
 case gL2ca_LePsmConnectRequest_c:
 {
 l2caLeCbConnectionRequest_t *pConnReq = (l2caLeCbConnectionRequest_t *)pMessage;

 /* Respond to the peer L2CAP CB Connection request - send a connection response.
*/
 L2ca_ConnectLePsm (gOtap_L2capLePsm_c,
 pConnReq-> deviceId,
 mAppLeCbInitialCredits_c);
 break;
 }
 case gL2ca_LePsmConnectionComplete_c:
 {
 l2caLeCbConnectionComplete_t *pConnComplete = (l2caLeCbConnectionComplete_t
*)pMessage;

 if (pConnComplete->result == gSuccessful_c)
 {
 /* Set the application L2CAP PSM Connection flag to TRUE beacuse there is no
gL2ca_LePsmConnectionComplete_c
 * event on the responder of the PSM connection. */
 otapServerData. l2capPsmConnected = TRUE;
 otapServerData. l2capPsmChannelId = pConnComplete->cId;

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
92 NXP Semiconductors

 }
 break;
 }
 case gL2ca_LePsmDisconnectNotification_c:
 {
 l2caLeCbDisconnection_t *pCbDisconnect = (l2caLeCbDisconnection_t *)pMessage;

 /* Call App State Machine */
 BleApp_StateMachineHandler (pCbDisconnect-> deviceId, mAppEvt_CbDisconnected_c);

 otapServerData. l2capPsmConnected = FALSE;
 break;
 }
 case gL2ca_NoPeerCredits_c:
 {
 l2caLeCbNoPeerCredits_t *pCbNoPeerCredits = (l2caLeCbNoPeerCredits_t *)pMessage;
 L2ca_SendLeCredit (pCbNoPeerCredits-> deviceId,
 otapServerData. l2capPsmChannelId,
 mAppLeCbInitialCredits_c);
 break;
 }
 case gL2ca_LocalCreditsNotification_c:
 {
 l2caLeCbLocalCreditsNotification_t *pMsg = (l2caLeCbLocalCreditsNotification_t
*)pMessage;

 break;
 }
 default:
 break;
 }
}

The ATT transfer method is supported by default but the L2CAP transfer method only works if the OTAP Client opens an L2CAP
PSM credit oriented channel.

To send data chunks to the OTAP Client the OTAP Server application calls the OtapServer_SendCImgChunkToOtapClient()
function which delivers the chunk via the selected transfer method. For the ATT transfer method the chunk is sent via the
GattClient_CharacteristicWriteWithoutResponse() function and for the L2CAP transfer method the chunk is sent via the
L2ca_SendLeCbData() function.

static void OtapServer_SendCImgChunkToOtapClient (deviceId_t otapClientDevId,
 void* pChunk,
 uint16_t chunkCmdLength)
{
 bleResult_t bleResult = gBleSuccess_c;

 if (otapServerData.transferMethod == gOtapTransferMethodAtt_c)
 {
 /* GATT Characteristic to be written without response - OTAP Client Data */
 gattCharacteristic_t otapDataChar;

 /* Only the value handle element of this structure is relevant for this operation. */
 otapDataChar.value.handle = mPeerInformation.customInfo.otapServerConfig.hData;

 bleResult = GattClient_CharacteristicWriteWithoutResponse
 (mPeerInformation.deviceId,
 &otapDataChar,
 chunkCmdLength,
 pChunk);
 }
 else if (otapServerData.transferMethod == gOtapTransferMethodL2capCoC_c)
 {
 bleResult = L2ca_SendLeCbData (mPeerInformation.deviceId,
 otapServerData.l2capPsmChannelId,
 pChunk,
 chunkCmdLength);
 }

BLE OTAP application integration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 93

 if (gBleSuccess_c != bleResult)
 {
 /*! A BLE error has occured - Disconnect */
 Gap_Disconnect (otapClientDevId);
 }
}

The OTAP Server demo application relays all commands received from the OTAP Client to a PC through the FSCI type protocol
running over a serial interface. It also directly relays all responses from the PC back to the OTAP Client.

Other implementations can bring the image to an external memory through other means of communication and directly respond
to the OTAP Client requests.

11.7.2 OTAP client
An application running an OTAP Client, before doing any OTAP-related operations, must wait for and OTAP Server to connect
and perform service and characteristic discovery. OTAP transactions can begin only after the OTAP Server writes the OTAP Control
point CCC Descriptor to receive ATT Notifications. This is the point when bidirectional communication is established between the
OTAP Server and Client and it is a good point to start OTAP transactions.

The OTAP Client can advertise the OTAP Service (which is done in the demo application) or the OTAP Server may already know
the advertising device has an OTAP Service based on application-specific means. In both situations the OTAP Server must
discover the handles of the OTAP Service and its characteristics.

Besides the OTAP Service instantiated in the GATT Database the OTAP Client needs to have some storage capabilities for the
downloaded image file and a bootloader which writes the image received over-the-air to the flash memory.

How to put the OTAP Service in the GATT Database is described in The OTAP Service and Characteristics.

The upgrade image storage capabilities in the demo OTAP Client applications are handled by the OtaSupport module from the
Framework which contains support modules and drivers. The OtaSupport module has support for both internal storage (a part
of the internal flash memory is reserved for storing the upgrade image) and external storage (a SPI flash memory chip). The demo
applications use external storage. The internal storage is viable only if there is enough space in the internal flash for the upgrade
image – the flash in this case should be at least twice the size of the largest application. The OtaSupport module also needs the
Eeprom module from the Framework to work correctly.

A bootloader is also provided as a separate application which is available in both source code and executable form. The OTAP
Bootloader executable resides in the \tools\wireless\binaries folder for each board, and has the following format:
bootloader_otap_<BOARD>.bin.

The details of the OTAP Bootloader are discussed in a separate section.

To use the OtaSupport module and the OTAP Bootloader several configuration options must be set up in both the source files
and the linker options of the toolchain.

First, the OTASupport and Eeprom module files must be included in the project. To configure the type of storage used the
gEepromType_d preprocessor definition must be given a value.

To use external storage set the gEepromType_d value to the appropriate type of EEPROM present on the board. The correct
value for KW40Z4 demo boards is gEepromDevice_AT45DB021E_c and the correct value for KW41Z4 demo boards is
gEepromDevice_AT45DB041E_c.

