Freescale Semiconductor Document Number: MQXGDBUG
User’'s Guide Rev. 1, 08/2014

Using Eclipse and GDB with
Freescale MQX™ RTOS User's
Guide

© 2014 Freescale Semiconductor, Inc. All rights reserved. &

Z“ freescale

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

Document Number: MQXGDBUG
Rev. 1, 08/2014

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein.
Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications
can and do vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by customer’s
technical experts. Freescale does not convey any license under its patent rights nor the rights of
others. Freescale sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off. Vybrid and Tower are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners. ARM, ARM Powered logo,
and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2008-2014 Freescale Semiconductor, Inc.

&,

Z“freescale

Table of Contents

Using Eclipse and GDB with Freescale MQX™ RTOS User's GUide...........oeeeeeeeiiieiiieeieeeeeeeee, i
L= T 1Y = T 3 PSS 2
2 MOQX BUIA = INTHIAI SEEPS ... eeiieeiiiici et e e e e e e e e e e ettt e e e e e e e e e e aetaa e e aeaaes 3
2.1 Building the MQX software using a command lIN€.............oooiiiiiiiii i 3
A Y = LG {1 T= N o UL 4
3 Using MQX MaKefiles With ECHIPSE ..ot 6
4 Running and Debugging the MQX Application Using J-Link Gdbserverccccccoceeeennn. 10
4.1 Starting the gdbserver - WINQOWS............uuuuiiiiiiiiiiiiii e eneaaenennne 10
4.2 Starting the gadDSEIVET = LINUX.......uuuiiiiiiiiiiiiiiiii e eneennnennee 12
4.3 Using Eclipse With the gadDSEIVET............ e 12
Y = T T Eo TS A Lo 01 PR 18

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

1 Read Me First

This document describes the steps to configure the GNU and Eclipse CDT development tools
version 4.3 Kepler and use them to build, run, and debug applications of the Freescale MQX™
RTOS operating system. See Getting Started with Freescale MQX™ RTOS (document
MQXGSRTOS) and other user documentation included with the latest Freescale MQX RTOS
installation for more details not specifically related to the GNU and Eclipse CDC tools.

Get the latest Freescale MQX RTOS at freescale.com/magx.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

2 MQX Build - Initial Steps

The MQX software release provides the makefiles to build MQX software libraries and applications
either from the Windows® operating system or the Linux command line. Makefiles can also be
integrated with the integrated development environments (IDEs). This document describes
integration with the Eclipse IDE. These are the settings to prepare your build environment:

Windows operating system — a common scenario is to use “mingw” utilities with the Windows
‘emd” utility.

o Install mingw from sourceforge.net/projects/mingw/ to a default location “c:\MinGW”.
e Ensure that your PATH variable contains “c:\MinGW\bin”.

e Open the MQX installation directory, which is located in the C:/Freescale/Freescale MQX 4.1
by default. Edit the “build/common/make/global.mak” to set up a valid compiler directory path
to a variable TOOLCHAIN_ROOTDIR. The file contains some commented examples for
each toolchain. Because the path cannot contain whitespaces, use a Windows command
utility to get a DOS path without spaces. The list of supported tool-chains is located in the
Release Notes.

Linux operating system:

o Install “make” and “sed” utilities. Use your Linux distribution package manager to get the
latest version of the required tools.

e Open the MQX installation directory and edit the file “build/common/make/global.mak” to set
up a valid cross compiler directory path to a variable TOOLCHAIN_ROOTDIR. The file
contains some commented examples for each toolchain. Note that the path cannot contain
whitespaces.

Note that the instructions in the subsequent sections apply to the TWR-K60N512 BSP and the Hello
World example application. The same instructions apply for all other BSPs and examples.

2.1 Building the MQX software using a command line

See Chapter 2 of the Getting Started with Freescale MQX RTOS (document MQXGSRTOS) for
details about the generic build process and compile time configuration. This chapter focuses on the
steps related to makefiles only.

