JN5169 EVM and PER validation with Non Signaling Test Using IQxel-MW

Jason Chiang

Apr. 2020

Content

- Purpose
- JN5169 Target Setup
- IQxel-MW Overview
- JN5169 connection setup with IQxel-MW
- Test Results at EVM and PER(Packet Error Rate)

Customer, Azurewave is designing JN5169 module for IoT application. They have IQxel non-signaling equipment. Azurewave would like to know the measurement of JN5169 PER using IQxel-MW instrument. We co-work with ACE Solution Taiwan to integrate JN5169 and IQxel-MW to perform EVM and Packet error rate test.

This document will address the JN5169 setup and JN5169 connection setup with IQxel-MW. Finally we show the EVM and packet error rate results.

JN5169 Setup

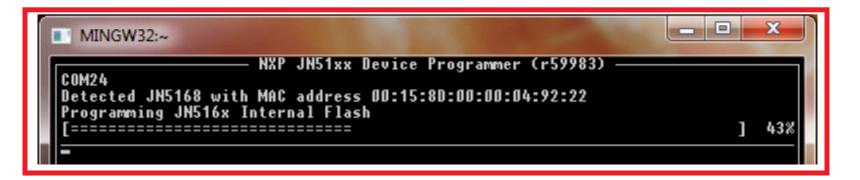
1. Download the latest JN5169 CMET tool example code from NXP website. The latest version is 1.6 and load it into JN5169 target board.

JN-AN-1059	Wireless Network Deployment Guidelines	Provides RF guidelines for the deployment of an IEEE 802.15.4-based wireless network.	1.2
JN-AN-1069	IEEE 802.15.4 Serial Cable Replacement	Describes and provides software for creating a wireless IEEE 802.15.4 link between the UARTs on two JN516x/7x devices.	4.0
JN-AN-1079	Co-existence of IEEE 802.15.4 at 2.4 GHz	Highlights the issues affecting the co-existence of an IEEE 802.15.4-based system with other systems in the 2.4GHz radio band.	1.1
JN-AN-1172	<u>JN516x Customer</u> <u>Module</u> Evaluation Tool	Provides and describes a tool which can be used to place the JN516x microcontroller into a number of test modes that enable measurement of module performance.	1.6
JN-AN-1174	IEEE 802.15.4 Application Template for JN516x	Provides a template which can be used as a basis for IEEE 802.15.4 application coding. The use and structure of the template are described in the User Guide JN-UG-3024.	1.4
JN-AN-1175	Packet Error Rate Testing for JN516x	Provides and describes Packet Error Rate (PER) testing software that can be used on boards from a JN516x evaluation kit.	1.3

JN5169 Setup (Continued)

3. Or You can flash existing binary image file into JN5169 target board through JN516x Production Flash Programmer Tool. Production Flash programmer tool captured to next page.

	B	-	
	Date modified	Туре	Size
1172_CustomerModuleEvalTool_JN5164	2019/12/7 下午 07:46	BIN File	26 KB
1172_CustomerModuleEvalTool_JN5164.map	2020/2/3 下午 02:12	MAP File	40 KB
1172_CustomerModuleEvalTool_JN5168.map	2020/2/3 下午 02:12	MAP File	40 KB
1172_CustomerModuleEvalTool_JN5169	2020/2/3 下午 02:12	BIN File	27 KB
1172_CustomerModuleEvalTool_JN5169.elf	2020/2/3 下午 02:12	ELF File	55 KB
1172_CustomerModuleEvalTool_JN5169.map	2020/2/3 下午 02:12	MAP File	40 KB
kefile	2019/12/7 下午 07:46	File	8 KB


JN5169 Setup (Continued)