The valid gEepromType_d options can be found in the Eeprom.h file:

/* List of the EEPROM devices used on each of the FSL development boards */
#define gEepromDevice_None_c 0
#define gEepromDevice_InternalFlash_c 1
#define gEepromDevice_AT45DB161E_c 2 /* TWR-KW2x */
#define gEepromDevice_AT26DF081A_c 3 /* TWR-MEM */
#define gEepromDevice_AT45DB021E_c 4 /* FRDM-KW40 */
#define gEepromDevice_AT45DB041E_c 5 /* FRDM-KW41 */

The setting of the EEPROM type is done in the app_preinclude.h file for the demo applications:

/* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice_AT45DB041E_c

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
94 NXP Semiconductors

To use internal storage set up the gUseInternalStorageLink_d=1 symbol in the linker configuration window (Linker->Config tab in
the IAR project properties) and set the gEepromType_d value to gEepromDevice_InternalFlash_c in the app_preinclude.h file:

/* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice_InternalFlash_c

The OTAP demo applications for the IAR EW IDE have some settings in the Linker options tab which must be configured to use
OtaSupport and the OTAP Bootloader.

In the Project Target Options->Linker->Config tab, 3 symbols must be correctly defined. To use NVM storage the gUseNVMLink_d
symbol must be set to 1. The gUseInternalStorageLink_d symbol must be set to 0 when OTAP external storage is used and to 1
when internal storage is used. To enable the OTAP Bootloader linking the gUseBootloaderLink_d symbol must be set to 1 to
offset the application. An example linker configuration window for IAR is shown below.

Figure 17. Linker Config IAR EW IDE - OTAP Client External Storage and Bootloader Configuration

For MCUXpresso IDE the linker settings required for OTAP applications can be set up in the Project Properties->C/C++ Build-
>Settings->Tool Settings->MCU Linker->Miscellaneous tab. In this location symbols can be set up to be passed via command line
to the linker as shown in the screen-shot below.

BLE OTAP application integration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 95

Figure 18. OTAP linker settings - MCUX

The same linker settings for OTAP applications can be configured for Keil MDK in the Options for Target->Linker->Misc controls
text box. Edit the text box to add more linker symbols as shown in the figure.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
96 NXP Semiconductors

Figure 19. OTAP linker settings - Keil MDK

Once the application starts and bidirectional OTAP communication is established via the OTAP Service then the OTAP Client
must determine if the connected OTAP Server has a newer image than the one currently present on the device. This can be done
in two ways. Either the OTAP Server knows by some application-specific means that it has a newer image and sends a New
Image Notification to the OTAP Client or the OTAP Client sends a New Image Info Request to the OTAP Server and waits for a
response. The example application uses the second method. The New Image Info Request contains enough information about
the currently running image to allow the OTAP Server to determine if it has a newer image for the requesting device. The New
Image Info Response contains enough information for the OTAP Client to determine that de “advertised” image is newer and it
wants to download it. The best method is entirely dependent on application requirements.

An example function which checks if an ImageVerison field from a New Image Notification or a New Image Info Response
corresponds to a newer image (based on the suggested format of this field) is provided in the OTAP Client demo applications.
The function is called OtapClient_IsRemoteImageNewer().

The OTAP Client application is a little more complicated than the OTAP Server application because more state information needs
to be handled (current image position, current chink sequence number, image file parsing information, and so on). An example
state diagram for the OTAP Client is shown below. Note that some of the states may not be explicitly present in the demo
applications, this diagram is meant to emphasize the steps of the image download process.

BLE OTAP application integration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 97

Figure 20. OTAP Client Example State Diagram

After the OTAP Client determines that the peer OTAP Server has a suitable upgrade image available it can start the download
process. This is done by sending multiple Image Block Request messages and waiting for the Image Chunks via the selected
transfer method.

While receiving the image file blocks the OTAP Client application parses the image file and if any parameter of an image file sub-
element is invalid or the image file format is invalid it sends an Error Notification to the OTAP Server and tries to restart the
download process from the beginning or a known good position.

When an Image Chunk received its sequence number is checked and its content is parsed in the context of the image file format.
If the sequence number is not as expected then the block transfer is restarted from the last known good position. When all chunks
of an Image Block are received ne next block is requested if there are more blocks to download. When the last Image Block in an
Image File is received then the image integrity is checked (the received CRC from the Image File CRC sub-element is compared
to the computed CRC). The computed image integrity initialization and intermediary value must be reset to 0 before starting the
download of an image and when restarting the download of an image. If the image integrity check fails then the image download
process is restarted from the beginning. If the image integrity check is successful then the Bootloader is triggered, an Image
Download Complete message is sent to the OTAP Server and the MCU is restarted. After the restart the bootloader kicks in and
writes the new image to the flash memory and gives CPU control to the newly installed application.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
98 NXP Semiconductors

If at any time during the download process a Link Layer disconnection occurs then the image download process is restarted from
the last known good position when the link is reestablished.

As noted earlier the OTAP Client application needs to handle a lot of state information. In the demo application all this information
is held in the otapClientData structure of the otapClientAppData_t type. The type is defined and the structure is initialized in the
app.c file of the application. This structure is defined and initialized differently for the OTAP Client ATT and L2CAP example
applications. Mainly the transferMethod member of the structure is constant and has different values for the two example
applications and the L2CAP application structure has an extra member.

