
Freescale Semiconductor Document Number: MQXGDBUG

User’s Guide Rev. 1, 08/2014

© 2014 Freescale Semiconductor, Inc. All rights reserved.

Using Eclipse and GDB with

Freescale MQX™ RTOS User's

Guide

Document Number: MQXGDBUG
Rev. 1, 08/2014

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein.
Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications
can and do vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by customer’s
technical experts. Freescale does not convey any license under its patent rights nor the rights of
others. Freescale sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off. Vybrid and Tower are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners. ARM, ARM Powered logo,
and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2008-2014 Freescale Semiconductor, Inc.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 1

Table of Contents

Using Eclipse and GDB with Freescale MQX™ RTOS User's Guide .. i

1 Read Me First ... 2

2 MQX Build – Initial Steps ... 3

2.1 Building the MQX software using a command line ... 3
2.2 Makefile build .. 4

3 Using MQX Makefiles with Eclipse ... 6

4 Running and Debugging the MQX Application Using J-Link Gdbserver 10

4.1 Starting the gdbserver - Windows .. 10
4.2 Starting the gdbserver - Linux .. 12
4.3 Using Eclipse with the gdbserver ... 12

5 Makefiles Structure .. 18

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 2

1 Read Me First

This document describes the steps to configure the GNU and Eclipse CDT development tools
version 4.3 Kepler and use them to build, run, and debug applications of the Freescale MQX™
RTOS operating system. See Getting Started with Freescale MQX™ RTOS (document
MQXGSRTOS) and other user documentation included with the latest Freescale MQX RTOS
installation for more details not specifically related to the GNU and Eclipse CDC tools.

Get the latest Freescale MQX RTOS at freescale.com/mqx.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 3

2 MQX Build – Initial Steps

The MQX software release provides the makefiles to build MQX software libraries and applications
either from the Windows

®
 operating system or the Linux command line. Makefiles can also be

integrated with the integrated development environments (IDEs). This document describes
integration with the Eclipse IDE. These are the settings to prepare your build environment:

Windows operating system – a common scenario is to use “mingw” utilities with the Windows
“cmd” utility.

 Install mingw from sourceforge.net/projects/mingw/ to a default location “c:\MinGW”.

 Ensure that your PATH variable contains “c:\MinGW\bin”.

 Open the MQX installation directory, which is located in the C:/Freescale/Freescale MQX 4.1
by default. Edit the “build/common/make/global.mak” to set up a valid compiler directory path
to a variable TOOLCHAIN_ROOTDIR. The file contains some commented examples for
each toolchain. Because the path cannot contain whitespaces, use a Windows command
utility to get a DOS path without spaces. The list of supported tool-chains is located in the
Release Notes.

Linux operating system:

 Install “make” and “sed” utilities. Use your Linux distribution package manager to get the
latest version of the required tools.

 Open the MQX installation directory and edit the file “build/common/make/global.mak” to set
up a valid cross compiler directory path to a variable TOOLCHAIN_ROOTDIR. The file
contains some commented examples for each toolchain. Note that the path cannot contain
whitespaces.

Note that the instructions in the subsequent sections apply to the TWR-K60N512 BSP and the Hello
World example application. The same instructions apply for all other BSPs and examples.

2.1 Building the MQX software using a command line

See Chapter 2 of the Getting Started with Freescale MQX RTOS (document MQXGSRTOS) for
details about the generic build process and compile time configuration. This chapter focuses on the
steps related to makefiles only.

2.1.1 Batch Build (Windows)

MQX library build

To build libraries, launch a batch file which is in the “build/<board>/make” directory.

MQX application build

To build applications, execute the batch file in the application project directory. Navigate to this
directory:

build/twrk60n512/make/build_gcc_arm.bat

/build/make/<project_name>_<board>/build_<tool>.bat

http://sourceforge.net/projects/mingw/

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 4

2.1.2 Batch Build (Linux)

MQX library build

To build all libraries, execute a shell script file, which is in the “build/<board>/make” directory.

MQX application build

To build applications, execute the shell script file in the application project directory. Navigate to this
directory:

2.2 Makefile build

MQX library build

Navigate to the “<project/directory>/build/<project_name>_<board>/make” directory, for example
“mqx/build/make/bsp_twrk60n512,” and run this command to build a specific MQX library (in this
case BSP in debug configuration).