2.1.1 Batch Build (Windows)

MQX library build
To build libraries, launch a batch file which is in the “build/<board>/make” directory.

build/twrk60n512/make/build gcc_arm.bat

MQX application build

To build applications, execute the batch file in the application project directory. Navigate to this
directory:

/build/make/<project name> <board>/build <tool>.bat

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

http://sourceforge.net/projects/mingw/

2.1.2 Batch Build (Linux)

MQX library build

To build all libraries, execute a shell script file, which is in the “build/<board>/make” directory.
build/twrk60n512/make/build_gcc_arm.sh

MQX application build

To build applications, execute the shell script file in the application project directory. Navigate to this
directory:

/build/make/<project name> <board>/build <tool>.sh

2.2 Makefile build

MQX library build

Navigate to the “<project/directory>/build/<project_name>_<board>/make” directory, for example
“max/build/make/bsp_twrk60n512,” and run this command to build a specific MQX library (in this
case BSP in debug configuration).

Windows

mingw32-make TOOL=gcc_arm CONFIG=debug build

Linux

make TOOL=gcc_arm CONFIG=debug build
Make parameters description:
TOOL - name of the toolchain.

CONFIG - name of the configuration. A configuration is defined by specific flags and include
paths. Configurations “debug” (low optimization level) and “release” (high
optimization level) are provided.

target Allowed targets are
build - run build process
clean - run clean process
rebuild - run clean and build processes
help - default target, prints the help
debugme - print the internal variables

MQX application build

To build or clean an application, navigate to the example directory, run “make” command and
specify CONFIG, TOOL and LOAD or LINKER_FILE parameters.

In this directory:

mgx/examples/hello/build/make/hello twrk60n512

Run this command:

Windows

mingw32-make TOOL=gcc arm CONFIG=debug LOAD=intflash build

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

Linux

make TOOL=gcc_arm CONFIG=debug LOAD=intflash build
Make parameters description:
TOOL - name of the toolchain.

CONFIG - name of the configuration. A configuration is defined by specific flags and
include paths. Configurations “debug” (low optimization level) and “release”
(high optimization level) are provided.

LOAD - name of linker file. Use this parameter when a linker command file is placed
in the BSP output directory. Otherwise, use the LINKER_FILE parameter with
full path.

LINKER_FILE - full path to the linker file, use when you want to configure a full path to the

linker command file and when you do not want to use a default path from BSP
output directory.

APPLICATION_DIR - output elf file location. By default, this location is
/mgx/examples/<example_name>/build/make/<example_name>/gcc_arm/<ta
rget>/. To change the output directory, specify the APPLICATION_DIR or the
APPLICATION_FILE variable.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

3 Using MQX Makefiles with Eclipse

This section describes the integration between the MQX makefiles and the Eclipse CDT

development environment in the Windows operating system. However, the process is similar for the
Linux operating system.

1. Create a new C Project.

j iew Proi
Select a wizard
Create a new C project r

Wizards:
[type filter text

4 (= General
& Project

[c¥] C++ Project

[£%] Makefile Project with Existing Code
4 (= CVS

& Projects from CVS
4 (= RPM

fos RPM Project
4 (= Tracing

[Tracing Project

® EECTE e T

Figure-1 Creating a new project

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

2. Select the project name and place it in appropriate directory, for example:
Imgx/examples/hello/build/make/hello_twrk60n512/

p

= CProject =) @ d
C Project — |
/I Directory with specified name already exists. r

Project name: (hello_twrk60m512)

[7] Use default location

Location{ repo\mqgexamples\hello\build\gcc_arm\hello_twrk60n512 Browse...
po\mg p g

Choose file system:

Project type: Toolchains:
i (2 GNU Autotools -- Other Toolchain --
4 (= Executable Cross GCC
@ Empty Project GNU Autotools Teolchain
@ Hello World ANSI C Project Microsoft Visual C++
b (% Shared Library MinGW GCC

I> (= Static Library

4 (= Makefile project
@ Empty Project

Show project types and toolchains only if they are supported on the platform

@ [<Back | Net> |[Finsh][Concel

Figure-2 Naming the project

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

3. Set up a make utility, for example mingw32-make. Build a directory path to the makefile
directory, for example, Imqgx/examples/hello/build/make/hello_twrk60n512/.