To receive write notifications when the OTAP Server writes the OTAP Control Point attribute and ATT Confirmations when it
indicates the OTAP Control Point attribute, the OTAP Client application must register a GATT Server callback and enable write
notifications for the OTAP Control Point attribute. This is done in the BleApp_Config() function in the app.c file.

static uint16_t otapWriteNotifHandles[] = {value_otap_control_point,
 value_otap_data};
...
static void BleApp_Config()
{
...
/* Register for callbacks*/
App_RegisterGattServerCallback (BleApp_GattServerCallback);
GattServer_RegisterHandlesForWriteNotifications (sizeof(otapWriteNotifHandles)/
sizeof(otapWriteNotifHandles[0]),

 otapWriteNotifHandles);
..
}

The BleApp_GattServerCallback() function handles all incoming communication from the OTAP Server.

static void BleApp_GattServerCallback (deviceId_t deviceId,
 gattServerEvent_t*
pServerEvent)
{
 switch (pServerEvent->eventType)
 {
 case gEvtCharacteristicCccdWritten_c:
 BleApp_CccdWritten (...) ;
 break;

 case gEvtAttributeWritten_c:
 BleApp_AttributeWritten (...);
 break;

 case gEvtAttributeWrittenWithoutResponse_c:
 BleApp_AttributeWrittenWithoutResponse (...);
 break;

 case gEvtHandleValueConfirmation_c:
 BleApp_HandleValueConfirmation (...);
 break;

 default:
 break;
 }
}

When the OTAP Server Writes a CCCD the BleApp_GattServerCallback() function calls the BleApp_CccdWritten() function which
sends a New Image Info Request when the OTAP Control Point CCCD is written it – this is the starting point of OATP transactions
in the demo applications.

When an ATT Write Request is made by the OTAP Server the the BleApp_GattServerCallback() function calls the
BleApp_AttributeWritten() function which handles the data as an OTAP command. Only writes to the OTAP Control Point are
handled as OTAP commands. For each command received from the OTAP Server there is a separate handler function which
performs required OTAP operations. These are:

• OtapClient_HandleNewImageNotification()

BLE OTAP application integration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 99

• OtapClient_HandleNewImageInfoResponse()

• OtapClient_HandleErrorNotification()

When an ATT Write Command (GATT Write Without Response) is sent by the OTAP Server the BleApp_GattServerCallback()
function calls the BleApp_AttributeWrittenWithoutResponse() function which handles Data Chunks if the selected transfer method
is ATT and returns an error if any problems are encountered. Data chunks are handled by the OtapClient_HandleDataChunk()
function.

static void BleApp_AttributeWrittenWithoutResponse (deviceId_t deviceId,
 uint16_t handle,
 uint16_t length,
 uint8_t* pValue)
{
 /* ... Missing code here ... */
 if (handle == value_otap_data)
 {
 /* ... Missing code here ... */
 if (otapClientData.transferMethod == gOtapTransferMethodAtt_c)
 {
 if (((otapCommand_t*)pValue)->cmdId == gOtapCmdIdImageChunk_c)
 {
 OtapClient_HandleDataChunk (deviceId,
 length,
 pValue);
 }
 }
 /* ... Missing code here ... */
 }
 /* ... Missing code here ... */
}

Finally, when an ATT Confirmation is received for a previously sent ATT Indication the BleApp_GattServerCallback() function
calls the BleApp_ HandleValueConfirmation() function which based on the last sent command to the OTAP Server performs the
necessary OTAP operations. This is done using separate confirmation handling functions for each command that is sent to the
OTAP Server. These functions are:

• OtapClient_HandleNewImageInfoRequestConfirmation()

• OtapClient_HandleImageBlockRequestConfirmation()

• OtapClient_HandleImageTransferCompleteConfirmation()

• OtapClient_HandleErrorNotificationConfirmation()

• OtapClient_HandleStopImageTransferConfirmation()

Outgoing communication from the OTAP Client to the OTAP Server are done using the OtapCS_SendCommandToOtapServer()
function. This function writes the value to be indicated to the OTAP Control Point attribute in the GATT database and then calls
the OtapCS_SendControlPointIndication() which checks if indications are enabled for the target device and sends the actual ATT
Indication. Both functions are implemented in the otap_service.c file.

bleResult_t OtapCS_SendCommandToOtapServer (uint16_t serviceHandle,
 void* pCommand,
 uint16_t cmdLength)
{
 uint16_t handle;
 bleUuid_t* pUuid = (bleUuid_t*)&uuid_char_otap_control_point;

 /* Get handle of OTAP Control Point characteristic */
 GattDb_FindCharValueHandleInService (pUuid, &handle, ...);

 /* Write characteristic value */
 GattDb_WriteAttribute (...);

 /* Send Command to the OTAP Server via ATT Indication */
 return OtapCS_SendControlPointIndication (handle);
}

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
100 NXP Semiconductors

static bleResult_t OtapCS_SendControlPointIndication (uint16_t handle)
{
 uint16_t hCccd;
 bool_t isIndicationActive;

 /* Get handle of CCCD */
 GattDb_FindCccdHandleForCharValueHandle (handle, &hCccd);
 Gap_CheckIndicationStatus (...);

 return GattServer_SendIndication (...);
}

The otap_interface.h file contains all the necessary information for parsing and building OTAP commands (packed command
structures type definitions, command parameters enumerations, and so on).

For the two possible image transfer methods (ATT and L2CAP) there are two separate demo applications. To be able to use the
L2CAP transfer method the OATP Client application must register a L2CAP LE PSM and 2 callbacks: a data callback and a control
callback. This is done in the BleApp_Config() function.

/* Register OTAP L2CAP PSM */
L2ca_RegisterLePsm (gOtap_L2capLePsm_c,
gOtapCmdImageChunkCocLength_c); /*!< The negotiated MTU must be higher than the biggest data
chunk that will be sent fragmented */
...
App_RegisterLeCbCallbacks(BleApp_L2capPsmDataCallback, BleApp_L2capPsmControlCallback);

The control callback is used to handle L2CAP LE PSM-related events: PSM disconnections, PSM Connection Complete, No peer
credits, and so on.

static void BleApp_L2capPsmControlCallback(l2capControlMessageType_t messageType,
 void*
pMessage)
{
 switch (messageType)
 {
 case gL2ca_LePsmConnectRequest_c:
 {
 l2caLeCbConnectionRequest_t *pConnReq =
 (l2caLeCbConnectionRequest_t *)pMessage;

 /* This message is unexpected on the OTAP Client, the OTAP Client sends L2CAP
 * PSM connection requests and expects L2CAP PSM connection responses.
 * Disconnect the peer. */
 Gap_Disconnect (pConnReq->deviceId);

 break;
 }
 case gL2ca_LePsmConnectionComplete_c:
 {
 l2caLeCbConnectionComplete_t *pConnComplete =
 (l2caLeCbConnectionComplete_t *)pMessage;