Windows

Linux

Make parameters description:

TOOL - name of the toolchain.

CONFIG - name of the configuration. A configuration is defined by specific flags and include
paths. Configurations “debug” (low optimization level) and “release” (high
optimization level) are provided.

target Allowed targets are

build - run build process

clean - run clean process

rebuild - run clean and build processes

help - default target, prints the help

debugme - print the internal variables

MQX application build

To build or clean an application, navigate to the example directory, run “make” command and
specify CONFIG, TOOL and LOAD or LINKER_FILE parameters.

In this directory:

Run this command:

Windows

build/twrk60n512/make/build_gcc_arm.sh

/build/make/<project_name>_<board>/build_<tool>.sh

mingw32-make TOOL=gcc_arm CONFIG=debug build

make TOOL=gcc_arm CONFIG=debug build

mqx/examples/hello/build/make/hello_twrk60n512

mingw32-make TOOL=gcc_arm CONFIG=debug LOAD=intflash build

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 5

Linux

Make parameters description:

TOOL - name of the toolchain.

CONFIG - name of the configuration. A configuration is defined by specific flags and

include paths. Configurations “debug” (low optimization level) and “release”
(high optimization level) are provided.

LOAD - name of linker file. Use this parameter when a linker command file is placed
in the BSP output directory. Otherwise, use the LINKER_FILE parameter with
full path.

LINKER_FILE - full path to the linker file, use when you want to configure a full path to the
linker command file and when you do not want to use a default path from BSP
output directory.

APPLICATION_DIR - output elf file location. By default, this location is
/mqx/examples/<example_name>/build/make/<example_name>/gcc_arm/<ta
rget>/. To change the output directory, specify the APPLICATION_DIR or the
APPLICATION_FILE variable.

make TOOL=gcc_arm CONFIG=debug LOAD=intflash build

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 6

3 Using MQX Makefiles with Eclipse

This section describes the integration between the MQX makefiles and the Eclipse CDT
development environment in the Windows operating system. However, the process is similar for the
Linux operating system.

1. Create a new C Project.

Figure-1 Creating a new project

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 7

2. Select the project name and place it in appropriate directory, for example:

/mqx/examples/hello/build/make/hello_twrk60n512/

Figure-2 Naming the project

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 8

3. Set up a make utility, for example mingw32-make. Build a directory path to the makefile
directory, for example, /mqx/examples/hello/build/make/hello_twrk60n512/.

You might want to change the configuration name in Manage Configurations.

Figure-3 Setting up make utility and a build directory

4. Open a makefile batch file, for example

Windows operating system:

/mqx/examples/hello/build/make/hello_twrk60n512/buid_gcc_arm.bat

Linux: /mqx/examples/hello/build/make/hello_twrk60n512/buid_gcc_arm.sh

Figure-4 Opening makefile batch file

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 9

5. Set up commands to the textbox field “build” and “clean”.

Figure-5 Setting up commands for build and clean

6. Now you can build and clean the project.

Figure-6 Build and Clean the project

7. In the Windows operating system, if you want to see project source files, copy and replace
your “.project” file with “.project” file from the “cw10gcc/hello_twrk60n512” directory. In the
Linux operating system create the project content manually. Pre-defined Eclipse projects will
be available in the future MQX software versions.

Output elf file is in this location:
/mqx/examples/hello/build/make/hello_twrk60n512/gcc_arm/intflash_debug/

If you want to change the output directory of the elf file, specify the APPLICATION_DIR or the
APPLICATION_FILE variable during step 5.
For example, APPLICATION_DIR=../../gcc_arm/hello_twrk60n512.

You may want to import the generated binary to debug it, as described in the next chapter. To do
so, go to the File/Import menu and select the C/C++ Executable under the C/C++ category.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 10

4 Running and Debugging the MQX Application Using J-Link Gdbserver

This description applies to the TWR-K20D50M BSP, the Hello World example, and the J-Link for the
ARM

®
 hardware debug probe. The same procedure also applies to all other BSPs and examples.

4.1 Starting the gdbserver - Windows

The gdbserver is a bridge between the GDB, the GNU project debugger, and the J-Link debug
probe. The gdbserver executable is in this folder:

1. When you run the executable, the connection dialog appears where you can select the
connection options for your board.

