KW45 & K32W1 MINIMUM BOM

CONFIDENTIAL AND PROPRIETARY

SECURE CONNECTIONS FOR A SMARTER WORLD

KW45 & K32W148 HVQFN48 – 7X7

Power config diagram – DCDC Bypass

Configuration

- Bypass DCDC
- External 3.3 V for LDO-CORE, LDO-SYS, VDD_IO
- Generate VPA_2PGHZ internally from VDD_RF

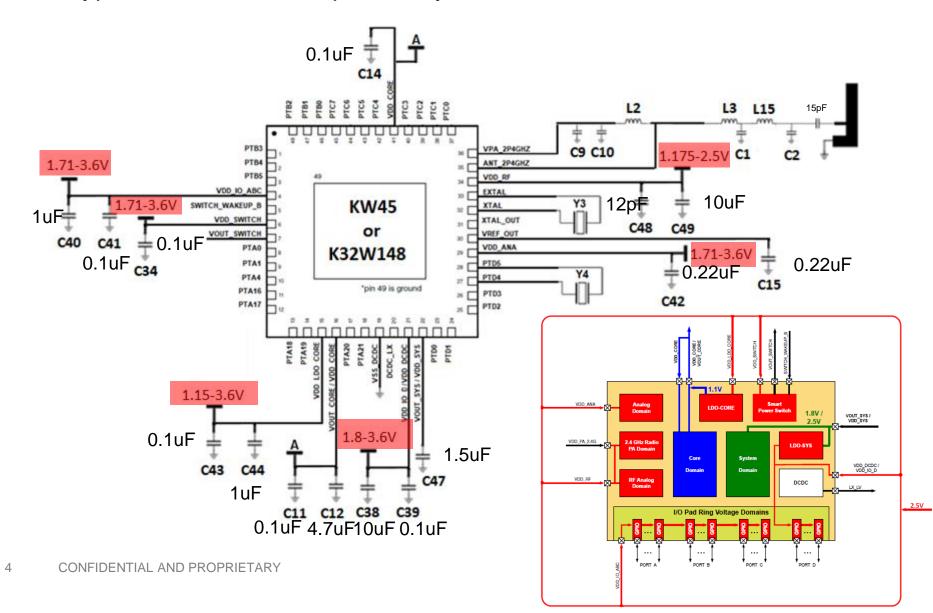
Regulator	Output	Input volt	age range	
DCDC	1.8V to 2.5 V	1.8V t	o 2.5 V	
LDO-SYS	1.8 / 2.5 V	/ 2.5 V 1.8~3.6 V		
LDO-CORE	1.05/1.1/1.15 V	1.71~3.6 V (Enable);	1.71~3.6 V (Enable); 0.84~1.21 V (Bypass)	
VPA_2P4GH	Z Tx Output Power	VPA source	VDD_RF	
0.9 V	+1.8 dBm		1.175 ~3.6 V	
1.525 V	+7 dBm	External or internal	1.8 ~ 3.6 V	
2.2 V	+10 dBm		2.475~3.6 V	

Note: VPA_2P4GHZ voltage depends on Tx power level. It can be powered externally or internally.

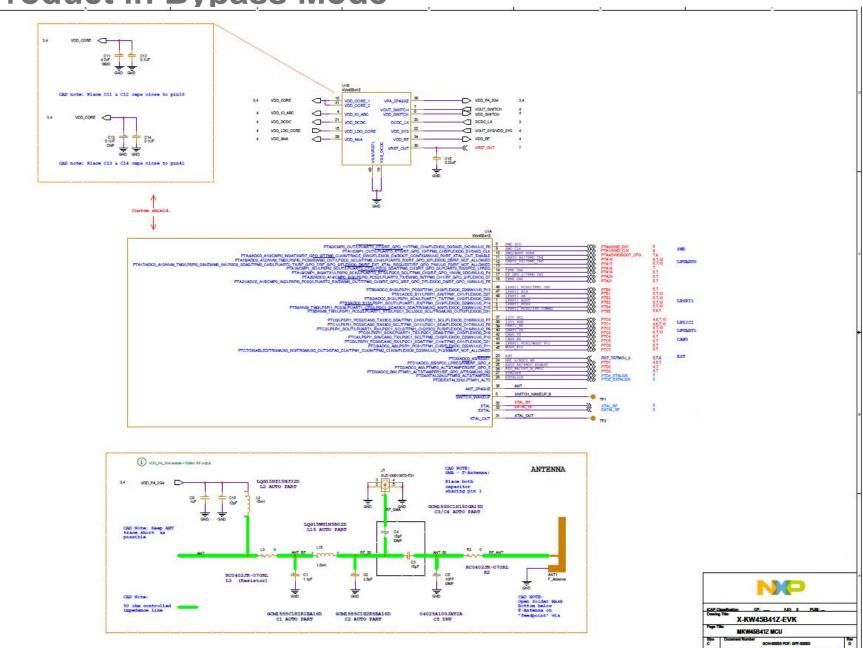
00100 1.1V VDD AN/ LDO-CORE 1.8V / VOUT_SYS / VDD_SYS 2.5V VDD_PA_2.4G 2.4 GHz Ra LDO-SYS PA Domai Core System VDD_DCDC/ VDD_IO_D Domain Domain VDD BE RF Analo DCDC LX LV I/O Pad Ring Voltage Domains ... •••

VPA_2P4GHZ voltage depends on Tx power level. It can be powered externally or internally. For internal generation, VDD_RF voltage must be equal to or exceed VPA + 275 mV.

Warning: Do not connect the pin VDD_SYS (internal connection)



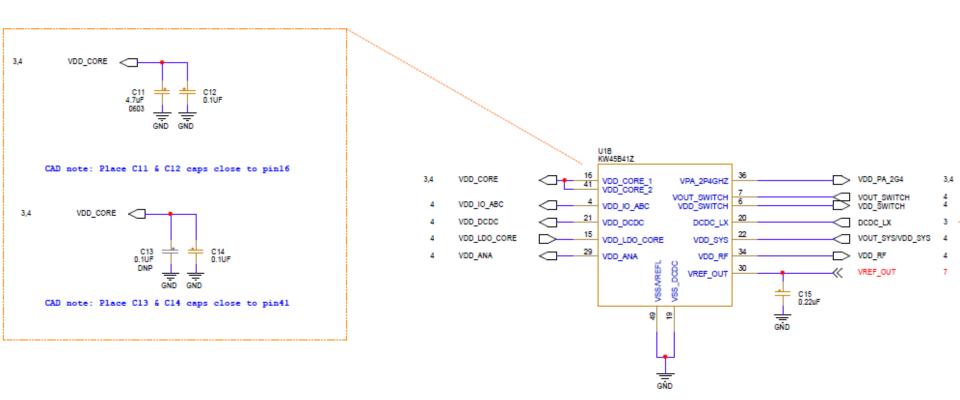
2.5V


DCDC Bypass Schematic

HVQFN48 – 7x7

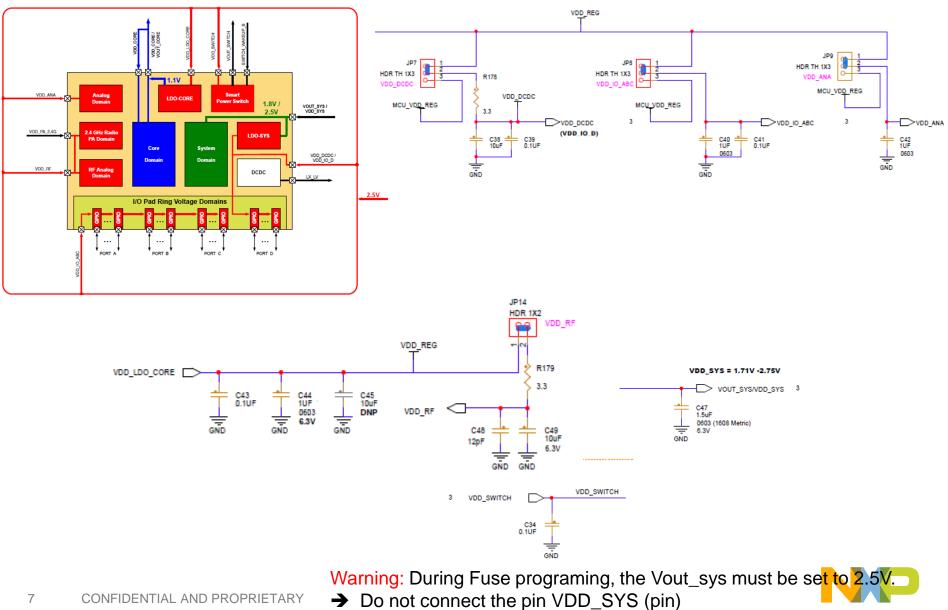
DCDC bypass mode with the possibility of Bluetooth LE Low Power mode active.

Product in Bypass Mode


HVQFN48 – 7x7

April 19, 2022

Sheet 3 d


5

Evaluation board – Recommendation - Bypass

Evaluation board – Recommendation - Bypass

7 CONFIDENTIAL AND PROPRIETARY

→ It's done internaly on the IC

DCDC Bypass BOM

HVQFN48 – 7x7

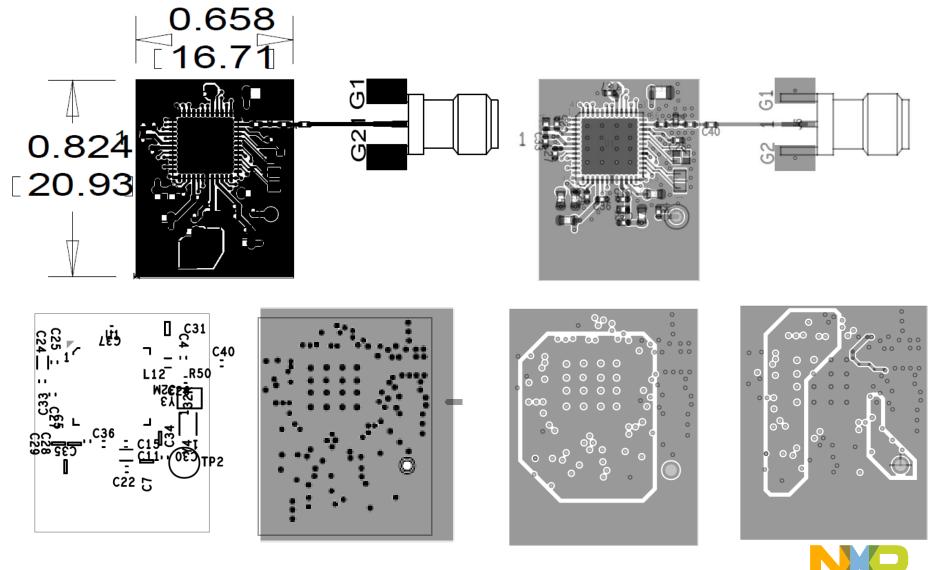
Bluetooth LE Low Power mode option available (32kHz populated)

Reference	Value	
C11,C14,C34,C39,C41,C43	0.1uF	
C40,C44	1uF	
C12	4.7uF	
C15,C42	0.22uF	
C48	12pF	
	1.5uF	
C47	(or 1uF acceptable)	
C38,C49	10uF	
Printed IFA antenna	2.4GHZ	
	KW45B41Z	
U1	Or	
	K32W148	
Y3	32MHz	
Y4	32.768 kHz	
RF matching (whatever the RF output po	wer)	
С9	1 uF	
C10	12 pF	
L2 (LQG15HZ15NJ02D)	15 nH	
L3 (resistor shunt)	0 ohm	
C1 (GCM1555C1H1R1BA16)	1.1 pF	
L15 (<i>LQG15WH1N5B02</i>)	1.5nH	
C2 (GCM1555C1H2R5BA16)	2.5 pF	

Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.