You might want to change the configuration name in Manage Configurations.

= Properties for hello_twrk60ms12 =
type filter text || ¢/Ce+ Build B R
> Resource
Builders
4/C/Ca+ Build Configuration: [Default [Active] ~ | [Menage Configurations...)
Build Variables
Environment
Logging [E] Builder Settings | @) Behaviour | < Refresh Policy
Settings "
Tool Chain Editor Builder
» C/C++ General Builder type: External builder

S, 7] Use default build command

Project References

Run/Debug Settings Build command: (mingw32-make Variables...

» Task Repository
WikiText Makefile generation
] Generate Makefiles automatically Expand Env. Variable Refs in Makefiles
Build location
Build directory: (EA\git-repos\max-rep hello\build\make\hello_twrk60n512)
[Workspace...] [File system...] [Variables...]

Figure-3 Setting up make utility and a build directory

4. Open a makefile batch file, for example
Windows operating system:
/mgx/examples/hello/build/make/hello_twrk60n512/buid_gcc_arm.bat
Linux: /mgx/examples/hello/build/make/hello_twrk60n512/buid_gcc_arm.sh

Eamﬂdgcgﬁmbd E]
1 @echo OFF
set NOPAUSE=%1

mingw32-make G.‘OOIFgcc_arm CONFIG=debug LOAD=intflash build) =3
if errorlevel 1 |
set NOPAUSE=0

U W N

pause
\

D < o

Figure-4 Opening makefile batch file

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

5. Set up commands to the textbox field “build” and “clean”.

2 Properties for hello_twrk60mS12 [o ==
type filter text C/C++ Build S il
> Resource A
Builders
4 C/C++ Build Configuration: |Default [Active] v] [Manage Configurations...

Build Variables
Environment

Logging
Settings
Tool Chain Editor Build settings
s C/C++ General Stop on first build error [T] Enable parallel build
Git @ Use optimal jobs (4)
Project References Use parallel jobs: |4
Run/Debug Settings Use unlimited jobs
: Ta‘sl‘(Repositay Workbench Build Behavior
WikiText
Workbench build type: Make build target:

[} Build on resource save (Auto build) | all Variables...

Note: See Workbench automatic build preference

Build (Incremental build) CTOOL:gcc_arm CONFIG=debug LOAD=intflash build> [Variables...]
[Clean (frooL=gec_arm CONFIG=debug LOAD=intflash clean)| [Variables...|
[Restore _Qefaults] [Apply]
@ [OK] [Cancel]

Figure-5 Setting up commands for build and clean

6. Now you can build and clean the project.

Build Project
Clean Project

&] Refresh F5

l

Close Project

Figure-6 Build and Clean the project

7. In the Windows operating system, if you want to see project source files, copy and replace
your “.project” file with “.project” file from the “cw10gcc/hello_twrk60n512” directory. In the
Linux operating system create the project content manually. Pre-defined Eclipse projects will
be available in the future MQX software versions.

Output elf file is in this location:
/mgx/examples/hello/build/make/hello_twrk60n512/gcc_arm/intflash_debug/

If you want to change the output directory of the elf file, specify the APPLICATION_DIR or the
APPLICATION_FILE variable during step 5.
For example, APPLICATION_DIR=../../gcc_arm/hello_twrk60n512.

You may want to import the generated binary to debug it, as described in the next chapter. To do
S0, go to the File/Import menu and select the C/C++ Executable under the C/C++ category.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

4 Running and Debugging the MQX Application Using J-Link Gdbserver

This description applies to the TWR-K20D50M BSP, the Hello World example, and the J-Link for the
ARM® hardware debug probe. The same procedure also applies to all other BSPs and examples.

4.1 Starting the gdbserver - Windows

The gdbserver is a bridge between the GDB, the GNU project debugger, and the J-Link debug

probe. The gdbserver executable is in this folder:

<jlink tools install dir>/JLinkGDBServer.exe

1. When you run the executable, the connection dialog appears where you can select the

connection options for your board.