 /* Call the application PSM connection complete handler. */
 OtapClient_HandlePsmConnectionComplete (pConnComplete);

 break;
 }
 case gL2ca_LePsmDisconnectNotification_c:
 {
 l2caLeCbDisconnection_t *pCbDisconnect = (l2caLeCbDisconnection_t *)pMessage;

 /* Call the application PSM disconnection handler. */
 OtapClient_HandlePsmDisconnection (pCbDisconnect);

 break;
 }
 case gL2ca_NoPeerCredits_c:
 {
 l2caLeCbNoPeerCredits_t *pCbNoPeerCredits =

BLE OTAP application integration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 101

 (l2caLeCbNoPeerCredits_t *)pMessage;
 L2ca_SendLeCredit (pCbNoPeerCredits->deviceId,
 otapClientData.l2capPsmChannelId,
 mAppLeCbInitialCredits_c);
 break;
 }
 case gL2ca_LocalCreditsNotification_c:
 {
 l2caLeCbLocalCreditsNotification_t *pMsg =
 (l2caLeCbLocalCreditsNotification_t *)pMessage;

 break;
 }
 default:
 break;
 }
}

The OTAP Client must initiate the L2CAP PSM connection if it wants to use the L2CAP transfer method. This is done using the
L2ca_ConnectLePsm() function which is called by the OtapClient_ContinueImageDownload() if the transfer method is L2CAP
and the PSM is found to be disconnected.

static void OtapClient_ContinueImageDownload (deviceId_t deviceId)
{
 /* ... Missing code here ... */

 /* Check if the L2CAP OTAP PSM is connected and if not try to connect and exit
immediately. */
 if ((otapClientData.l2capPsmConnected == FALSE) &&
 (otapClientData.state != mOtapClientStateImageDownloadComplete_c))
 {
 L2ca_ConnectLePsm (gOtap_L2capLePsm_c,
 deviceId,
 mAppLeCbInitialCredits_c);
 return;
 }
 /* ... Missing code here ... */
}

The PSM data callback BleApp_L2capPsmDataCallback() is used by the OTAP Client to handle incoming image file parts from
the OTAP Server.

static void BleApp_L2capPsmDataCallback (deviceId_t deviceId,
 uint8_t* pPacket,
 uint16_t packetLength)
{
 OtapClient_HandleDataChunk (deviceId,
 packetLength,
 pPacket);
}

All data chunks regardless of their source (ATT or L2CAP) are handled by the OtapClient_HandleDataChunk() function. This
function checks the validity of Image Chunk messages, parses the image file, requests the continuation or restart of the image
download and triggers the bootloader when the image download is complete.

static void OtapClient_HandleDataChunk (deviceId_t deviceId,
 uint16_t length,
 uint8_t* pData);

The Image File CRC Value is computed on the fly as the image chunks are received using the OTA_CrcCompute() function from
the OtaSupport module which is called by the OtapClient_HandleDataChunk() function. The OTA_CrcCompute() function has a
parameter for the intermediary CRC value which must be initialized to 0 every time a new image download is started.

The actual write of the received image parts to the storage medium is also done in the OtapClient_HandleDataChunk() function
using the OtaSupport module. This is achieved using the following functions:

• OTA_StartImage() – called before the start of writing a new image to the storage medium.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
102 NXP Semiconductors

• OTA_CancelImage() – called whenever an error occurs and the image download process needs to be stopped/restarted
from the beginning.

• OTA_PushImageChunk() – called to write a received image chunk to the storage medium. Note that only the Upgrade
Image Sub-element of the image file is actually written to the storage medium.

• OTA_CommitImage() - called to set up what parts of the downloaded image are written to flash and other information for
the bootloader. The Value field of the Sector Bitmap Sub-element of the Image File is given as a parameter to this function.

• OTA_SetNewImageFlag() – called to set bootloader flags when a new image and the sector bitmap write to the storage
medium are complete. When the MCU is restarted, the bootloader transfers the new image from the storage medium to the
program flash.

To continue the image download process after a block is transferred or to restart it after an error has occurred the
OtapClient_ContinueImageDownload() function is called. This function is used in multiple situations during the image download
process.

To summarize, an outline of the steps required to perform the image download process is shown below:

• Wait for a connection from an OTAP Server

• Wait for the OTAP Server to write the OTAP Control Point CCCD

• Ask or wait for image information from the server

• If a new image is available on the server start the download process using the OtapClient_ContinueImageDownload()
function.

— If the transfer method is L2CAP CoC then initiate a PSM connection to the OTAP Server

• Repeat while image download is not complete

— Wait for image chunks

— Call the OtapClient_HandleDataChunk() function for all received image chunks regardless of the selected transfer
method

◦ Check image file header integrity using the OtapClient_IsImageFileHeaderValid() function.

◦ Write the Upgrade Image Sub-element to the storage medium using OtaSupport module functions.

◦ When the download is complete check image integrity

▪ If the integrity check is successful commit the image using the Sector Bitmap Sub-element and trigger the
bootloader

▪ If integrity check fails restart the image download from the beginning

◦ If the download is not complete ask for a new image chunk

— If any error occurred during the processing of the image chunk restart the download form the last known good
position

• If an image was successfully downloaded and transferred to the storage medium and the bootloader triggered then reset
the MCU to start the flashing process of the new image.

11.8 OTAP bootloader
The OTAP Bootloader is a program which resides in a reserved area of the flash memory of the device. It starts before the
application, checks some dedicated new image flags in non-volatile memory and if they are set it proceeds to replace the current
running application image with a new image received over-the-air. The new image can be retrieved from external or internal storage
depending on the configuration and available memory resources of the device. After the bootloader copies the new image it resets
the MCU.

If the new image flags are not set then the OTAP Bootloader simply gives control of the MCU to the current application immediately.

OTAP bootloader

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 103

If the image upgrade progress is interrupted before it is finished (by a power loss for example) the bootloader restarts the copy
procedure on the next MCU reset. It uses some flags in non-volatile memory to do this which are set only when the image copy
process has been completed successfully.

The OTAP Bootloader project and source code can be found in the \boards\<board>\wireless_examples\framework
\bootloader_otap\ folder.

For each target board a different executable image is generated. For the FRDMKW41Z demo boards the
bootloader_otap_frdmkw41z.bin is the appropriate bootloader binary image file. Usually the bootloade_otap_<board>.bin file is
the bootloader binary image file name for a specific board.