4. Production flash programmer Tool usage.

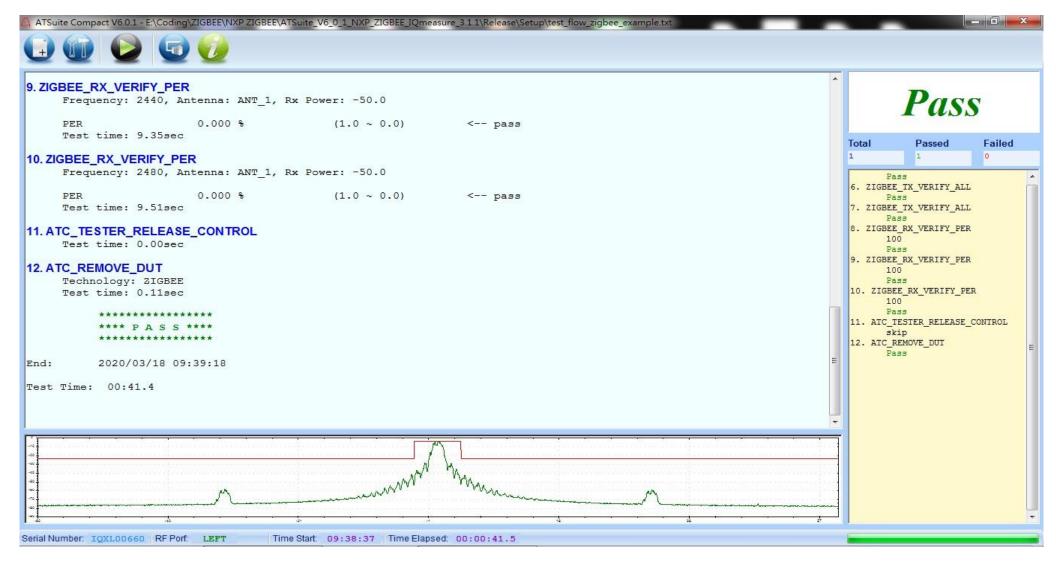
3.2 Load Binary File into Flash Memory

The following command uses the $-f_{\rm option}$ to load the specified binary file into the Flash memory of the JN51xx device on the serial connection specified using the -s option:

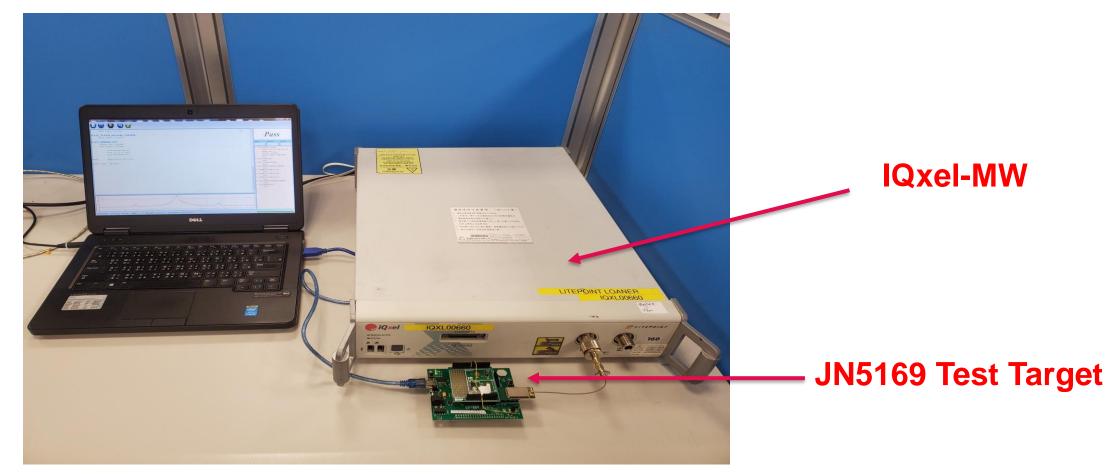
This results in the following output in the command window:

IQxel-MW Overview

Front Panel :



Rear Panel :


IQxel-MW PC Console Menu

JN5169 target board connection Setup with IQxel-MW

JN5169 target board connection Setup with IQxel-MW

Test Results items list :

This Test results shows EVM and RX PER below.