8

DCDC Bypass Pin configuration


HVQFN48 – 7x7

Pin Number	Pin Name	Bypass connection
4	VDD_IO_ABC	1.71-3.6V
6	VDD_SWITCH	1.71-3.6V
7	VOUT_SWITCH	Floating (when not used)
15	VDD_LDO_CORE	1.15-3.6V
		0.95-1.1V (Mid drive) or
16	VDD_CORE1	1.04-1.21V (Normal drive or safe mode voltage)
20	DCDC_LX	Floating (not used)
21	VDD_DCDC	1.8-3.6V
22	VOUT_SYS/VDD_SYS	Floating (except the decoupling capacitor)
29	VDD_ANA	1.71-3.6V
30	VREF_OUT	Floating (except the decoupling capacitor)
34	VDD_RF	1.175-2.5V
36	VPA_2P4GHZ	0.9-2.4V
		0.95-1.1V (Mid drive) or
41	VDD_CORE2	1.04-1.21V (Normal drive or safe mode voltage)
49	VSS	GND
19	VSS_DCDC	GND

Warning: → Do not connect the pin VDD_SYS (internal connection)

Bluetooth LE Low Power mode option available (32kHz populated)

Layout example on bypass mode HVQFN48WF – 7x7

EVK – Power config diagram – DCDC Buck

1.175 ~3.6 V

1.8 ~ 3.6 V

2.475~3.6 V

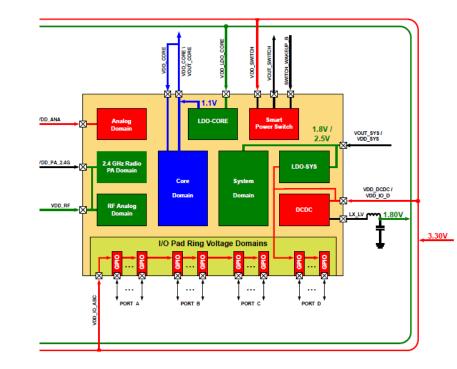
Configuration

Bypass DCDC

0.9 V

1.525 V

2.2V


- External 3.3 V for LDO-CORE, LDO-SYS, VDD_IO
- Generate VPA_2PGHZ internally from VDD_RF

+1.8 dBm

+7 dBm

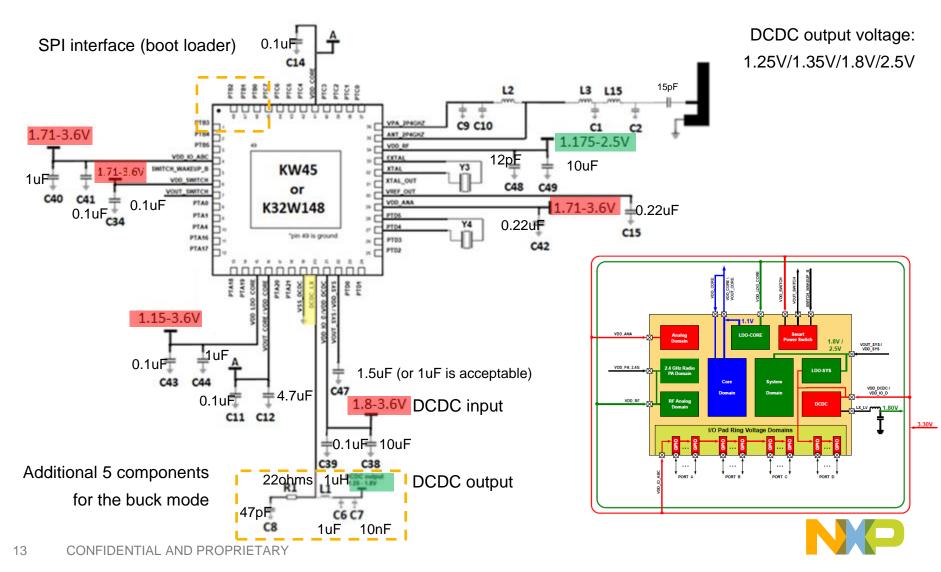
+10 dBm

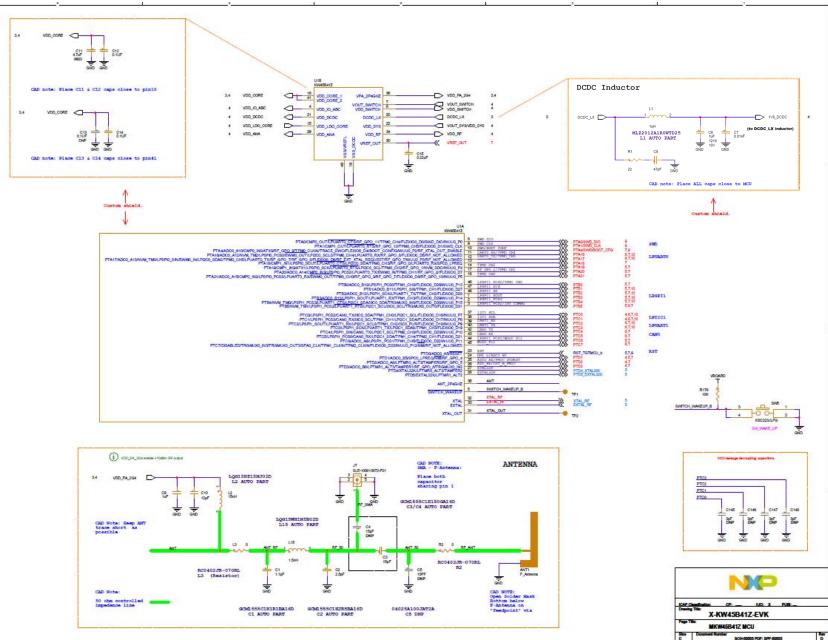
Regulator	Output	Input volta	age range
DCDC	1.25/1.35/1.8/2.5 V	1.71~3.6 V; >= 0	output + 500 mV
LDO-SYS	1.8 / 2.5 V	1.8~	3.6 <mark>V</mark>
LDO-CORE	1.05/1.1/1.15V	1.71~3.6 V (Enable);	0.84~1.21 V (Bypass)
VPA_2P4GHZ Tx Output VPA source VDI		VDD_RF	

Note: VPA_2P4GHZ voltage depends on Tx power level. It can be powered externally or internally. For internal generation, it can support up to +7 dBm and VDD_RF voltage must meet specific voltage range.

VPA_2P4GHZ voltage depends on Tx power level. It can be powered externally or internally. For internal generation, VDD_RF voltage must be equal to or exceed VPA + 275 mV.

External or internal

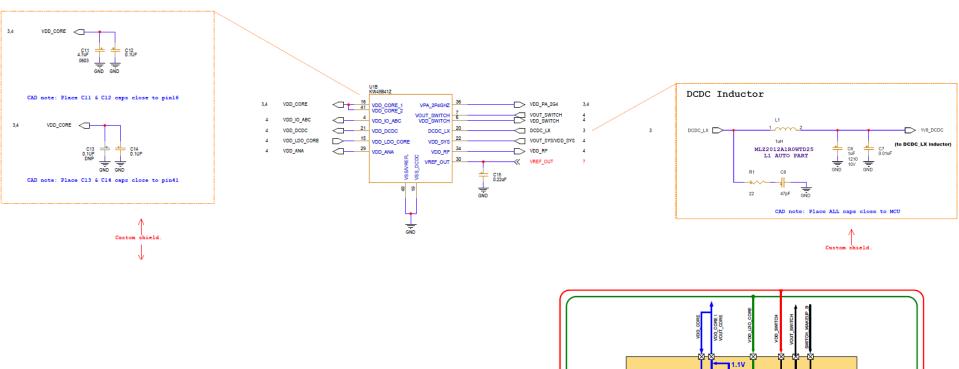

Warning: During Fuse programing, the Vout sys must be set to 2.5V. → Do not connect the pin VDD_SYS (internal connection)

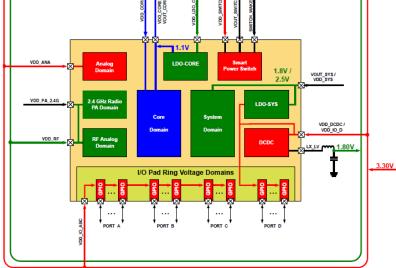

Product in Buck Mode

HVQFN48 - 7x7

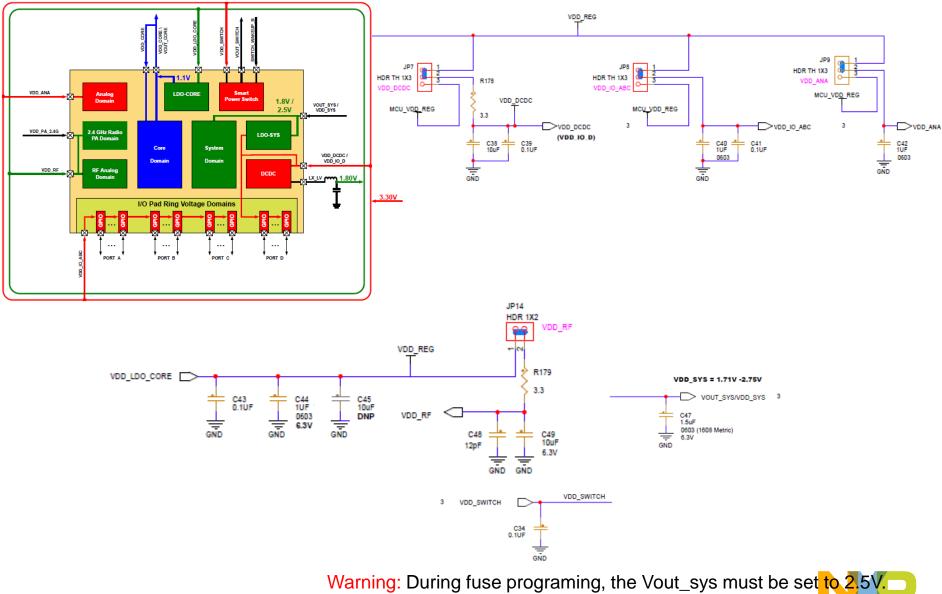
Possibility of Bluetooth LE Low Power mode active in case 32kHz is populated.

Product in Buck Mode


HVQFN48 – 7x7


April 19, 2022

Steel 3 d


Evaluation board – Recommendation

Recommanded DCDC inductor (L1): MLZ2012A1R0WTD25

Evaluation board – Recommendation - Buck

16 CONFIDENTIAL AND PROPRIETARY

Do not connect the pin VDD_SYS (pin)
It's done internaly on the IC

DCDC Buck BOM

HVQFN48 – 7x7

Bluetooth LE Low Power mode option available (32kHz populated)

Reference	Value
C38,C49	10uF
C6,C40,C44	1uF
C11,C14,C34,C39,C41,C43	0.1uF
C12	4.7uF
C15,C42	0.22uF
C7	10nF
C8	47pF
C48	12pF
C47	1.5uF (or 1uF)
Printed IFA antenna	2.4GHZ
R1	22 ohms
L1 (MLZ2012A1R0WTD25)	1uH
, , , , , , , , , , , , , , , , , , ,	KW45B41Z
U1	Or
	K32W148
Y3	32MHz
Y4	32.768 kHz

RF matching (whatever the RF output power)	
С9	1 uF
C10	12 pF
L2 (LQG15HZ15NJ02D)	15 nH
L3 (resistor shunt)	0 ohm
C1 (GCM1555C1H1R1BA16)	1.1 pF
L15 (<i>LQG15WH1N5B02</i>)	1.5nH
C2 (GCM1555C1H2R5BA16)	2.5 pF

Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.