The next figure shows the memory layout of the device with the relevant sections and their size: the bootloader, the application
and the reserved areas for the situation where external storage is used for the image received over-the-air.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
104 NXP Semiconductors

Figure 21. Device Memory Layout – External Image Storage

The OTAP Bootloader image occupies the first part of the flash memory. In the current implementation it has a reserved area of
1/32 of the flash size regardless of the actual size of the image.

The OTAP Bootloader is configured to not overwrite itself so any image sent over the air must not contain the Bootloader
application in the reserved section. See the The OTAP Client section which describes how the Bootloader application can be
added to your image.

A typical application image has its memory divided into multiple sections.

• The ISR_TABLE section contains the MCU interrupt table, it has a fixed reserved size.

OTAP bootloader

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 105

• The BOOT_FLAGS section contains bootloader flags and the target bootloader version. The OTAP Bootloader looks for
this section immediately after the ISR_TABLE section which has a fixed size.

— New Image Flag – set by the application to tell the OTAP Bootloader that a new image is available. This flag is set by
calling the OTA_SetNewImageFlag() function from the OtaSupport module.

— Image Upgrade Complete Flag – set by the OTAP Bootloader when the new image copy process is completed
successfully.

— Bootloader Version – bootloader version expected by the application – set at compile time.

• The APPLICATION section contains actual application code

— The optional application non-volatile memory (NVM_STORAGE) area is placed right before the FSL_PROD_DATA
section if it is present.

— The optional internal image storage area (OTAP_INTERNAL_IMAGE_STORAGE) is placed before the non-volatile
memory area if it the non-volatile memory area is present or before the FSL_PROD_DATA section if the non-volatile
memory area is not present.

• The NVM_STOARGE section contains data which the application wishes to save between device power cycles.

• The OTAP_INTERNAL_IMAGE_STORAGE section is a reserved space where an image received over-the-air is stored
before it is copied over the APPLICATION section when the OTAP Bootloader is triggered.

• The FSL_PROD_DATA section contains the location of the upgrade image. The location is a 32bit number which is set at
compile time. It is set to 0xFFFFFFFF if external SPI flash storage is used or to a location inside the internal flash memory
(which is always smaller than 0xFFFFFFFF) if internal image storage is used. This is necessary for the OTAP Bootloader
to know the source of the upgrade image. This location in the flash memory is written with the correct value for the type of
storage used (internal or external) when the OTA_StartImage() function is called.

When internal storage is used for the image received over-the-air the memory layout changes as shown in the following image.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
106 NXP Semiconductors

Figure 22. Device Memory Layout – Internal Image Storage

The OTAP Bootloader expects a certain image format in the image storage location which is identical regardless if the storage is
internal or external.

The format of the raw image is detailed in the following table.

Table 24. BLE OTAP Image File General Format

Raw Image Field Field Length (bytes) Description

Image Size 4 This is the Image field size. It is set by
the OTA_CommitImage() function from
the OtaSupport module. Its value is
equal to the sum of all image parts
written using the
OTA_PushImageChunk() function.

Table continues on the next page...

OTAP bootloader

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 107

Table 24. BLE OTAP Image File General Format (continued)

Sector Bitmap 32 This field contains a sector bitmap of the
flash memory of the target device which
tells the bootloader which sectors to
overwrite and which to leave intact. This
field is the Value field of the Sector Bitmap
Sub-element of the image file sent over-
the-air. This field is set by the
OTA_CommitImage() function from the
OtaSupport module. The format of this
field is least significant byte first and least
significant bit first for each byte with the
least significant bytes and bits standing
for the lowest memory sections of the
flash.

The OTAP Bootloader is configured not to
overwrite itself regardless of the sector
bitmap settings of the flash area it resides
in. This setting can be changed in the
OTAP Bootloader application.

Image Variable This field contains the binary application
which is written to the APPLICATION
section of the flash. This field is the
Value field of the Upgrade Image Sub-
element of the image file sent over-the-
air. This field is gradually set by each
call to the OTA_PushImageChunk()
function.

Over the Air Programming (OTAP)

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
108 NXP Semiconductors

Chapter 12
Creating a BLE Application When the BLE Host
Stack is Running on Another Processor

This chapter describes how to create a BLE application (host), when the Bluetooth Low Energy Host Stack is running on another
processor (blackbox) and offers code exemples to explain how to achieve this.

The supported serial interfaces between the two chips(application and the BLE Host Stack) are UART, SPI and I2C.

The typical applications employing BLE Host Stack blackboxes are host systems such as a PC tool or an embedded system that
has an application implementation. This chapter describes an embedded application.

See FSCI for BLE Host Stack Reference Manual for explicit information on exercising the BLE Host Stack functionality through
a serial communication interface to a host system.

12.1 Serial manager and FSCI configuration
For creating an embedded application that communicates with the BLE Host Stack using the serial interface, the following steps
must be done:

12.1.1 Serial manager initialization
The function that must be called for Serial Manager initialization is located in SerialManager.h:

/* Init serial manager */
SerialManager_Init();

12.1.2 FSCI configuration and initialization
By default, the FSCI module is disabled. It must be enabled by setting gFsciIncluded_c to 1. Also, gFsciLenHas2Bytes_c must
set to 1 because BLE Host Stack interface commands and events need serial packets bigger than 255 octets.

For more information on the following configuration parameters refer to the FSCI chapter of the Connectivity Framework
Reference Manual.