- 1. EVM measurement at 2405MHz@0dBm, 2440MHz@ 10dBm and 2480 MHz@ 0dBm
- RX Packet error rate at 2405MHz@-90 dBm, 2440MHz@ -95dBm and 2480 MHz@ -85dBm

Test Results at EVM

Start: 2020/01/15 11:02:29

- 1. ATC_CONNECT_TESTER Serial number: IQ1211A0711 Test time: 0.42sec
- 2. ATC_INSERT_DUT
 Technology: ZIGBEE
 DUT DLL: NXP_ZIGBEE.dll
 DUT_VERSION=1.0.0 (2015-12-25)

Test time: 0.01sec

3. ATC_INITIALIZE_DUT

Technology: ZIGBEE DUT_NAME=EMBER_EM35X_ZIGBEE Test time: 0.28sec

4. ZIGBEE_TX_VERIFY_ALL

Frequency: 2405, Antenna: ANT_1, Tx Power: 0.0

EVM	16.364 %	(35.0 ~ 0.0)	< pass
EVM-OFFSET	4.498 %	(35.0 ~ 0.0)	< pass
Freq Error	-12.087 ppm	(40.0 ~ -40.0)	< pass
Sym Clk Error	15.395 ppm	(40.0 ~ -40.0)	< pass
Power	-1.745 dBm	(30.0 ~ -4.0)	< pass
Spectrum Mask	0.000 %	(2.0 ~ 0.0)	< pass
Test time: 4.42sec			

Test Results at EVM and PER

5. ZIGBEE_TX_VERIFY_ALL

Frequency: 2440, Antenna: ANT_1, Tx Power: 10.0

EVM	13.272 %	(35.0 ~ 0.0)	< pass
EVM-OFFSET	3.100 %	(35.0 ~ 0.0)	< pass
Freq Error	-12.090 ppm	(40.0 ~ -40.0)	< pass
Sym Clk Error	10.129 ppm	(40.0 ~ -40.0)	< pass
Power	10.788 dBm	(40.0 ~ 6.0)	< pass
Spectrum Mask	0.000 %	(2.0 ~ 0.0)	< pass
Test time: 3.29sec			

6. ZIGBEE_TX_VERIFY_ALL

Frequency: 2480, Antenna: ANT_1, Tx Power: 0.0

EVM	9.252 %	(35.0 ~ 0.0)	< pass
EVM-OFFSET	1.662 %	(35.0 ~ 0.0)	< pass
Freq Error	-12.093 ppm	(40.0 ~ -40.0)	< pass
Sym Clk Error	12.579 ppm	(40.0 ~ -40.0)	< pass
Power	-1.895 dBm	(30.0 ~ -4.0)	< pass
Spectrum Mask	0.000 %	(2.0 ~ 0.0)	< pass
Test time: 3.42sec	2		

7. ZIGBEE_RX_VERIFY_PER

Frequency: 2405, Antenna: ANT_1, Rx Power: -90.0

PER	0.000 %	$(1.0 \sim 0.0)$	< pass
Test time:	15.65sec		

Test Results at PER

8. ZIGBEE_RX_VERIFY_PER Frequency: 2440, Antenna: ANT_1, Rx Power: -95.0 (1.0 ~ 0.0) <-- pass PER 1.000 % Test time: 15.40sec 9. ZIGBEE_RX_VERIFY_PER Frequency: 2480, Antenna: ANT_1, Rx Power: -85.0 (1.0 ~ 0.0) <-- pass PER 1.000 % Test time: 15.55sec 10. ATC_REMOVE_DUT Technology: ZIGBEE Test time: 0.12sec ************ **** P A S S **** ****** 2020/01/15 11:03:28 End:

Test Time: 00:58.7

THANK YOU!