DCDC Buck Pin configuration

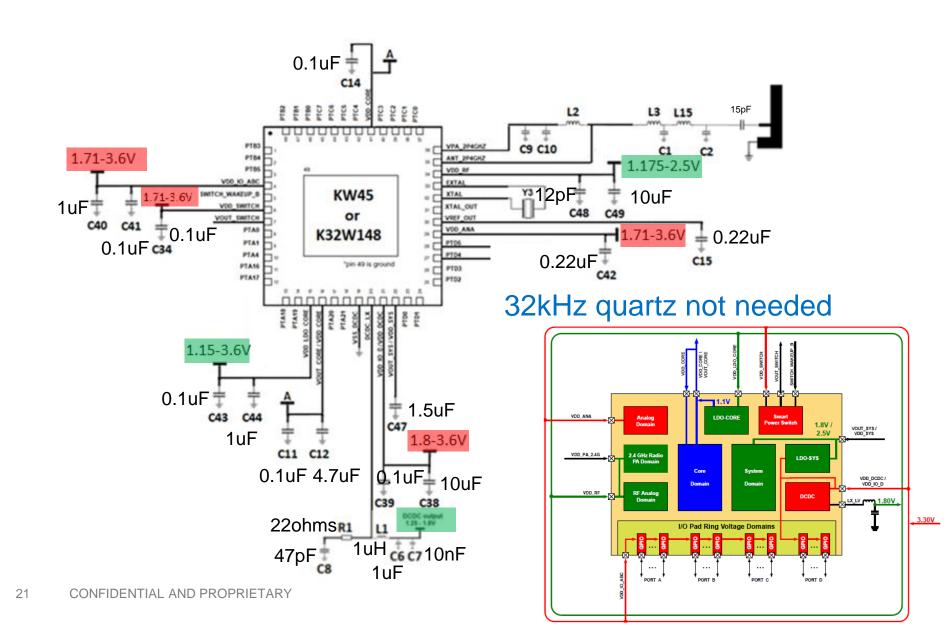

HVQFN48 – 7x7

Pin Number	Pin Name	Buck connection
4	VDD_IO_ABC	1.71-3.6V
6	VDD_SWITCH	1.71-3.6V
7	VOUT_SWITCH	Floating (when not used)
15	VDD_LDO_CORE	1.15-3.6V
		0.95-1.1V (Mid drive) or
16	VDD_CORE1	1.04-1.21V (Normal drive or safe mode voltage)
20	DCDC_LX	1.71-3.6V
21	VDD_DCDC	1.8-3.6V
22	VOUT_SYS/VDD_SYS	Floating (except the decoupling capacitor)
29	VDD_ANA	1.71-3.6V
30	VREF_OUT	Floating (except the decoupling capacitor)
34	VDD_RF	1.175-2.5V
36	VPA_2P4GHZ	0.9-2.4V
		0.95-1.1V (Mid drive) or
41	VDD_CORE2	1.04-1.21V (Normal drive or safe mode voltage)
49	VSS	GND
19	VSS_DCDC	GND

Warning: → Do not connect the pin VDD_SYS (internal connection)

Bluetooth LE Low Power mode option available (32kHz populated)

Layout example on buck mode HVQFN48 – 7x7



BUCK MODE NO BLUETOOTH LE LOW POWER MODE

Product in Buck Mode

HVQFN48 – 7x7

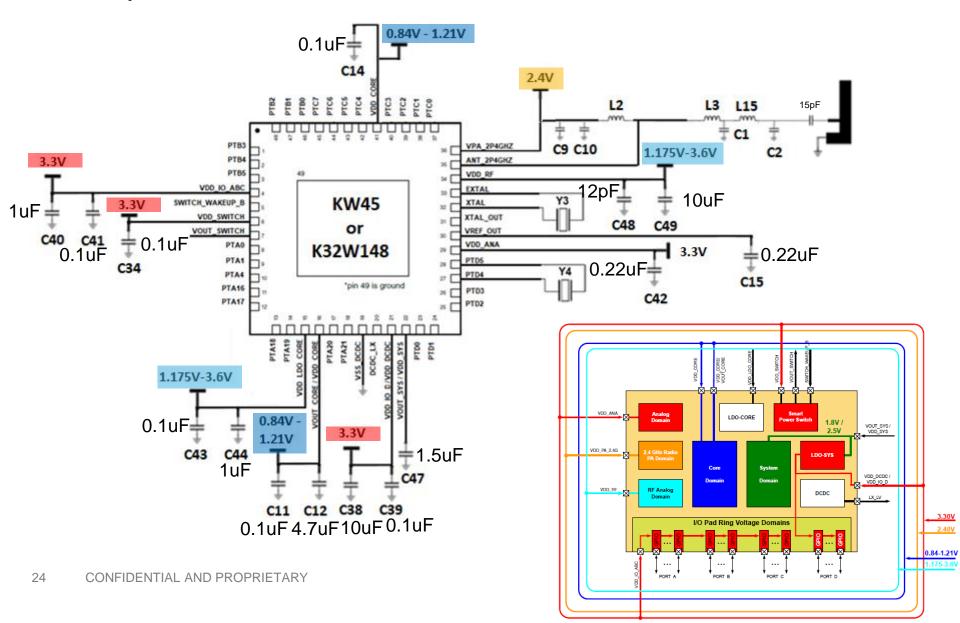
DCDC Buck BOM

HVQFN48 – 7x7

No Bluetooth LE Low Power mode.

Reference	Value		
C38,C49	10uF		
C6,C40,C44	1uF		
C11,C14,C34,C39,C41,C43	0.1uF		
C12	4.7uF		
C15,C42	0.22uF		
C7	10nF	RF matching (whatever the RF output power)	
C8	47pF	C9	1 ul
C48	12pF	C10	12 p
C47	1.5uF (or 1uF)	L2 (LQG15HZ15NJ02D)	15 n
Printed IFA antenna	2.4GHZ	L3 (resistor shunt)	0 oh
R1	22 ohms	C1 (GCM1555C1H1R1BA16)	1.1 p
L1 (MLZ2012A1R0WTD25)	1uH	L15 (<i>LQG15WH1N5B02</i>)	1.5n
· · · · · · · · · · · · · · · · · · ·	KW45B41Z	C2 (GCM1555C1H2R5BA16)	2.5 p
U1	Or		
	K32W148		
Y3	32MHz		

Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.


PMIC SUPPLY

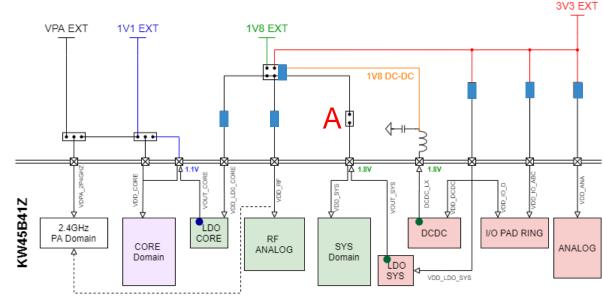
KW45 – PMIC supply

HVQFN48 – 7x7

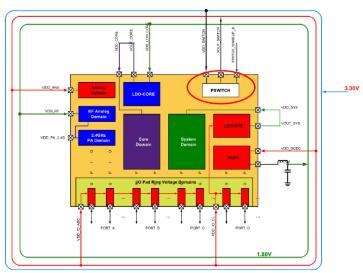
Possibility of Bluetooth LE Low Power mode active.

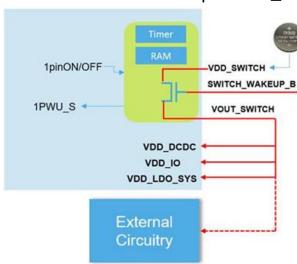
POWER SWITCH

KW45-EVK – Power config diagram – Power Switch


SMART POWER SWITCH LOW POWER USE CASE <100 NA TOTAL LEAKAGE CURRENT

Configuration


- · External 3.3 V supply to Smart Power Switch
- Power switch output connected to
 - DCDC, LDO-SYS, VDD_ANA and VDD_IO
- DCDC output connected to
- LDO-CORE, VDD_RF


Usage

- Software can disable smart power switch in Deep Power Down modes
- Reenable Switch from:
- External wakeup pin
- Internal timer with FRO16K
- Standby RAM regulator support 8KB RAM retention
- Can configure to disable during manufacturing process that disconnects battery from device in order to maximize battery life

Warning: During fuse programing, the Vout sys must be set to 2.5V. → Do not connect the pin VDD_SYS (pin) jumper on A

SMART POWER SWITCH ULTRA LOW POWER & FLEXIBLE

Performance

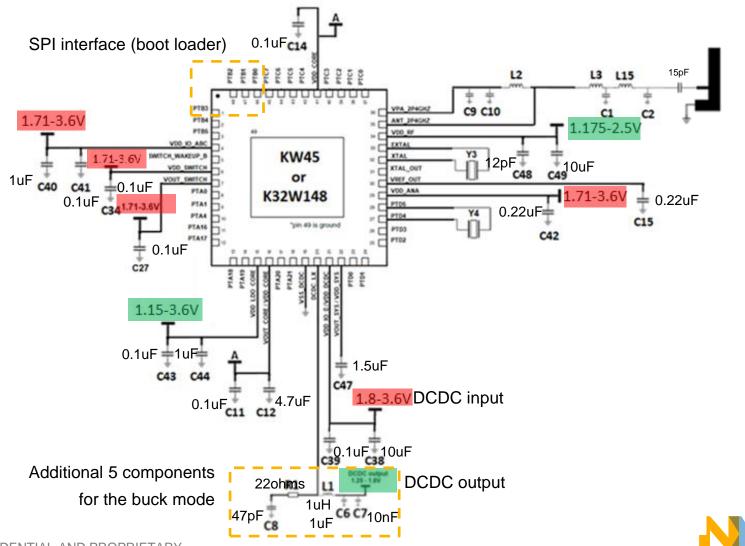
- <100 nA (typ) leakage current when OFF (no RAM retention, timer disabled)
- <700 nA (typ) leakage current when OFF (8KB RAM retention + timer)
- 40 mA active output current capability

Flexible

- Can be used to power partial or entire chip supply
- Can be used to power external circuits saving BOM costs

Configurable power control

- One external wakeup pin (SWITCH_WAKEUP_B) to enable power switch
- Internal Timer timeout (from 7.8125ms to 1s) to enable power switch
- Dedicated register bits to control power switch in Low Power mode / Active mode


Data storage

Support up to 8KB RAM retention

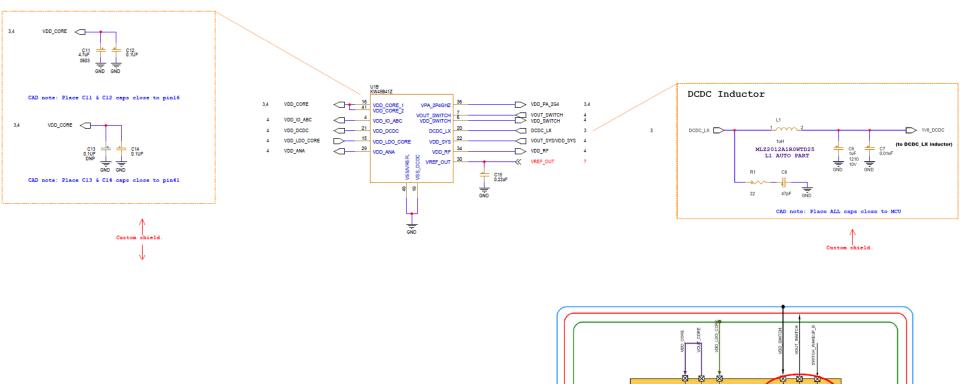
Power switch schematic

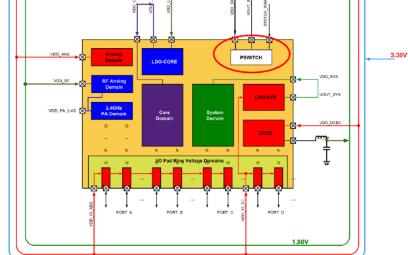
HVQFN48 - 7x7

DCDC buck mode with the possibility of Bluetooth LE Low Power mode active.