To configure the FSCI module, the following parameters can be set on both the BLE Application project and the BLE blackbox:

/* Mandatory, enables support for FSCI Host functionality */
#define gFsciHostSupport_c 1
/* Mandatory, enables support for FSCI functionality */
#define gFsciIncluded_c 1
/* Mandatory, enables usage of 2 bytes FSCI packet length field */
#define gFsciLenHas2Bytes_c 1
/* Recommended, enables FSCI Ack transmission for each FSCI received packet */
#define gFsciTxAck_c 1
/* Recommended, enables FSCI Ack reception after each FSCI sent packet */
#define gFsciRxAck_c 1
/* Recommended, enables FSCI reception restart if no bytes are received in due time */
#define gFsciRxTimeout_c 1
/* Optional, enables FSCI reception restart by polling, used on bare metal */
#define mFsciRxTimeoutUsePolling_c 1
/* Optional, enables FSCI Rx of Ack by polling, used on bare metal */
#define gFsciRxAckTimeoutUseTmr_c 0

To perform the FSCI module initialization, the following code can be used:

#define gSerialMgrUseUart_c 1
#define gSerialMgrUseSPI_c 0
#define gSerialMgrUseIIC_c 0

#if gSerialMgrUseUart_c

Serial manager and FSCI configuration

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 109

 #define gAppFSCIHostInterfaceBaud_d gUARTBaudRate115200_c
 #define gAppFSCIHostInterfaceType_d gSerialMgrUart_c
 #define gAppFSCIHostInterfaceId_d 1
#elif gSerialMgrUseSPI_c
 #define gAppFSCIHostInterfaceBaud_d gSPI_BaudRate_1000000_c
 #define gAppFSCIHostInterfaceType_d gSerialMgrSPIMaster_c
 #define gAppFSCIHostInterfaceId_d 0
#elif gSerialMgrUseIIC_c
 #define gAppFSCIHostInterfaceBaud_d gIIC_BaudRate_100000_c
 #define gAppFSCIHostInterfaceType_d gSerialMgrIICMaster_c
 #define gAppFSCIHostInterfaceId_d 1
#endif

/* FSCI serial configuration structure */
static const gFsciSerialConfig_t mFsciSerials[] = {
 /* Baudrate , interface type, channel No, virtual interface */
 {gAppFSCIHostInterfaceBaud_d, gAppFSCIHostInterfaceType_d, gAppFSCIHostInterfaceId_d, 0},
 { APP_SERIAL_INTERFACE_SPEED, APP_SERIAL_INTERFACE_TYPE, APP_SERIAL_INTERFACE_INSTANCE,
1},
};

/* Init FSCI */
FSCI_Init((void*) mFsciSerials);

12.1.3 FSCI handlers (GAP, GATT and GATTDB) registration
For receiving messages from all the BLE Host Stack serial interfacing layers (GAP, GATT and GATTDB), a function handler must
be registered in FSCI for each layer:

fsciBleRegister(0);

12.2 BLE host stack initialization
The BLE Host Stack must be initialized when platform setup is complete and all RTOS tasks have been started. This initialization
is done by restarting the blackbox using a FSCI CPU Reset Request command. This is performed automatically by the
Ble_Initialize(App_GenericCallback) function.

/* Send FSCI CPU reset command to BlackBox */
FSCI_transmitPayload(gFSCI_ReqOpcodeGroup_c, mFsciMsgResetCPUReq_c, NULL, 0, fsciInterface);

The completion of the BLE Host Stack initialization is signaled by the reception of the GAP-
GenericEventInitializationComplete.Indication event (over the serial communication interface, in FSCI). The BLE-
HostInitialize.Request command is not required to be sent to the blackbox (the entire initialization is performed by the blackbox,
when it resets).

12.3 GATT database configuration
The GATT Database always resides on the same processor as the entire BLE Host Stack, so the attributes must be added by the
host application using the serial communication interface.

To create a GATT Database remotely, GATTDBDynamic commands must be used. The GATTDBDynamic API is provided to the
user that performs all the required memory allocations and sends the FSCI commands to the blackbox. The result of the operation
is returned, including optionally the service, characteristic and cccd handles returned by the blackbox.

Current supported API for adding services is the following:

bleResult_t GattDbDynamic_AddGattService (gattServiceHandles_t* pOutServiceHandles);
bleResult_t GattDbDynamic_AddGapService (gapServiceHandles_t* pOutServiceHandles);
bleResult_t GattDbDynamic_AddIpssService (ipssServiceHandles_t* pOutServiceHandles);
bleResult_t GattDbDynamic_AddHeartRateService (heartRateServiceHandles_t*

Creating a BLE Application When the BLE Host Stack is Running on Another Processor

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
110 NXP Semiconductors

pOutServiceHandles);
bleResult_t GattDbDynamic_AddBatteryService (batteryServiceHandles_t* pOutServiceHandles);
bleResult_t GattDbDynamic_AddDeviceInformationService (deviceInfoServiceHandles_t*
pOutServiceHandles);

The service handles are optional.

Also, a generic function is provided, so that the user can add any generic service to the database:

bleResult_t GattDbDynamic_AddServiceInDatabase (serviceInfo_t* pServiceInfo);

Usually, a BLE Application is going to be ported from a single chip solution, where the BLE App and the BLE stack reside on the
same processor and the GATT database is populated statically. The user will need to remove all the attribute handles from any
structure and replace them with gGattDbInvalidHandle_d and then populate them after the services are added dynamically to
the database with the handles returned by the previous API.

12.4 FSCI host layer
The BLE GAP, GATT, GATTDB and L2CAP API included in the BLE interface is implemented as a FSCI Host Layer that has to
be added to the BLE Application project when it resides on a separate processor than the BLE stack.

This layer is responsible for serializing API to corresponding FSCI commands, sending them to the blackbox, receiving and
deserializing FSCI statuses and events, presenting them to the BLE Application and arbitrating access from multiple tasks to the
serial interface.

All the GAP, GATT, GATTDB and L2CAP API is executed asynchronously, so the user context will block waiting for the response
from the blackbox, which may be the status of the request and optionally a FSCI event that includes the out parameters of a
synchronous function.

There are also functions with out parameters that are not executed synchronously and they will be provided asynchronously
through a later FSCI event. It is the responsibility of the FSCI Host layer to keep the application allocated memory between the
time of the request and the completion of the event with the actual values of the out parameters and populate them accordingly.

The BLE API execution inside the FSCI Host layer will first wait for gaining access to the serial interface through a mutex. Once
the access gained, the FSCI request is sent to the serial interface to the blackbox. Then, by default, the serial interface response
is received by polling until the whole FSCI packet is received. The other option available is to block the user task to wait for an
OS event that will be set by the FSCI module when the status is received. For more information on this, see the Connectivity
Framework document on the FSCI module.

The API can have out paramteres that are to be received immediately after the status of the request. If so and the status of the
request is success, the polling mechanism will continue to receive the whole FSCI packet of the BLE event and get the out
parameters and fill the values in the application provided memory space. After obtaining the status and optionally the event, the
execution of the request is considered completed, the mutex to the serial interface is unlocked and the execution flow is returned
to the user calling context.