-
SEGGER J-Link GDE Server V4.76e - Config

===

 Connection ta J-Link
i+ USB [~ Serial Ho.

i TCRAP

— Target device

|MK20D><1 2B

ILittIe endian VI

— Target interface

[4T2G ~|

~Speed
7 Auto selection

™ Adaptive clocking
e 1000 | kHz

— Command line option

I-select IISE -device MEZ00=128mm5 -f JTAG -zpeed 1000

o]

Cancel

Figure-7 J-Link

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

10

2. After selecting the options for the board, press the OK button and the dialog indicating the
Gdbserver status and the configuration details, such as the listening port, appears.

~

.
ﬁg SEGGER J-Link GDE Server V4.76e

File Help

¥ Localhost only

GDE I\-\-"aiting for connection I Initial JTAG speed |1DDD kHz VI [~ Stayontop

) ¥ Show log windaw
J-Lirk IEonnected I Current JTAG speed |1DDD kHz [~ Generate lagfile
- - I~ Weiify download
CPU If“'”QU[:'X'I 28nD I I a2y I Il"m'3 endlan;l W Init regs on start
Log output: _IEIear log
SEGGER J-Link GDB Server V4. 76e -

JLinkARM . d1l V4.76e (DLL compiled Sep 20 2013 16:06:28)

GDEInit file: no

GDE Server Li=tening port: 2331
SWO raw output listening port: 2532
Terminal I~ 0 port: 2333

Connecting to J-Link. . .

J-Link is connected.

Firmware: J-Link ARM V8 compiled Jul 17 2013 11:24:15
Hardware: W8.00

S-H:

OEM: IAR

Checking target woltage. ..

Listening on TCE-IF port 2331

Connecting to target. . .

J-Link found 1 JTAG dewvice, Total IRLen = 4
JTAG ID: 0=4BA00477 (Cortex—H4)

Connected to target

Waiting for GDE connection. . .

4

D Bytes downloaded [LITAG device | 4

—————————————————————————

Figure-8 Gdbserver listening port

3. After the gdbserver is running, you are ready to connect to it. You may debug the application
either from the command line or using Eclipse with CDT. Note that before you try debugging,

you may want to download the application to the target device.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

11

4.2 Starting the gdbserver - Linux

The gdbserver for Linux is available only in a command line version. To start the J-Link gdbserver,
use this command:

JLinkGDBServer -select USB -device MK60DN512Zxxx10 -if JTAG -speed auto

e The “device” option specifies the silicon name and uses silicon-specific settings.

e The “if” option specifies the debug interface. Valid values are JTAG, SWD.

See Section BSP to CPU name mapping for J-Link gdbserver for valid device values and supported
BSPs.

v Terminal - + X

Apr 4 2014 17:5

compiled Jun 25

Figure-9 Terminal

The gdbserver is listening on port 2331. After the gdberver runs, you are ready to connect to it. You
may debug the application either from the command line or using Eclipse with CDT. See next
chapter for more information.

4.3 Using Eclipse with the gdbserver

After the gdbserver is running, you can download the firmware to the board and start debugging.
These chapters describe how to use the command line GDB client and the GDB client Eclipse
integration.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

12

4.3.1 Using the command line interface

Follow these steps to download the application to your evaluation board and start debugging.

¢ Run the J-Link gdbserver with valid options, for example:
JLinkGDBServer -select USB -device MK60DN512Zxxx10 -if JTAG -speed auto
¢ Run the arm-none-eabi-gdb -tui hello_twrk60n512.elf where:
o --tui options switch GDB to curses view
o hello twrk60n512.elf representthe path to the elf with debug symbols
e Attach the GDB client to the gdbserver by: target remote localhost:2331

e Load your application to the board using the 1oad hello twrk60n512.elf, where
hello twrk60n512.elf represents the path to your application.

e Perform the monitor reset command to reset the chip and prevent registers from getting
default values.

e Set a breakpoint, for example break main or break hello task.
¢ Run the application with the continue command.