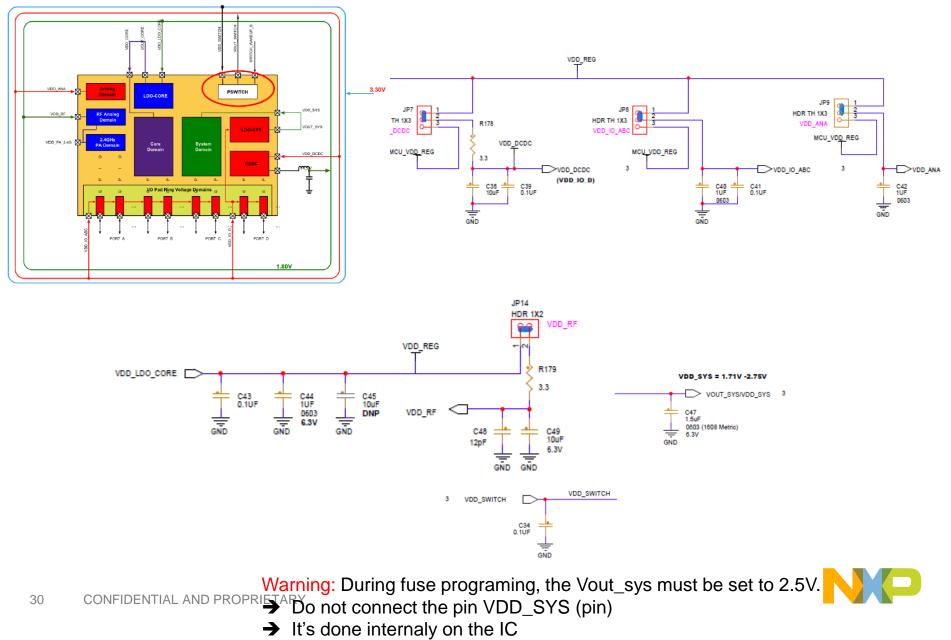
Product in Power Switch (Buck)

VDD_00RE < 3.4 47%F UHB KW45041Z DCDC Inductor CAD note: Flace Cl1 & Cl2 caps close to pin16 3.4 VDD. CORE VPA 2PAGIC > VDD PA 204 3.4 OUT_SWITCH VOD IO ADC 1 V00_0_A00 L1 3.4 V00_0085 21 100_0000 VDD_DCDC -AL 2000 DODG LX DCDC_LX 🕞 D 1V8_DCDC VDD_LDD_CORE VOD_SYS VOUT_SYSVDD_SYS 1.14 (to DCDC_LX inductor) VCD_ANA C13 0.1UF > VDD_RF C6 1uF 1210 GND C14 0.1UF VDD_ANA VDD RF MLZ2012A1R0WTD25 C7 0.01uF L1 AUTO PART VREF_CUT 30 VRDF_OUT 0.224 C8 CAD note: Flace Cl3 & Cl4 caps close to pin41 and 47pF 22 CAD note: Place ALL caps close to MCU -14 Custom a PTADOMPO, OUT CRUMPTE CTORE GPO 11TPNC, OHMFLEXOD, DO PTANOMPI, OUT CRUMPTE, RTORE, GPO, 10TPND, OHMFL 190 PTANADCO ALOCMPO NUATXORF_GPO STEND PTANSADCO ALONYM THELPSPE POSSEWING OUT PTA:0 PTA:0 PTA:0 PTA:0 PTA:0 PTA:0 PTA:0 LPURAD PTAIT/ADCO A13NVM THEAPSPIE SIN/FAMO INLPECO PTA21(ADC0 A15)CMP0 (N2)LPS/PI0 PTD: PTD: PTD: PTD: PTD: PTD: 5.7 5.7,40 5.7,40 5.7,40 5.7,40 5.7,40 5.7,40 5.7,40 LPSPI1 PTENNIN THOLPSPH POSS 522 PTCOLPSPH POSSICAND TX0000 SDATTEN1 CHOLEDOCI LPI2C1 1471 LPURATI CNID PTCZORABLEDTRGMUKO INSTRGMUKO OUTSGFAG CUNTPMI CUK RST_TGTMCU_S PTDJ PTDJ PTDJ PTDJ RTDJ_STALSOK PTDG_EXTALSOK 2.51 45,7 PTD-SACCO 05/0PC PTDNADCO BOLPTMR1 ALT ANT ANT IPAGET 35 SWITCH, WAKEUP, D -------KTAL, RF XTAL EXTAL A KINA W KTAL OUT XTAL OUT ---(1) VIEL PA_20H ANALH + VOSIN RF CALLS CAD NOTE: SNA - F-Antenna ANTENNA LOGI SHELSNJO2D Place both 3.4 V00,PA264 capacitor sharing pin 1 C10 107 GCM1555C1#150GA16D C3/C4 AUTO PART -- and LOGISWEINSDO2D LIS AUTO PART CAD Note: Entrane abort CH 15pF DNP L15 12 R2 0 70.79 DC ANT 03 10eF 1.50 RC0402JR-070RL R2 RC0402JR-070RL L3 (Resistor) C2 2.5p CS 10PF C1 1.1pF 눎 CAD Note 50 ohm controlled impedance line CAP CI CP: IUC: X QCM15555C1H1R1BA16D GOM 555C1 122558416D 04025A100JAT2A X-KW45B41Z-EVK C1 AUTO PART C2 AUTO PART CS DNP MKW45B41Z MCU ACHURTER DIE- SEE AND


HVQFN48 – 7x7


April 19, 2022

liter 1


Evaluation board – Recommendation

Recommanded DCDC inductor (L1): MLZ2012A1R0WTD25

Evaluation board – Recommendation - Buck

Power Switch (DCDC Buck) BOM HVQFN48 – 7x7

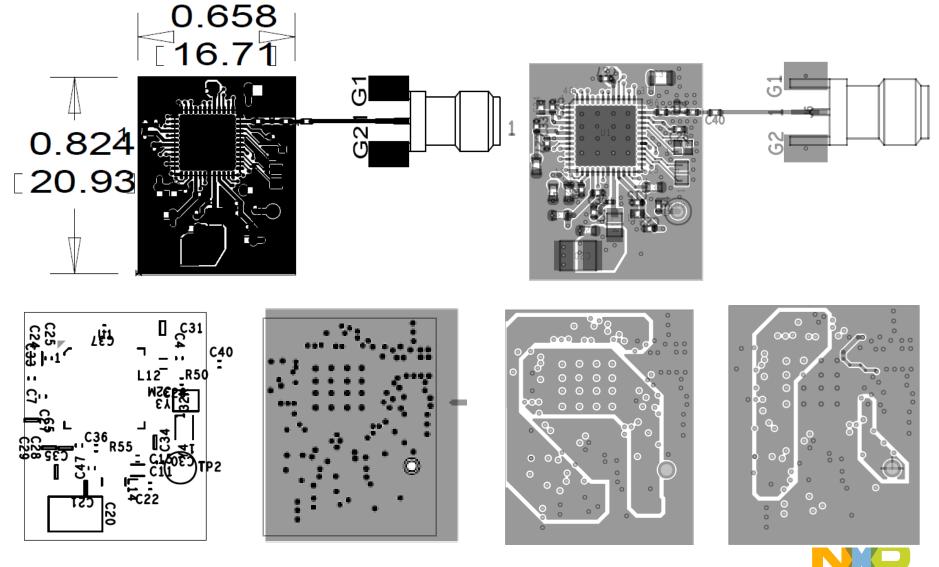
Bluetooth LE Low Power mode option available (32kHz populated)

Reference	Value
C38,C49	10uF
C6,C40,C44	1uF
C11,C14,C27,C34,C36,C39,C41,C43	0.1uF
C12	4.7uF
C15,C42	0.22uF
C7	10nF
C8	47pF
C48	12pF
C47	1.5uF (or 1uF)
Printed IFA antenna	2.4GHZ
R1	22 ohms
L1 (MLZ2012A1R0WTD25)	1uH
, , , , , , , , , , , , , , , , , , ,	KW45B41Z
U1	Or
	K32W148
Y3	32MHz
Y4	32.768 kHz

RF matching (whatever the RF output power)			
C9	1 uF		
C10	12 pF		
L2 (LQG15HZ15NJ02D)	15 nH		
L3 (resistor shunt)	0 ohm		
C1 (GCM1555C1H1R1BA16)	1.1 pF		
L15 (<i>LQG15WH1N5B02</i>)	1.5nH		
C2 (GCM1555C1H2R5BA16)	2.5 pF		

Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.

Power Switch (DCDC buck) Pin configuration HVQFN48WF – 7x7

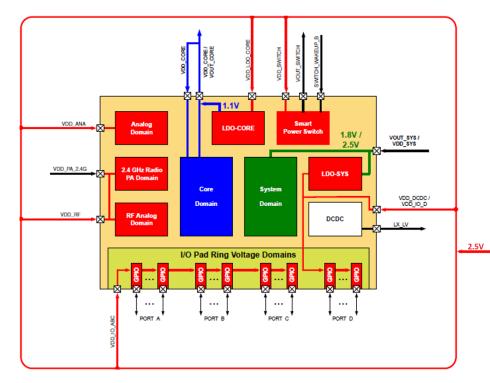

Pin Number	Pin Name	Bypass connection
4	VDD_IO_ABC	1.71-3.6V
5	SWITCH_WAKEUP_B	0-0.7V (connected to ground to be active)
6	VDD_SWITCH	1.71-3.6V
7	VOUT_SWITCH	1.71-3.6V
15	VDD_LDO_CORE	1.15-3.6V
		0.95-1.1V (Mid drive) or
16	VDD_CORE1	1.04-1.21V (Normal drive or safe mode voltage)
20	DCDC_LX	1.71-3.6V
21	VDD_DCDC	1.8-3.6V
22	VOUT_SYS/VDD_SYS	Floating (except the decoupling capacitor)
29	VDD_ANA	1.71-3.6V
30	VREF_OUT	Floating (except the decoupling capacitor)
34	VDD_RF	1.175-2.5V
36	VPA_2P4GHZ	0.9-2.4V
		0.95-1.1V (Mid drive) or
41	VDD_CORE2	1.04-1.21V (Normal drive or safe mode voltage)
49	VSS	GND
19	VSS_DCDC	GND

Warning: During fuse programing, the Vout sys must be set to 2.5V.
→ Do not connect the pin VDD_SYS (internal connection)

Note: To reach RF output power higher than +7dBm, VPA_2P4GHZ must be supplied to 2.425V minimum.

Layout example on buck mode HVQFN48WF – 7x7

KW45 ONLY HVQFN40 – 6X6


KW45 - EVK – Power config diagram – DCDC Bypass

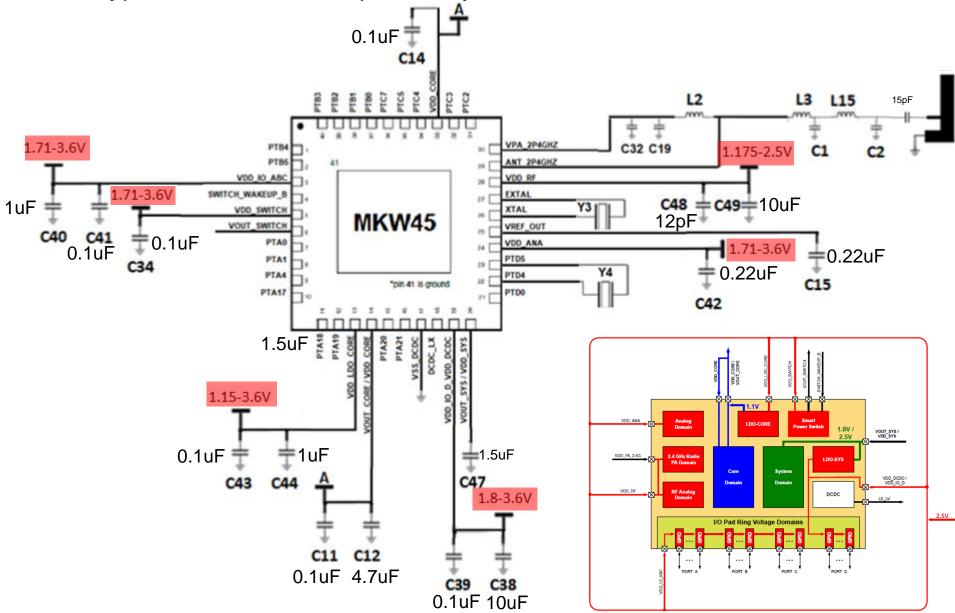
Configuration

- Bypass DCDC
- External 3.3 V for LDO-CORE, LDO-SYS, VDD_IO
- Generate VPA_2PGHZ internally from VDD_RF

Regulator	Output	Input voltage range	
DCDC	1.8V to 2.5 V	1.8V to 2.5 V	
LDO-SYS	1.8 / 2.5 V 1.8~3.6 V		
LDO-CORE	1.05 / 1.1 / 1.15 V	1.71~3.6 V (Enable);	0.84~1.21 V (Bypass)
VPA_2P4GHZ	Z Tx Output Power	VPA source	VDD_RF
0.9 V	+1.8 dBm		1.175 ~3.6 V
1.525 V	+7 dBm	External or internal	1.8 ~ 3.6 V
2.2 V	+10 dBm		2.475~3.6 V

Note: VPA_2P4GHZ voltage depends on Tx power level. It can be powered externally or internally.