FSCI host layer

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 111

Chapter 13
Hybrid (Dual-Mode) Bluetooth® Low Energy and
IEEE® 802.15.4 Applications

This section describes how to add IEEE 802.15.4 functionality to an existing BLE application in order to create a dual mode
application.

QN908X MCU-based platforms do not support 802.15.4, so this chapter about hybrid applications does not apply to these
platforms.

13.1 Project structure
The project structure should follow the one from the demo applications in the examples/hybrid folder, as illustrated by the following
figure:

Figure 23. Hybrid Demo Application – Project Structure

As one can observe, the ieee_802.15.4 folder is added to the existing structure to include the Phy and Mac functionality specific
to IEEE 802.15.4. The Phy folder contains interface and sources, while the Mac folder contains the precompiled MAC library and
interface. The App folder contains global MAC definitions.

13.2 Project options
Two important compiler defines must be added in the app_preinclude.h file:

Hybrid (Dual-Mode) Bluetooth® Low Energy and IEEE® 802.15.4 Applications

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
112 NXP Semiconductors

• gMacFeatureSet_d must be defined with the value gMacFeatureSet_06M0_d

• gMWS_Enabled_d must be defined with the value 1

13.3 Common files for hybrid applications
All the hybrid applications should use the existing files from examples/hybrid/common without editing them. These perform
common initializations for both BLE and 802.15.4.

The BLE initializations are similar to the ones described in BLE initialization on page 61.

In the ApplMain.c, both the BLE and 802.15.4 functionalities are enabled in the main_task function:

/* BLE Host Stack Init */
Ble_Initialize(App_GenericCallback);

/* 802.15.4 PHY and MAC initialization */
Phy_Init();
MAC_Init();

App_Init();

13.4 Application-specific files
The main logic specific to each application is defined in each app.c file.

For the BLE functionality, this file contains the definitions of all callbacks and API interactions, as described in the previous chapters
of this document.

To add specific 802.15.4 functionality, besides the initializations performed in the common files (see previous section), the following
steps must be followed:

• Include the required headers:

/* 802.15.4 */
#include "PhyInterface.h"
#include "MacInterface.h"

• Define required parameters:

/* 802.15.4 definitions */
#define mDefaultValueOfChannel_c (0x07FFF800)

#define mDefaultValueOfShortAddress_c (0xCAFE)
#define mDefaultValueOfPanId_c (0xBEEF)
#define mMacExtendedAddress_c (0x1111111111111111)
#define mMaxKeysToReceive_c (32)

• Declare and define a MAC instance and MAC SAP handlers:

uint8_t mMacInstance;
resultType_t MCPS_NWK_SapHandler (mcpsToNwkMessage_t* pMsg, instanceId_t instanceId);
resultType_t MLME_NWK_SapHandler (nwkMessage_t* pMsg, instanceId_t instanceId);

• Initialize the MAC:

mMacInstance = BindToMAC(0);
Mac_RegisterSapHandlers(MCPS_NWK_SapHandler, MLME_NWK_SapHandler, mMacInstance);

Then the MAC APIs can be used to communicate over 802.15.4.

For example, the following functions starts the application as a MAC Coordinator:

uint8_t App_Init (void)
{

Common files for hybrid applications

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 113

 mMacInstance = BindToMAC(0);
 Mac_RegisterSapHandlers(MCPS_NWK_SapHandler, MLME_NWK_SapHandler, mMacInstance);

 /* Start 802.15.4 */
 App_StartScan(gScanModeED_c);
}

Example of a MLME SAP to handle the MAC command responses:

resultType_t MLME_NWK_SapHandler (nwkMessage_t* pMsg, instanceId_t instanceId)
{
 switch(pMsg-> msgType)
 {
 case gMlmeScanCnf_c:
 /* Process the Scan confirm. */
 break;
 case gMlmeStartCnf_c:
 /* Process the MLME-START confirm. */
 break;
 case gMlmeAssociateInd_c:
 /* A device sent us an Associate Request. We must send back a response. */
 break;
 }
 MEM_BufferFree(pMsg);
 return gSuccess_c;
}

Example of a MCPS SAP which handles the MAC data indications and confirms:

resultType_t MCPS_NWK_SapHandler (mcpsToNwkMessage_t * pMsg, instanceId_t instanceId)
{
 switch (pMsg-> msgType)
 {
 case gMcpsDataCnf_c:
 /* The MCPS-Data confirm is sent by the MAC to the network
 or application layer when data has been sent. */
 break;
 case gMcpsDataInd_c:
 /* The MCPS-Data indication is sent by the MAC to the network
 or application layer when data has been received. */
 break;
 }

 MEM_BufferFree(pMsg);
 return gSuccess_c;
}

Hybrid (Dual-Mode) Bluetooth® Low Energy and IEEE® 802.15.4 Applications

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
114 NXP Semiconductors

Chapter 14
Revision History

This table summarizes revisions to this document.

Table 25. Revision history

Revision number Date Substantive changes

0 06/2015 Initial release

1 10/2015 Added new applications

2 04/2016 Adapted the text and code extracts in
OTAP chapter to match the new BLE 4.2
implementation changes.

Added section that describes how to
create an OTAP image file from a BIN
type file.

Added more detailed explanations and
diagrams to the Bootloader section.

Added LE Long Frames section.

Updated Low Power section.

Updated RTOS section.

Added Enhanced Privacy section.

Added Dynamic GATT Database section.

Updated GAP section with LE Secure
Connections references.

3 07/2016 Updated the Application Structure
section.

4 09/2016 Public information

5 12/2017 Adapted the text to match the QN9080
platform which supports BLE 5.0

6 03/2018 Updated for KW36

7 06/2018 Updated for KW35

Bluetooth® Low Energy Application Developer’s Guide, Revision 6, March 2018
NXP Semiconductors 115

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil,

SecurCore, Thumb, TrustZone, and μVision are registered trademarks of Arm Limited (or its

subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks

of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are trademarks

and service marks licensed by Power.org.

Ⓒ 2018 NXP B.V.