Using the command line interface for debugging works for intflash build targets of the Kinetis
processor family.
Debugging a Vybrid processor is more complex and the basic initialization can be found here:

mgx/source/bsp/ [BOARD] /gcc arm/jlinkgdb/ [BOARD] .dgbinit

4.3.2 Creating the debug configuration in Eclipse

Users should install the Eclipse with CDT and the C/C++ GDB Hardware Debugging feature. The
instructions apply for the Windows operating system. However, a similar approach should work on a
Linux Host.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor
13

1. Go to the “Run/Debug Configurations...” menu and create a new GDB Hardware Debugging
configuration. First, modify the Launcher and select the “Standard GDB Hardware
Debugging Launcher” instead of the default “GDB (DSF) Hardware Debugging Launcher”.

See the figure.

% Debug Cenfigurations

[= |

Create, . and run

&

SEEINEE

MName: hello

type filter text

[T] C/C++ Application

[E] C/C++ Attach to Appli

[T] C/C++ Postmortem De

[E] C/C++ Remate Applice

4 Eclipse Application

[&] GDB Hardware Debugg
hello

5] Java Applet

[T Java Application

Ju JUnit

Jt JUnit Plug-in Test

i Launch Group

m2 Maven Build

4% 05Gi Framework

RAP Application

[30 RAP JUnit Test

@. Remote Java Applicatic

3 RWT Application

i Task Context Plug-in T

Juj Task Context Test

[N

e

Filter matched 20 of 20 items

Main ?3- Debugger] "3 Startup] %z Source| E Common]

C/C++ Application:
hello.elf

[Variables... ”Seal.:hPm)ect...” Browse... I

Project:

hello Browse...

Build (if required) before launching

Build configuration: Use Active -

Select configuration using 'C/C++ Application’

(2) Enable auto build () Disable auto build
(@ Use workspace settings Configure Workspace Settings...

Using Standard GDEB Hardware Debugging Launcher - Select |

other.. Apply Revert

®

Figure-10 Selecting the launcher

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

14

2. Next, in the Debugger tab, set the path to the GDB client from the GNU Tools package and
uncheck the “Use remote target” option as shown in the image.

& Debug Configuratiens

Create, manage, and run configurations ﬁ\(

EEEIEE

Mame: hello

type filter text
[] C/C++ Application
[E] C/C++ Attach to Applicatior
[E] C/Ce+ Debugg

Main | %% Debugger . i smup) %z Source| Cnmmnn]

GDB Setup

GDB Command:

[E] C/C++ Remote Application
4 Eclipse Application
4[] GDB Hardware Debugging
[E] hello
[Java Applet
[3] Java Application
Ju JUnit
3% JUnit Plug-in Test
B Launch Group
mz Maven Build
4 05Gi Framework
RAP Application
[0 RAP JUnit Test

| Ci\Program Files\GNU Tools ARM Embedded\d.7 2013¢3\ bin\arm-none-abi-gdb.exe |
Command Set: [Standard (Windows) ~

Protocol Version: [mi v

[T Verbose console mode

Remote Target

JTAG Device: | Generic TCP/IP

Hest name or IP address: | localhost

2, Remote Java Application
[T RWT Application Port number: 10000
Jt4 Task Context Plug-in Test
Juj Task Context Test

« i b

Using Standard GDB Hardware Debugging Launcher - Select other... Apply
Filter matched 20 of 20 items
@

Figure-11 Selecting the path to the GDB client

3. Set the startup options by going to the “Startup” tab and pasting this content into the
“Initialization Commands” text field:

connect to the gdb server
target remote localhost:2331

Set gdb server to little endian
monitor endian little

Set JTAG speed to 1000 kHz
monitor speed 1000

Reset the target

monitor reset

monitor sleep 100

Set JTAG speed in khz

monitor speed auto

Vector table placed in RAM
monitor writeu32 OxEQOOOEDO8 = Ox1FFF8000

Note: Update the gdbserver listening port. You may find it in the gdbserver information dialog — see
the Starting the gdbserver sections. In this case the port number is 2331.

4, Paste this content into the “Run Commands” text field:

monitor reg rl3 = (0x1FFF8000)
monitor reg pc = (0x1FFF8004)

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor
15

5.