VPA_2P4GHZ voltage depends on Tx power level. It can be powered externally or internally. For internal generation, VDD_RF voltage must be equal to or exceed VPA + 275 mV.


Warning: During fuse programing, the Vout sys must be set to 2.5V. → Do not connect the pin VDD_SYS (internal connection)

KW45 - DCDC Bypass Schematic

HVQFN40 – 6x6

DCDC bypass mode with the possibility of Bluetooth LE Low Power mode active.

KW45 - DCDC Bypass BOM

HVQFN40 – 6x6

Bluetooth LE Low Power mode option available (32kHz populated)

Reference	Value
C40,C44	1uF
C11,C14,C34,C39,C41,C43	0.1uF
C12	4.7uF
C15,C42	0.22uF
C48	12pF
C12,C44	4.7uF
C47	1.5uF (or 1uF)
C38,C49	10uF
Printed IFA antenna	2.4GHZ
U1	KW45B41Z Or
	K32W148
Y3	32MHz
Y4	32.768 kHz

RF matching (whatever the RF output power)				
C9	1 uF			
C10	12 pF			
L2 (LQG15HZ15NJ02D)	15 nH			
L3 (resistor shunt)	0 ohm			
C1 (GCM1555C1H1R1BA16)	1.1 pF			
L15 (LQG15WH1N5B02)	1.5nH			
C2 (GCM1555C1H2R5BA16)	2.5 pF			

Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.

DCDC Buck Pin configuration

HVQFN48 – 7x7

Pin Number	Pin Name	Bypass connection
4	VDD_IO_ABC	1.71-3.6V
6	VDD_SWITCH	1.71-3.6V
7	VOUT_SWITCH	Floating (when not used)
15	VDD_LDO_CORE	1.15-3.6V
		0.95-1.1V (Mid drive) or
16	VDD_CORE1	1.04-1.21V (Normal drive or safe mode voltage)
20	DCDC_LX	1.71-3.6V
21	VDD_DCDC	1.8-3.6V
22	VOUT_SYS/VDD_SYS	Floating (except the decoupling capacitor)
29	VDD_ANA	1.71-3.6V
30	VREF_OUT	Floating (except the decoupling capacitor)
34	VDD_RF	1.175-2.5V
36	VPA_2P4GHZ	0.9-2.4V
		0.95-1.1V (Mid drive) or
41	VDD_CORE2	1.04-1.21V (Normal drive or safe mode voltage)
49	VSS	GND
19	VSS_DCDC	GND

Warning: → Do not connect the pin VDD_SYS (internal connection)

Bluetooth LE Low Power mode option available (32kHz populated)

KW45 - DCDC Bypass Pin configuration HVQFN40 – 6x6

Pin Number	Pin Name	Bypass connection
3	VDD_IO_ABC	1.71-3.6V
5	VDD_SWITCH	1.71-3.6V
6	VOUT_SWITCH	Floating (when not used)
13	VDD_LDO_CORE	1.15-3.6V
		0.95-1.1V (Mid drive) or 1.04-1.21V (Normal drive or safe mode
14	VDD_CORE1	voltage)
18	DCDC_LX	floating
19	VDD_DCDC	1.8-3.6V
20	VOUT_SYS/VDD_SYS	Floating (except the decoupling capacitor)
24	VDD_ANA	1.71-3.6V
25	VREF_OUT	Floating (except the decoupling capacitor)
28	VDD_RF	1.175-2.5V
30	VPA_2P4GHZ	0.9-2.4V
		0.95-1.1V (Mid drive) or 1.04-1.21V (Normal drive or safe mode
33	VDD_CORE2	voltage)
41	VSS	GND
17	VSS_DCDC	GND

Warning: Do not connect the pin VDD_SYS (internal connection)

BYPASS MODE NO BLUETOOTH LE LOW POWER MODE

KW45 - DCDC Bypass Schematic HVQFN40 – 6x6 No Bluetooth LE Low Power mode 0.1uF = C14 L2 L3 L15 15pF 1.71-3.6V C32 C19 VPA 2P4GH2 1.175-2.5V C2 PTB4 C1 PTB INT 2P4GHZ VOD RF VDD IO AB 1.71-3.6V SWITCH_WAKEUP_B EXTAL **C48 = C49 =** 10uF 1uF Y31 XTAL VDD_SWITCH **MKW45** VOUT SWITCH VREF_OUT 15 C40 0.1uF Ŧ 0.1uF PTA0 VDD ANA 24 1.71-3.6\ =0.22uF PTA1 PTD5 C34 28 = 0.22uF PTA4 PTD4 C15 22 "pin 41 is ground PTA17 PTDO 21 32kHz quartz not needed ۵. 2 2 PTA18 1.5uF PTA21 PTAS PTA2 8 1.15-3.6V 1.1V DO-CORI 1.8V / 2.5V VOUT_SYS / VDD_SYS 0.1uF 1uF 荢 1.5uF VDD PA 2.40 C47 VDD_DCDC / VDD_IO_D C43 C44 VDD_R 1.8-3.6V DCDC 2.5V I/O Pad Ring Voltage Domains C11 C12 ... 0.1uF 4.7uF C39 C38 0.1uF 10uF

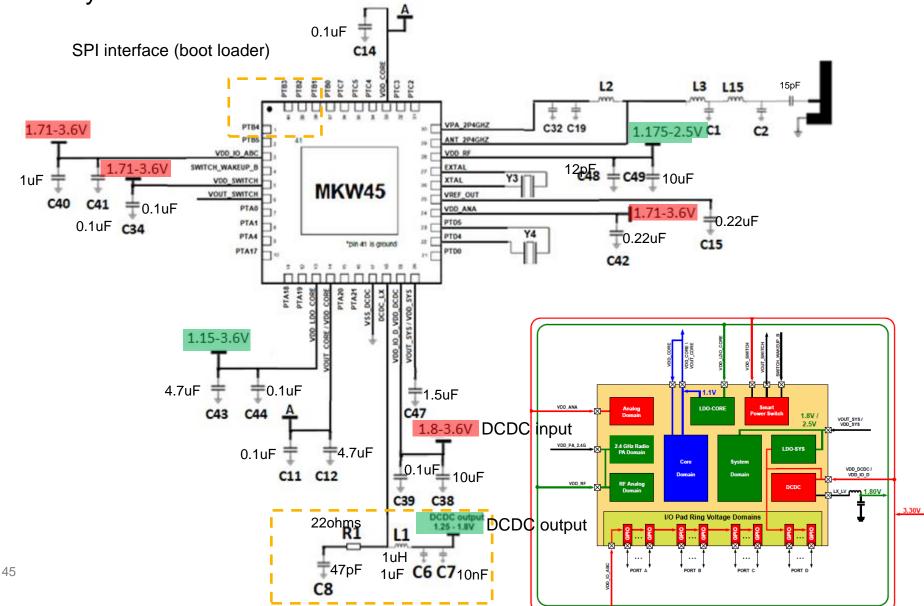
KW45 - DCDC Bypass BOMNoNoBluetooth LE Low Power mode

Reference Value 1uF C40 10uF C38 0.1uF C11,C14,C34,C39,C41,C43,C44 0.22uF C15,C42 12pF C48 4.7uF C12 1.5uF (or 1uF) C47 22uF C49 2.4GHZ Printed IFA antenna KW45B41Z U1 32MHz Y3

RF matching (whatever the RF output power)			
С9	1 uF		
C10	12 pF		
L2 (LQG15HZ15NJ02D)	15 nH		
L3 (resistor shunt)	0 ohm		
C1 (GCM1555C1H1R1BA16)	1.1 pF		
L15 (LQG15WH1N5B02)	1.5nH		
C2 (GCM1555C1H2R5BA16)	2.5 pF		

HVQFN40 – 6x6

Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.



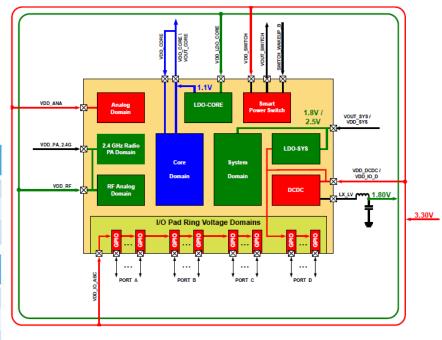
KW45 - DCDC Buck Schematic

HVQFN40 - 6x6

Possibility of Bluetooth LE Low Power mode active.

KW45 - DCDC Buck Schematic

HVQFN40 - 6x6


Possibility of Bluetooth LE Low Power mode active.

FLEXIBLE POWER ARCHITECTURE – DCDC CONFIGURATION RECOMMENDED SOLUTION FOR TRADEOFF BETWEEN COST AND POWER EFFICIENCY Configuration

- External 3.3V for DCDC , VDD_IO, LDO-SYS
- LDO-CORE, VDD_RF come from DCDC output
- Generate VPA_2PGHZ internally from VDD_RF

Regulator	Output		Input voltage range		
DCDC	1.25	25/1.35/1.8/2.5 V		1.71~3.6V; >= 0	output + 500 mV
LDO-SYS		1.8 / 2.5 V		1.8~3	3.6 V
LDO-CORE	1	1.05 / 1.1 / 1.15 V 1.71~3.6 V (Enable		1.71~3.6 V (Enable); (0.84~1.21 V (Bypass)
VPA_2P4GH	z	Tx Output Power		VPA source	VDD_RF
0.9 V		+1.8 dBm			1.175 ~3.6 V
1.525 V		+7 dBm	External or internal		1.8 ~ 3.6 V
2.2.V		+10 dBm			2.475~3.6 V

VPA_2P4GHZ voltage depends on Tx power level. It can be powered externally or internally. For internal generation, VDD_RF voltage must be equal to or exceed VPA + 275 mV.

KW45 - DCDC Buck BOM

HVQFN40 – 6x6

Bluetooth LE Low Power mode possible.