Figure-7 J-Link

<jlink_tools_install_dir>/JLinkGDBServer.exe

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 11

2. After selecting the options for the board, press the OK button and the dialog indicating the
Gdbserver status and the configuration details, such as the listening port, appears.

Figure-8 Gdbserver listening port

3. After the gdbserver is running, you are ready to connect to it. You may debug the application
either from the command line or using Eclipse with CDT. Note that before you try debugging,
you may want to download the application to the target device.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 12

4.2 Starting the gdbserver - Linux

The gdbserver for Linux is available only in a command line version. To start the J-Link gdbserver,
use this command:

JLinkGDBServer -select USB -device MK60DN512Zxxx10 -if JTAG -speed auto

 The “device” option specifies the silicon name and uses silicon-specific settings.

 The “if” option specifies the debug interface. Valid values are JTAG, SWD.

See Section BSP to CPU name mapping for J-Link gdbserver for valid device values and supported
BSPs.

Figure-9 Terminal

The gdbserver is listening on port 2331. After the gdberver runs, you are ready to connect to it. You
may debug the application either from the command line or using Eclipse with CDT. See next
chapter for more information.

4.3 Using Eclipse with the gdbserver

After the gdbserver is running, you can download the firmware to the board and start debugging.
These chapters describe how to use the command line GDB client and the GDB client Eclipse
integration.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 13

4.3.1 Using the command line interface

Follow these steps to download the application to your evaluation board and start debugging.

 Run the J-Link gdbserver with valid options, for example:

JLinkGDBServer -select USB -device MK60DN512Zxxx10 -if JTAG -speed auto

 Run the arm-none-eabi-gdb -tui hello_twrk60n512.elf where:

o --tui options switch GDB to curses view

o hello_twrk60n512.elf represent the path to the elf with debug symbols

 Attach the GDB client to the gdbserver by: target remote localhost:2331

 Load your application to the board using the load hello_twrk60n512.elf, where

hello_twrk60n512.elf represents the path to your application.

 Perform the monitor reset command to reset the chip and prevent registers from getting

default values.

 Set a breakpoint, for example break main or break hello_task.

 Run the application with the continue command.

Using the command line interface for debugging works for intflash build targets of the Kinetis
processor family.
Debugging a Vybrid processor is more complex and the basic initialization can be found here:

mqx/source/bsp/[BOARD]/gcc_arm/jlinkgdb/[BOARD].dgbinit

4.3.2 Creating the debug configuration in Eclipse

Users should install the Eclipse with CDT and the C/C++ GDB Hardware Debugging feature. The
instructions apply for the Windows operating system. However, a similar approach should work on a
Linux Host.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 14

1. Go to the “Run/Debug Configurations…” menu and create a new GDB Hardware Debugging
configuration. First, modify the Launcher and select the “Standard GDB Hardware
Debugging Launcher” instead of the default “GDB (DSF) Hardware Debugging Launcher”.
See the figure.

Figure-10 Selecting the launcher

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 15

2. Next, in the Debugger tab, set the path to the GDB client from the GNU Tools package and
uncheck the “Use remote target” option as shown in the image.

Figure-11 Selecting the path to the GDB client

3. Set the startup options by going to the “Startup” tab and pasting this content into the
“Initialization Commands” text field:

Note: Update the gdbserver listening port. You may find it in the gdbserver information dialog – see
the Starting the gdbserver sections. In this case the port number is 2331.

4. Paste this content into the “Run Commands” text field:

connect to the gdb server

target remote localhost:2331

Set gdb server to little endian

monitor endian little

Set JTAG speed to 1000 kHz

monitor speed 1000

Reset the target

monitor reset

monitor sleep 100

Set JTAG speed in khz

monitor speed auto

Vector table placed in RAM

monitor writeu32 0xE000ED08 = 0x1FFF8000

monitor reg r13 = (0x1FFF8000)

monitor reg pc = (0x1FFF8004)

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 16

5. In the “Runtime Options” set the initial breakpoint at the main function and mark the
“Resume” option.

The final result should look like this figure.

Figure-12 Complete setup

6. Click on the “Apply” button and then the “Debug” button. The gdbserver application should
flash the microcontroller (download the firmware to the target) with your application and the
debugger should stop at the main function.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 17

7. The gdbserver application indicates the successful connection with the green light next to
the “GDB” text field. It also contains the log output, which might be helpful if there are issues.