In the “Runtime Options” set the initial breakpoint at the main function and mark the
“Resume” option.

The final result should look like this figure.

& Debug Configurations

=)

Create, manage, and run configurations

o

CExX| DR~

Name: hello

type filter text

[£] C/C++ Application
[] C/C++ Attach to Applicatior
[£] C/C++ Postmortem Debugg
[] C/C++ Remote Application
@ Eclipse Application
4 [€] GDB Hardware Debugging
[] hello
] Java Applet
7] Java Application
Ju Jnit
4 JUnit Plug-in Test
i Leunch Group
m2 Maven Build
@ 05Gi Framework
RAP Application
U RAP JUnit Test
[T, Remote Java Application
& RWT Application
J¥j Task Context Plug-in Test
Jiy Task Context Test

O ——

Filter matched 20 of 20 items.

Initizlization Commands

Halt

[#] Reset and Delay (seconds}: 3

Main | %5 Debugger | B Startup . % Source| = v:ommnﬂ

connect to the gdb server
target remote localhost:2331

Set gdb server to little endian
monitor endian little

Load Image and Symbols
[] Load image

@ Use project binary: hello.elf

©) Use file: [

Workspace... | [File System..

Image offset (hex):

[#] Load symbols

@ Use project binary: _ hello.elf

© Usefile: [

Workspace. File Systemn...

Symbals offset (hed:

Runtime Options

[T Set program counter at (hex):

Set breakpoint at:
Resume

main

Run Commands

monitor reg r13 = (01 FFFE000)
moniter reg pe = (0x1FFFB004)

Using Standard GDE Hardware Debugging Launcher - Select other...

Aoply

@

Figure-12 Complete setup

6. Click on the “Apply” button and then the “Debug” button. The gdbserver application should
flash the microcontroller (download the firmware to the target) with your application and the
debugger should stop at the main function.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

16

7. The gdbserver application indicates the successful connection with the green light next to
the “GDB” text field. It also contains the log output, which might be helpful if there are issues.

ﬂ SEGGER J-Link GDE Server V4.76e =) =
File Help
[v Localhost only
| GDB |1 client = 127.0.0.1 | Initizl JTAG speed |1000kHz | [~ Stayontop
A [v Show log window
J-Link. |E0nnected Current JTAG speed 4000 kHz [~ Generate logfile
- - [~ Werify download
CPU [MK.20021 284045, Halted EEL |Litte endian | | regs on stat
Log output: Clear log
Dovnloading 16272 bytes @ address 0xz00008300 -

Downloading 14616 bytes @ address 0x0000C290
Downloading 8 bytes @ address 0x(0000FBAS
Downloading 4 bytes @ addres= 0x(0000FEEOD
Downloading 4 bytes @ addres= (0x(0000FEE4
Downloading 96 bytes @ address 0x0000FEEBES
Downloading 24 bytes @ address 0=x0000FC18
Writing register (PC = 0xz000006fd)

RFead 4 bytes @ address (0x000006FC {(Data = 0x490E4820D)

Read 2 byte=s @ addres= (0x00004354 (Data = (0=xFcdF)

Fead 2 bytes @ address 0x00004356 (Data = 0xl078)

Fead 2 bytes @ address 0x00004358 (Data = 0xF2C0)

Eead 2 bytes @ address 0=x0000435A4 (Data = 0=x0000)

RFead 2 bytes @ addres=s (0x00004354 (Data = (0=xFcdF)

Read 2 bytes @ addres= 0x00004356 (Data = 0x1078)

Read 2 bytes @ addres= 0x00004358 (Data = 0=xF2C0)

Fead 2 bytes @ address 0x00004354 (Data = 0xz0000)

Eead 2 bytes @ address 0x00004354 (Data = 0xFR4F) =

Setting breakpoint @ address 0x00004354. Size = 2. EPHandle
Starting target CPU. . .
.. .Breakpoint reached @ addres= 0xz00004354

Fl 1 3

63 KB downloaded 1 JTAG device

Figure-13 Successful connection

4.3.3 BSP to CPU name mapping for J-Link gdbserver

If using the Segger J-Link gdbserver to download firmware to the board, select the correct flashing
algorithm. See this table.