Reference	Value
C38,C49	10uF
C6,C40,C44	1uF
C11,C14,C34,C39,C41,C43	0.1uF
C12	4.7uF
C15,C42	0.22uF
C7	10nF
C8	47pF
C48	12pF
C47	1.5uF (or 1uF)
Printed IFA antenna	2.4GHZ
R1	22 ohms
L1 (MLZ2012A1R0WTD25)	1uH
U1	KW45B41Z
Y3	32MHz
Y4	32.768 kHz

RF matching (whatever the RF output power)				
C9	1 uF			
C10	12 pF			
L2 (LQG15HZ15NJ02D)	15 nH			
L3 (resistor shunt)	0 ohm			
C1 (GCM1555C1H1R1BA16)	1.1 pF			
L15 (<i>LQG15WH1N5B02</i>)	1.5nH			
C2 (GCM1555C1H2R5BA16)	2.5 pF			

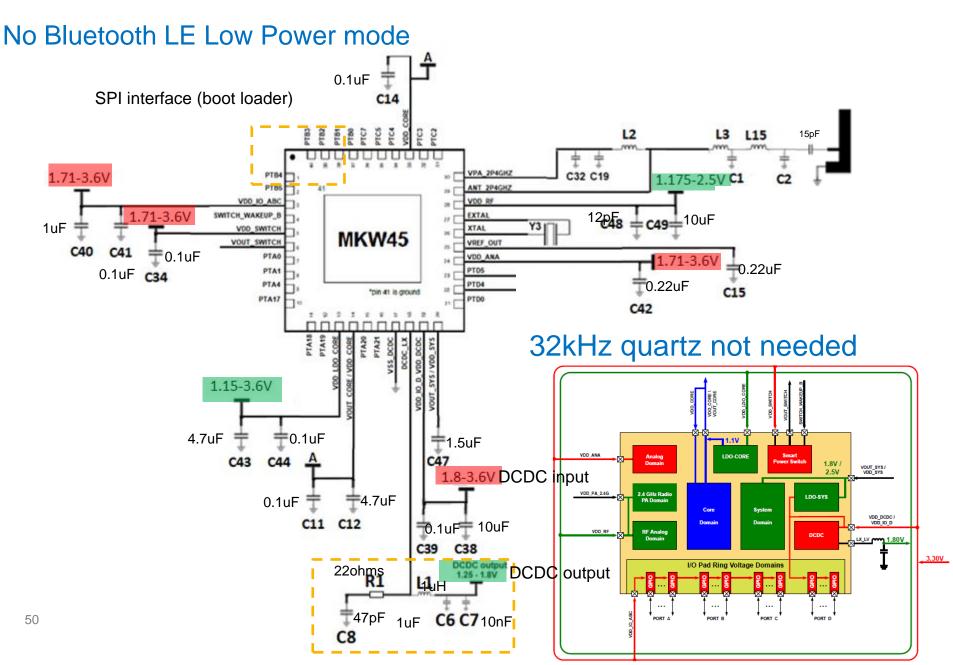
Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.

KW45 - DCDC Buck Pin configuration

HVQFN40 - 6x6

Pin Number	Pin Name	Bypass connection
3	VDD_IO_ABC	1.71-3.6V
5	VDD_SWITCH	1.71-3.6V
6	VOUT_SWITCH	Floating (when not used)
13	VDD_LDO_CORE	1.15-3.6V
		0.95-1.1V (Mid drive) or 1.04-1.21V (Normal drive or safe mode
14	VDD_CORE1	voltage)
18	DCDC_LX	1.71-3.6V
19	VDD_DCDC	1.8-3.6V
20	VOUT_SYS/VDD_SYS	Floating (except the decoupling capacitor)
24	VDD_ANA	1.71-3.6V
25	VREF_OUT	Floating (except the decoupling capacitor)
28	VDD_RF	1.175-2.5V
30	VPA_2P4GHZ	0.9-2.4V
		0.95-1.1V (Mid drive) or 1.04-1.21V (Normal drive or safe mode
33	VDD_CORE2	voltage)
41	VSS	GND
17	VSS_DCDC	GND

Warning: Do not connect the pin VDD_SYS (internal connection)



BUCK MODE NO BLUETOOTH LE LOW POWER MODE

KW45 - DCDC Buck Schematic

HVQFN40 – 6x6

KW45 - DCDC Buck BOM

HVQFN40 – 6x6

No Bluetooth LE Low Power mode.

Reference	Value
C38,C49	10uF
C6,C40,C44	1uF
C11,C14,C34,C39,C41,C43	0.1uF
C12	4.7uF
C15	0.22uF
C7	10nF
C8	47pF
C48	12pF
C47	1.5uF (or 1uF)
Printed IFA antenna	2.4GHZ
R1	22 ohms
L1 (MLZ2012A1R0WTD25)	1uH
	KW45B41Z
U1	Or
	K32W148
Y3	32MHz

RF matching (whatever the RF output power)	
С9	1 uF
C10	12 pF
L2 (LQG15HZ15NJ02D)	15 nH
L3 (resistor shunt)	0 ohm
C1 (GCM1555C1H1R1BA16)	1.1 pF
L15 (LQG15WH1N5B02)	1.5nH
C2 (GCM1555C1H2R5BA16)	2.5 pF

Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.


PMIC SUPPLY

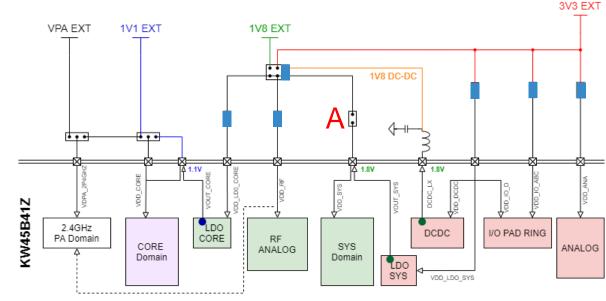
KW45 – PMIC supply

HVQFN40 – 6x6

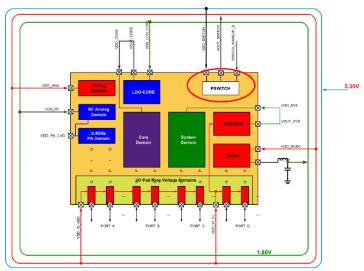
Possibility of Bluetooth LE Low Power mode active.

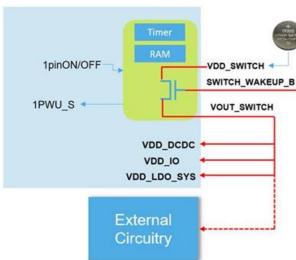
POWER SWITCH

KW45 EVK – Power config diagram – Power Switch


<100 NA TOTAL LEAKAGE CURRENT</pre>

Configuration


- · External 3.3 V supply to Smart Power Switch
- Power switch output connected to
 - DCDC, LDO-SYS, VDD_ANA and VDD_IO
- DCDC output connected to
- LDO-CORE, VDD_RF


Usage

- Software can disable smart power switch in Deep Power Down modes
- Reenable Switch from:
- External wakeup pin
- Internal timer with FRO16K
- Standby RAM regulator support 8KB RAM retention
- Can configure to disable during manufacturing process that disconnects battery from device in order to maximize battery life

Warning: During fuse programing, the Vout sys must be set to 2.5V. → Do not connect the pin VDD_SYS (pin) jumper on A

SMART POWER SWITCH ULTRA LOW POWER & FLEXIBLE

Performance

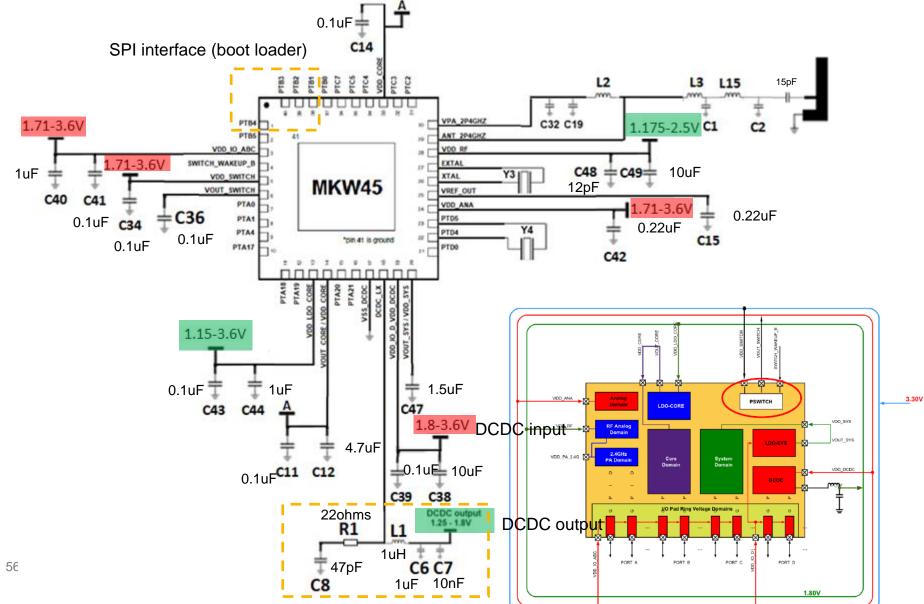
- <100 nA (typ) leakage current when OFF (no RAM retention, timer disabled)
- <700 nA (typ) leakage current when OFF (8KB RAM retention + timer)
- 40 mA active output current capability

Flexible

- Can be used to power partial or entire chip supply
- Can be used to power external circuits saving BOM costs

Configurable power control

- One external wakeup pin (SWITCH_WAKEUP_B) to enable power switch
- Internal Timer timeout (from 7.8125ms to 1s) to enable power switch
- Dedicated register bits to control power switch in Low Power mode / Active mode


Data storage

Support up to 8KB RAM retention

KW45 - Power switch Schematic

HVQFN40 - 6x6

Possibility of Bluetooth LE Low Power mode active.

KW45 - DCDC Buck BOM

HVQFN40 – 6x6

Reference	Value
C38,C49	10uF
C6,C40,C44	1uF
C11,C14,C34,C36,C39,C41,C43	0.1uF
C12	4.7uF
C15,C42	0.22uF
C7	10nF
C8	47pF
C48	12pF
C47	1.5uF (or 1uF)
Printed IFA antenna	2.4GHZ
R1	22 ohms
L1 (MLZ2012A1R0WTD25)	1uH
U1	KW45B41Z
Y3	32MHz
Y4	32.768 kHz

RF matching (whatever the RF output power)	
C9	1 uF
C10	12 pF
L2 (LQG15HZ15NJ02D)	15 nH
L3 (resistor shunt)	0 ohm
C1 (GCM1555C1H1R1BA16)	1.1 pF
L15 (<i>LQG15WH1N5B02</i>)	1.5nH
C2 (GCM1555C1H2R5BA16)	2.5 pF

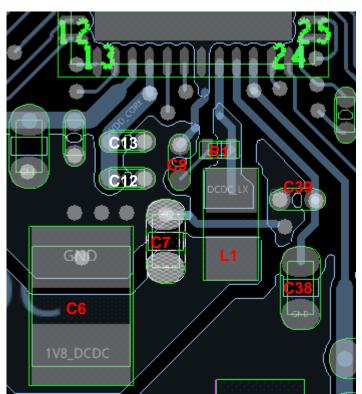
Note: C38,C40, C42, and C46 have different values from the schematic. This is due to the LPC current probe which need bigger decoupling capacitors.

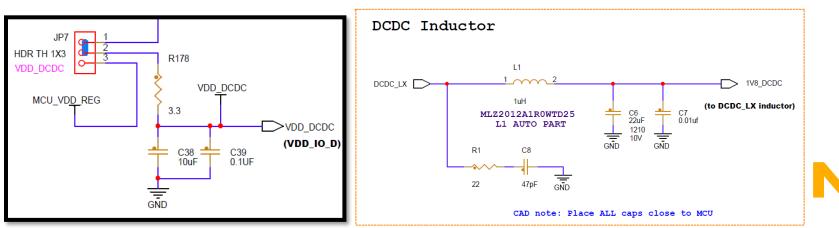
KW45 – Power Switch Pin configuration HVQFN40 – 6x6

Pin Number	Pin Name	Bypass connection	
3	VDD_IO_ABC	1.71-3.6V	
5	VDD_SWITCH	1.71-3.6V, Connected to decoupling capacitor 0.1uF	
6	VOUT_SWITCH	1.71-3.6V, Connected to decoupling capacitor 0.1uF	
13	VDD_LDO_CORE	1.15-3.6V	
		0.95-1.1V (Mid drive) or	
14	VDD_CORE1	1.04-1.21V (Normal drive or safe mode voltage)	
18	DCDC_LX	1.71-3.6V	
19	VDD_DCDC	1.8-3.6V	
20	VOUT_SYS/VDD_SYS	Floating (except the decoupling capacitor)	
24	VDD_ANA	1.71-3.6V	
25	VREF_OUT	Floating (except the decoupling capacitor)	
28	VDD_RF	1.175-2.5V	
30	VPA_2P4GHZ	0.9-2.4V	
		0.95-1.1V (Mid drive) or	
33	VDD_CORE2	1.04-1.21V (Normal drive or safe mode voltage)	
41	VSS	GND	
17	VSS_DCDC	GND	

Warning: Do not connect the pin VDD_SYS (internal connection)