Figure-13 Successful connection

4.3.3 BSP to CPU name mapping for J-Link gdbserver

If using the Segger J-Link gdbserver to download firmware to the board, select the correct flashing
algorithm. See this table.

Table-1 Flashing algorithm

Board CPU ID Board CPU ID

kwikstikk40x256 MK40DX256xxx10 twrk60d100m MK60DN512xxx10

twrk20d50m MK20DX128xxx5 twrk60f120m MK60FN1M0xxx12

twrk20d72m MK20DX256xxx10 twrk60n512 MK60DN512xxx10

twrk21d50m MK21DN512xxx5 twrk70f120m MK70FN1M0xxx12

twrk21f120m MK21FN1M0xxx12 twrvf65gs10_a5 VF6xx_A5

twrk40d100m MK40DX256xxx10 twrvf65gs10_m4 VF6xx_M4

twrk40x256 MK40DX256xxx10 vybrid_autoevb_a5 VF6xx_A5

twrk53n512 MK53DN512xxx10 vybrid_autoevb_m4 VF6xx_M4

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 18

5 Makefiles Structure

This is the color key in this document this to express dependencies.

mqx/bsp - is a directory of library or application

bsp - is a name of library or application

twrk60n512 - is board name

gcc_arm - is a toolchain name

5.1.1 Makefiles hierarchy

Library build process consists of partial makefiles:

/mqx/bsp/build/make/bsp_twrk60n512/Makefile

/mqx/bsp/build/make/bsp_twrk60n512/tools/gcc_arm.mak

/build/common/make/global.mak

/build/twrk60n512/make/tools/gcc_arm.mak

/build/common/make/verify.mak

/build/common/make/lib-process.mak

Application build process consists of partial makefiles:

/mqx/examples/hello/build/make/hello_ twrk60n512/Makefile

/mqx/examples/hello/build/make/hello_ twrk60n512/tools/gcc_arm.mak

/build/common/make/global.mak

/build/twrk60n512/make/tools/gcc_arm.mak

/build/common/make/verify.mak

/build/common/make/app-process.mak

5.1.2 Partial makefiles definition

/mqx/bsp/build/make/bsp_twrk60n512/Makefile

This makefile sets up common SOURCES, INCLUDE paths and mandatory variables:

MQX_ROOTDIR – path to mqx root directory

TYPE – type of build, setup to “library” value

NAME – library name

BOARD – name of the board

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 19

LIBRARY_ROOTDIR – rootdir of libraries built for specific board and tool

LIBRARY_DIR – path to library output directory

LIBRARY_FILE – path to library output file

POSTBUILD_CMD – macro to obtain post build command. Depends on HOSTENV

/mqx/bsp/build/make/bsp_twrk60n512/tools/gcc_arm.mak

This makefile sets up tool chain-specific SOURCES and INCLUDE paths.

5.1.3 Partial application makefiles

/mqx/examples/hello/build/make/hello_ twrk60n512/Makefile

This makefile sets up common SOURCES, INCLUDE paths and mandatory variables:

MQX_ROOTDIR – path to mqx root directory

TYPE – “application” value

NAME – application name

BOARD – name of board

LIBRARY_ROOTDIR – rootdir of libraries builded for specific board and tool

APPLICATION_DIR – path to application output directory

APPLICATION_FILE – path to library output file

LINKER_FILE – macro to obtain linker command file

/mqx/bsp/build/make/bsp_twrk60n512/tools/gcc_arm.mak

This makefile sets up toolchain-specific SOURCES and INCLUDE paths.

5.1.4 Partial common makefiles

/build/common/make/global.mak
This partial makefile contains common macros, default definitions of TOOLCHAIN_ROOTDIR, and
HOSTENV variables.

/build/twrk60n512/make/tools/gcc_arm.mak
This partial makefile contains sub-paths to toolchain binaries, common flags, and definitions.

/build/common/make/verify.mak
This partial makefile performs existence verification of linker command files, toolchain paths, and
valid command line variables.

 Using Eclipse and GDB with Freescale MQX™ RTOS User’s Guide, Rev. 1, 08/2014

Freescale Semiconductor

 20

/build/common/make/app-process.mak
This partial makefile contains targets, rules, and a dependency to build an application.

/build/common/make/lib-process.mak
This partial makefile contains targets, rules, and a dependency to build a library.