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	1 Introduction
	2 Prerequisites
	2.1 RTOS task queues and events
	2.2 GATT database
	2.3 Non-Volatile Memory (NVM) access

	3 Host Stack Initialization and APIs
	3.1 Host Tasks initialization
	3.2 Main function to initialize the host
	3.3 HCI entry and exit points
	3.4 Host Stack libraries and API availability
	3.5 Synchronous and asynchronous functions
	3.6 Radio TX Power level

	4 Generic Access Profile (GAP) Layer
	4.1 Central setup
	4.1.1 Scanning
	4.1.2 Initiating and closing a connection
	4.1.3 Pairing and bonding

	4.2 Peripheral setup
	4.2.1 Advertising
	4.2.2 Pairing and bonding

	4.3 LE data packet length extension
	4.4 Enhanced privacy feature
	4.4.1 Introduction
	4.4.1.1 Resolvable private addresses
	4.4.1.2 Non-resolvable private addresses
	4.4.1.3 Multiple identity resolving keys

	4.4.2 Host privacy
	4.4.3 Controller privacy
	4.4.3.1 Scanning and initiating
	4.4.3.2 Advertising
	4.4.3.3 Connected

	5 Generic Attribute Profile (GATT) Layer
	5.1 Client APIs
	5.1.1 Installing client callbacks
	5.1.1.1 Client procedure callback
	5.1.1.2 Notification and indication callbacks

	5.1.2 MTU exchange
	5.1.3 Service and characteristic discovery
	5.1.3.1 Discover all primary services
	5.1.3.2 Discover primary services by UUID
	5.1.3.3 Discover included services
	5.1.3.4 Discover all characteristics of a service
	5.1.3.5 Discover characteristics by UUID
	5.1.3.6 Discover characteristic descriptors

	5.1.4 Reading and writing characteristics
	5.1.4.1 Characteristic value read procedure
	5.1.4.2 Characteristic read by UUID procedure
	5.1.4.3 Characteristic read multiple procedure
	5.1.4.4 Characteristic write procedure

	5.1.5 Reading and writing characteristic descriptors
	5.1.6 Resetting procedures

	5.2 Server APIs
	5.2.1 Server callback
	5.2.2 Sending notifications and indications
	5.2.3 Attribute write notifications

	6 GATT database application interface
	6.1 Writing and reading attributes
	6.2 Finding attribute handles

	7 Creating GATT database
	7.1 Creating static GATT database
	7.1.1 Declaring custom 128-bit UUIDs
	7.1.2 Declaring a service
	7.1.2.1 Service declaration macros
	7.1.2.2 Include declaration macros

	7.1.3 Declaring a characteristic
	7.1.3.1 Characteristic declaration macros
	7.1.3.2 Declaring characteristic values
	7.1.3.3 Declaring characteristic descriptors

	7.1.4 Static GATT database definition examples

	7.2 Creating a GATT database dynamically
	7.2.1 Memory considerations
	7.2.2 Initialization and release
	7.2.3 Adding services
	7.2.4 Adding characteristics and descriptors
	7.2.5 Removing services and characteristics

	8 Creating a Custom Profile
	8.1 Defining custom UUIDs
	8.2 Creating service functionality
	8.3 GATT client interactions

	9 Application Structure
	9.1 Folder structure
	9.2 Application main framework
	9.2.1 Main task
	9.2.2 Application messaging
	9.2.3 Idle task

	9.3 BLE connection manager
	9.3.1 GAP generic event
	9.3.2 GAP configuration
	9.3.3 GAP connection event
	9.3.4 Privacy

	9.4 GATT database
	9.5 RTOS specifics
	9.5.1 Operating system selection
	9.5.2 BLE tasks configuration

	9.6 Board configuration
	9.7 BLE initialization
	9.8 BLE host stack configuration
	9.9 Profile configuration
	9.10 Application code
	9.11 Multiple connections
	9.12 Bluetooth address generation

	10 Low-Power Management
	10.1 System considerations
	10.2 When/how to enter low-power
	10.3 Deep sleep modes for Kinetis MCU-based platforms
	10.4 Deep sleep modes for QN908X MCU-based platforms
	10.5 Low-power usage examples
	10.5.1 Using low-power when BLE stack is idle
	10.5.2 Using low-power when advertising
	10.5.3 Using low-power when scanning
	10.5.4 Using low-power in connection

	11 Over the Air Programming (OTAP)
	11.1 General functionality
	11.2 BLE OTAP service-profile
	11.2.1 OTAP service and characteristics
	11.2.2 OTAP server and OTAP client interactions

	11.3 BLE OTAP protocol
	11.3.1 Protocol design considerations
	11.3.2 BLE OTAP commands
	11.3.2.1 New image notification command
	11.3.2.2 New image info request command
	11.3.2.3 New image info response command
	11.3.2.4 Image block request command
	11.3.2.5 Image chunk command
	11.3.2.6 Image transfer complete command
	11.3.2.7 Error notification command
	11.3.2.8 Stop image transfer command

	11.3.3 OTAP client–server interactions

	11.4 BLE OTAP image file format
	11.4.1 BLE OTAP header
	11.4.1.1 Upgrade file identifier
	11.4.1.2 Header version
	11.4.1.3 Header length
	11.4.1.4 Header field control
	11.4.1.5 Company identifier
	11.4.1.6 Image ID
	11.4.1.7 Image version
	11.4.1.8 Header string
	11.4.1.9 Total image file size

	11.5 Building BLE OTAP image file from SREC file
	11.6 Building BLE OTAP image file from BIN file
	11.7 BLE OTAP application integration
	11.7.1 OTAP server
	11.7.2 OTAP client

	11.8 OTAP bootloader

	12 Creating a BLE Application When the BLE Host Stack is Running on Another Processor
	12.1 Serial manager and FSCI configuration
	12.1.1 Serial manager initialization
	12.1.2 FSCI configuration and initialization
	12.1.3 FSCI handlers (GAP, GATT and GATTDB) registration

	12.2 BLE host stack initialization
	12.3 GATT database configuration
	12.4 FSCI host layer

	13 Hybrid (Dual-Mode) Bluetooth® Low Energy and IEEE® 802.15.4 Applications
	13.1 Project structure
	13.2 Project options
	13.3 Common files for hybrid applications
	13.4 Application-specific files

	14 Revision History