LAYOUT RECOMMENDATION

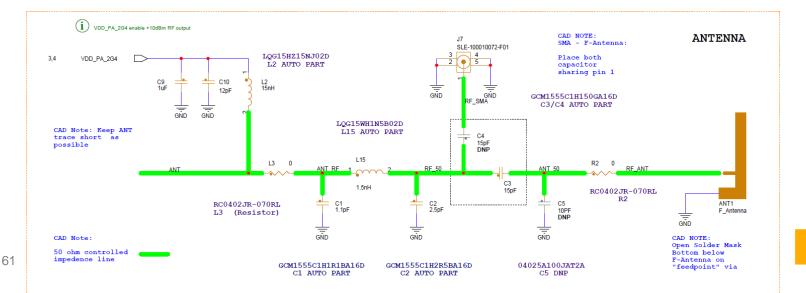


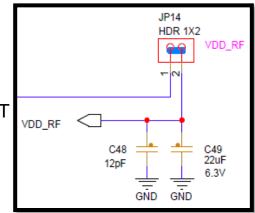

Evaluation board – HW Recommendation - DCDC

- 1. C38 & C39 must be as close as possible to the DCDC Vdd but not so much for the DCDC vss. Recommend is to place them with the LX connection to the inductor passing between their terminals. It is really critical to reduce the loop formed by the DCDC VDD/VSS pins and those capacitors. Please add more vias to the ground plane.
- 2. In a similar fashion place **C7** in a way that it's connection to the inductor **L1** is where it is now and VSS connection gets close to the chip. Adding vias to better connect vss to the ground plane will help.
- 3. It is interesting to move **C6** closer to the IC and add vias as on this example.
- 4. **C8** in a similar fashion as **C7** may be helpful for emissions >300MHz.
- L1 is 1uH for the KW45/K32W148 (iso 10uH on KW35/36/37/38/39 reference design)

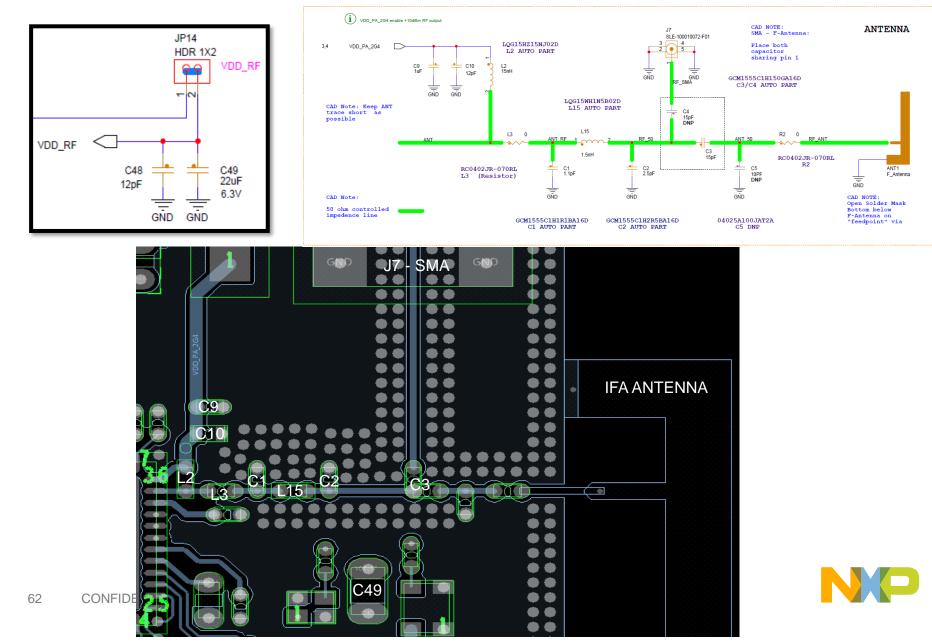
Note:

Having short connection and small area loops is the most important thing to contain any emissions. Bringing those caps closer to the chip will be helpful. And having the ground plane well preserved underneath those components (as it is on the current layout) will greatly help reduce the effect of the inductor not being really close to the chip.

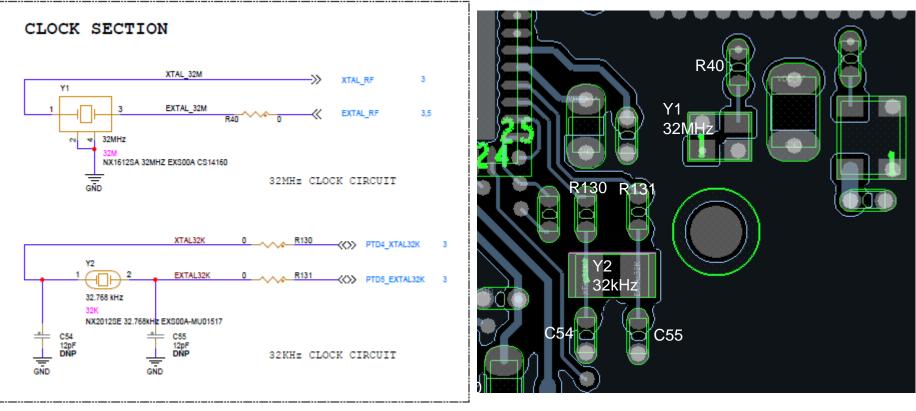



Evaluation board – HW Recommendation - Radio

- The value capacitor C48 used for an RF short are 12pF
- C10 must be as close to L2 as possible
- C49=22uF on VDD_RF could be placed as DNP
- The pull up inductor L2 placement must follow the layout example
- The **antenna matching** components must be at minimum spacing to the DUT and each other, as on the current layout.
- **C48** needs to be placed in order to have the best isolation with ANT_RF line. VDDRF line needs to be isolated with VDDRF_line. Please copy the current

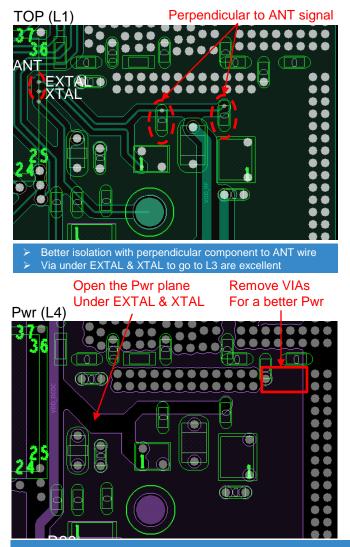

layout

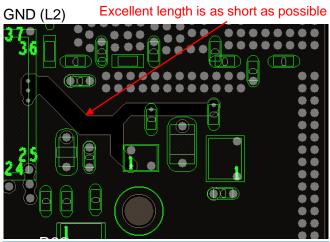
- Need isolation between VDDRF and UART signals.
- VDD_PA_2g4 needs to be isolated vs PTC0
- General comment: The power planes which create huge fat nets are for the VDD_ANA and VDD_SYS. No benefit to reduce the power plane.



Evaluation board – HW Recommendation - Radio

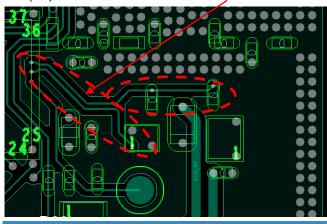
Evaluation board – HW Recommendation - Clocks


- 32MHz & 32kHz wire length must be as symetric as possible
- 32kHz quartz is not necessary to be as closed as possible from the DUT (KW45/K32W148)


Evaluation board – HW Recommendation - Clocks

Special focus on 32MHz wires to help on a very good layout.

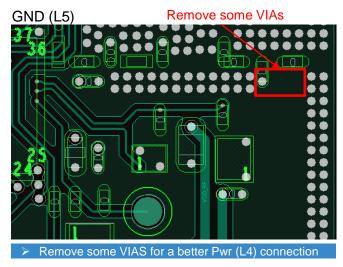
Under EXTAL & XTAL Pwr net need to be open to reduce coupling capacitance to PWR

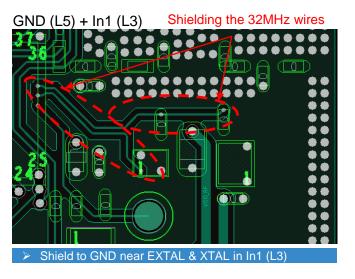

Some GND vias can be removed to have a better connection of PWR signal

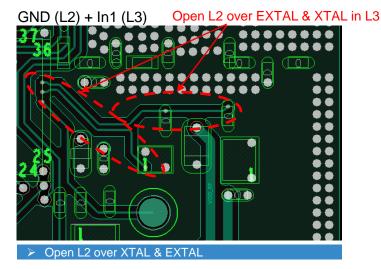
- To reduce capacitance on EXTAL & XTAL GND plane can be opened over XTAL & EXTAL wires
- The shielding is already present on TOP (L1) being GND in these area

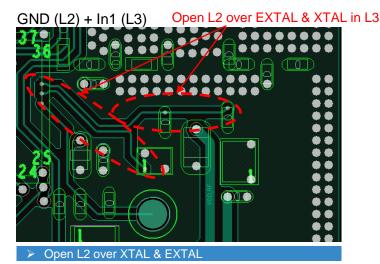
In1 (L3)

Shielding area




To avoid coupling XTAL with XTAL_OUT a shield is applied
 To avoid any coupling on XTAL a shield on TOP is applied




Evaluation board – HW Recommendation - Clocks

- Special focus on 32MHz wires to help on a very good layout.

COMPLEMENTARY INFORMATION

Recommendation

KW45/K32W1 requires signed firmware to be loaded into the NBU. This happens through the Bootloader. **PTC2 and PTC3 are the UART connection to the Bootloader**. We recommend to have an option to connect them to a UART to USB converter (for PC connection).

NXP recommend to have a way to **pull PTA4 to logic high** in order to enter the device in **bootloader mode**.

Make sure that everything connected to PORTD is at the same voltage as VDD_IO_D. Same for PORTA, B and C and VDD_IO_ABC.

Recommendation connection for unused IOs HVQFN48WF – 7x7

Table 54. Recommended connection for unused interfaces

Pin Type	Pin Function	Recommendation	Comments
Power	VDD_LDO_CORE	Connect to VOUT_CORE and VSS	When the LDO is not used, the input and output should be connected together and tied to ground through a 10 k Ω resistor. The regulator should also be disabled in software.
Power	VOUT_CORE	Connect to VDD_LDO_CORE and VSS	When the LDO is not used, the input and output should be connected together and tied to ground through a 10 k Ω resistor. The regulator should also be disabled in software.
Power	VOUT_SYS	Connect to VDD_IO_D	When the LDO is bypassed, the input and output should be connected together and tied to an external supply. The regulator should also be disabled in software.
Power	VDD_DCDC	Ground	When the DCDC is not used, the input should be tied to VSS through a 10 k Ω resistor.
Power	DCDC_LX	Float	The input VDD_DCDC should be tied to VSS with 10 Kohm
Power	VDD_IO_D	Must be powered	VDD_IO_D is used to power parts of the system power controller (SPC) and must be powered to use the chip. If LDO_SYS is not being used, then tie VDD_IO_D to VOUT_SYS and supply power from an external source. The regulator should also be disabled in software.
Power NFIDENTIAL AND PRO	VDD_PA_2.4GHz	Float	VDD_PA_2.4GHz is always driven, either from internal LDO sourced by VDD_RF, or from external supply.