Table-1 Flashing algorithm

Board CPU ID Board CPU ID
kwikstikk40x256 MK40DX256xxx10 twrk60d100m MK60DN512xxx10
twrk20d50m MK20DX128xxx5 twrk60f120m MKG60FN1MOxxx12
twrk20d72m MK20DX256xxx10 twrk60n512 MKG60DN512xxx10
twrk21d50m MK21DN512xxx5 twrk70f120m MK70FN1MOxxx12
twrk21f120m MK21FN1MOxxx12 twrvf65gs10_ab5 VF6xx_A5
twrk40d100m MK40DX256xxx10 twrvf65gs10_m4 VF6xx_M4
twrk40x256 MK40DX256xxx10 vybrid_autoevb_a5 | VF6xx_Ab
twrk53n512 MK53DN512xxx10 vybrid_autoevb_m4 | VF6xx_M4

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

5 Makefiles Structure

This is the color key in this document this to express dependencies.

magx/bsp - is a directory of library or application
bsp - is a name of library or application
twrk60n512 - is board name

gcc_arm - is a toolchain name

5.1.1 Makefiles hierarchy

Library build process consists of partial makefiles:
Imagx/bsp/build/make/bsp_twrk60n512/Makefile
/magx/bsp/build/make/bsp_twrk60n512/tools/gcc_arm.mak
/build/common/make/global.mak
/build/twrk60n512/makeftools/gcc_arm.mak
/build/common/make/verify.mak

/build/common/make/lib-process.mak

Application build process consists of partial makefiles:
Imagx/examples/hello/build/make/hello_ twrk60n512/Makefile
/mgx/examples/hello/build/make/hello_ twrk60n512/tools/gcc_arm.mak
/build/common/make/global.mak
/build/twrk60n512/makeftools/gcc_arm.mak
/build/common/make/verify.mak

/build/common/make/app-process.mak

5.1.2 Partial makefiles definition

/mgx/bsp/build/make/bsp_twrk60n512/Makefile
This makefile sets up common SOURCES, INCLUDE paths and mandatory variables:

MQX_ROOTDIR — path to mqgx root directory

TYPE — type of build, setup to “library” value
NAME — library name

BOARD — name of the board

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor
18

LIBRARY_ROOTDIR - rootdir of libraries built for specific board and tool
LIBRARY_DIR — path to library output directory

LIBRARY_FILE — path to library output file

POSTBUILD_CMD - macro to obtain post build command. Depends on HOSTENV

Imagx/bsp/build/make/bsp_twrk60n512/tools/gcc_arm.mak
This makefile sets up tool chain-specific SOURCES and INCLUDE paths.

5.1.3 Partial application makefiles

Imgx/examples/hello/build/make/hello_ twrk60n512/Makefile
This makefile sets up common SOURCES, INCLUDE paths and mandatory variables:

MQX_ROOTDIR — path to mgx root directory
TYPE — “application” value

NAME — application name
BOARD — name of board

LIBRARY_ROOTDIR - rootdir of libraries builded for specific board and tool
APPLICATION_DIR - path to application output directory
APPLICATION_FILE - path to library output file

LINKER_FILE — macro to obtain linker command file

Imagx/bsp/build/make/bsp_twrk60n512/tools/gcc_arm.mak
This makefile sets up toolchain-specific SOURCES and INCLUDE paths.

5.1.4 Partial common makefiles

/build/common/make/global.mak
This partial makefile contains common macros, default definitions of TOOLCHAIN_ROOTDIR, and
HOSTENYV variables.

/build/twrk60n512/make/tools/gcc_arm.mak
This partial makefile contains sub-paths to toolchain binaries, common flags, and definitions.

/build/common/make/verify.mak
This partial makefile performs existence verification of linker command files, toolchain paths, and
valid command line variables.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor
19

/build/common/make/app-process.mak
This partial makefile contains targets, rules, and a dependency to build an application.

/build/common/make/lib-process.mak
This partial makefile contains targets, rules, and a dependency to build a library.

Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor
20