Recommendation connection for unused IOs HVQFN48WF – 7x7

	Power	VDD_SWITCH	Must be powered	Powers FRO16 and a portion of RAM.
	Power	VOUT_SWITCH	Float	
	Power	VDD_IO_ABC	Must be powered	VDD_IO_ABC powers the mux logic for PORTA, PORTB and PORTC. It must be powered during POR. The recommendation is to keep it powered, but it can be connected to the output of the Smart Power Switch and be left floating in shelf storage mode.
	Power	VDD_ANA	Float	
	Power	VREFH	Always connect to VDD_ANA potential	Always connect to VDD_ANA potential
	Power	VREFL	Always connect to VSS potential	Always connect to VSS potential
	Power	VSS_ANA	Always connect to VSS potential	Always connect to VSS potential
	Power	VSS_DCDC	Always connect to VSS potential	Always connect to VSS potential
	Power	VSS_RF	Always connect to VSS potential	Always connect to VSS potential
	Analog/non-GPIO	ADCn_x	Float	
	Analog/non-GPIO	VREF_OUT	Float	Analog output - Float
	Analog/non-GPIO	TAMPERx	Float	
	Analog/non-GPIO	RTC_WAKEUP_B	Float	
	Analog/non-GPIO	RTC_RTCCLKOUT	Float	
	Analog/non-GPIO	EXTAL32K	Float	
	Analog/non-GPIO	XTAL32K	Float	Analog output - Float
	Analog/non-GPIO	EXTAL_32M	Float	
	Analog/non-GPIO	XTAL_32M	Float	Analog output - Float
	GPIO/Analog	PTx/CMPn_INx	Float	Float (default is analog input)
	GPIO/Digital	PTD1/NMI_b	$10k\Omega$ pullup or disable and float	Pull high or disable in PCR & FOPT and float
CONFIDEN	GPIO/Digital	PTx	Float	Float (default is disabled)

Additional information – both packages

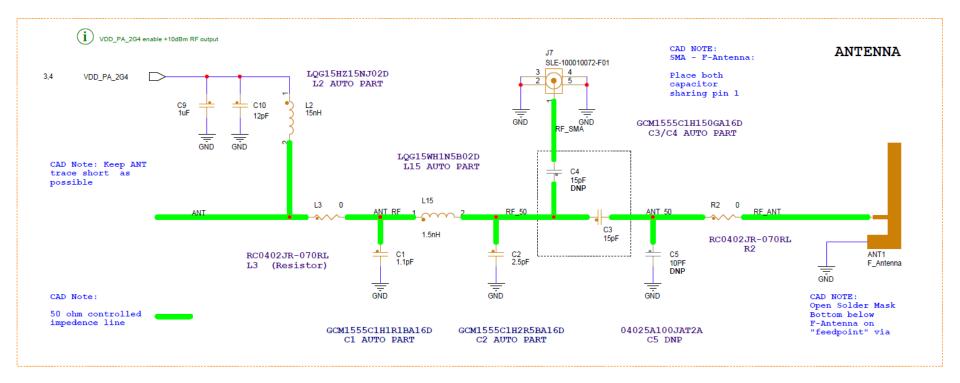
The DTM pins are available for both 48 pins and 40 pins packages. The options are:

48-pin only:

PTA16 - RF_UART_SIN PTA17 - RF_UART_SOUT PTD1 - RF_UART_SIN PTD2 - RF_UART_SOUT

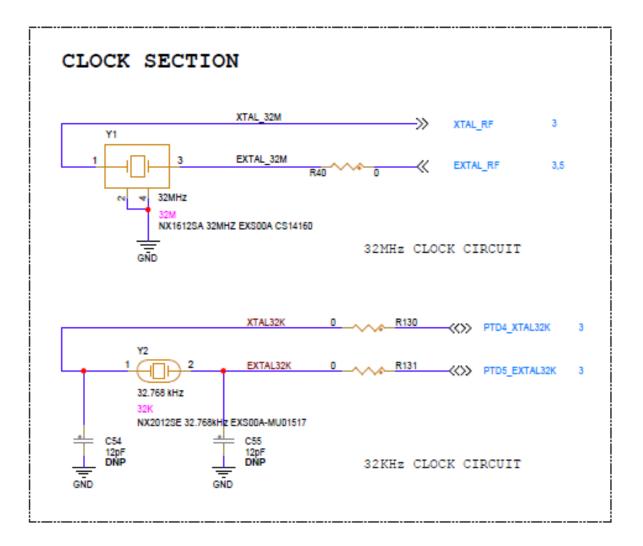
Both 40-pin & 48-pin PTA18 – RF_UART_SIN PTA19 – RF_UART_SOUT PTB2 – RF_UART_SIN PTB3 – RF_UART_SOUT PTC2 – RF_UART_SIN PTC3 – RF_UART_SOUT

RF Matching – Automotive compliant


RF Matching Goals:

- Only certified automotive component have been used.
- Ensure sensitivity performance was the focus of this RF Matching
- PASS internal specification regarding 2nd and 3rd harmonics with 10dBm output power.
- Same Matching for 0dBm, 4dBm, 7dBm and 10dBm output power.

Based on previous 10dBm RF Matching done with LQW inductance we got a good staring point to found the best compromise with those automotive components.



Evaluation board – Recommendation

Evaluation board – Recommendation – Clocks

Alternate Y1

For Bluetooth LE and GFSK 32MHz and 26MHz quartz references

Manufacturer	Series	Part Number	Frequency
NDK	NX1612SA	EXS00A-CS14160	32MHz
NDK	NX2016SA	EXS00A-CS13636	26MHz

Manufacturer	Series	Part Number	Frequency	
NDK	NX2016SA	EXS00A-CS14161	32MHz	

Alternate Y2

For Bluetooth LE and GFSK 32kHz quartz reference

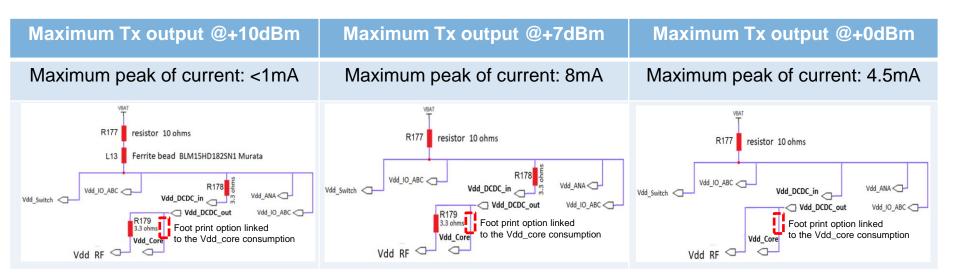
Manufacturer	Manufacturer Series		Frequency	
NDK	NX2016SA	EXS00A-MU01517	32,768kHz	
NDK	NX2012SA	EXS00A-MU00801	32,768kHz	

IO current drive @12mA

First the list of the specific pins which could handle 12ma current drive instead of 6mA on other IO pins:

- PTA18-19
- PTB4-5
- PTC0-1
- PTC4-5

Note that both the DSEO and DSE1 bits in the control register for that pin must be set in order to get the highest drive strength.

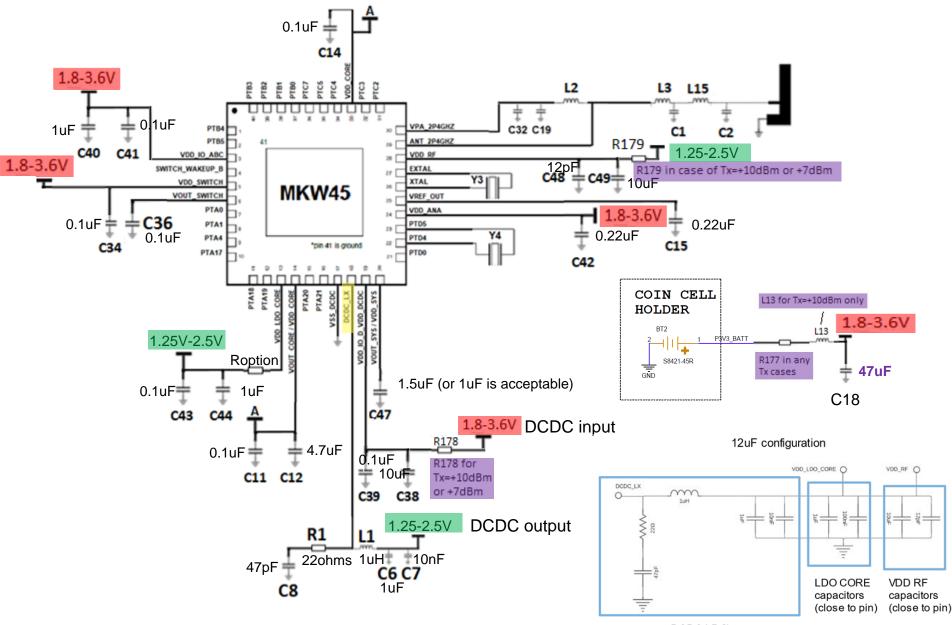

Schematic – Recommandation for coincell only (peak of current below 10mA) Reduced current peak

DCDC Buck Mode – Coincell – Summary

Suitable for battery (coincell) applications only

Solution to reduce the DCDC current peaks and current peaks on Tx signals (+10/+7/+0dBm) during Bluetooth LE events (Advertising, Connect & Scan) is to add serial resistor(s) on different supplies.

It will limit the peaks of current below 10mA and avoid voltage drop on the battery. Voltage drop occurs due to the serial resistor(s) but it never goes down to POR threshold (up to 105°C).



In addition, change the Vbat decoupling capacitor C18 from 10uF to 47uF.

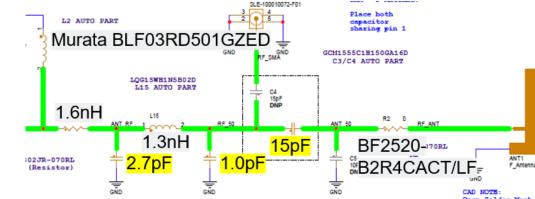
Buck Mode using coincell

HVQFN48 - 7x7

DCDC LP filter

CISPR25 Automotive Chinese certification

The KW45-EVK and K32W1-EVK could withstand the CISPR25 certification.


To pass this certification for +10dBm Tx output power, the EVK board needs to be modified as follow:

- Replace the RF matching component values

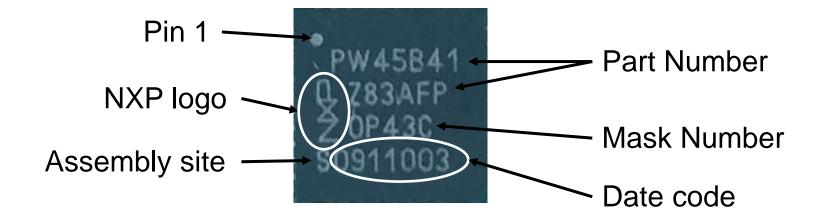
RF Service [User band in MHz]	Frequency [MHz]	RBW (kHz)	Limits [dBuV/m]		
			Peak	Average	Quasi- Peak
Bluetooth	2400 - 2690	120	44	24	N/A
SIG	3000 - 5000	≥1000	64	44	N/A
GNSS	5010 - 5030	9/10	N/A	16	N/A
WLAN	5000 - 6000	≥1000	68	48	N/A

nH	nH	рF	nH	рF	рF
L2	L3	C1	L15	C2	C3
BLF03RD501GZED	1.6	2.7	1.3	1.1	15

- Replace R2 by a Band Pass Filter at R2. Reference BF2520-B2R4CACT/LF

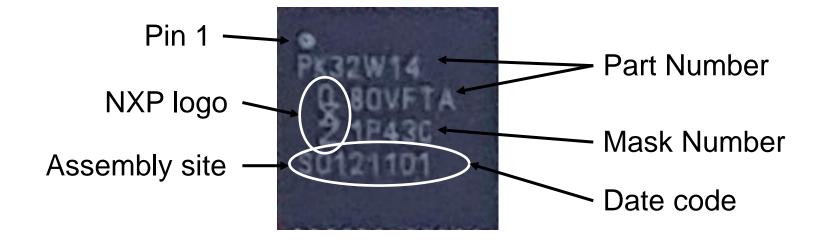
Note: The default EVK board pass the certification with Tx output power at -15dBm.

CISPR25 Automotive Chinese certification


The KW45-EVK and K32W1-EVK could withstand the CISPR25 certification.

EMC HW modification has an impact on the radio performances:

- **Maximum output power** is impacted by **3dB**: +7dBm maximum.
- The **sensitivity** is also impacted by **2dB** whatever the datarate.



Annex 1: KW45 marking

Annex 2: K32W148 marking

SECURE CONNECTIONS FOR A SMARTER WORLD