

Juan Mendoza, Systems Engineering Manager, NXP Clark Jarvis, MCUXpresso Product Manager, NXP

Functional Integration

i.MX RT Crossover MCUs – Target Applications

Voice & Audio

High-end, consumer audio devices, including specialty equipment such as:

Home Audio

Professional microphone

Guitar pedals

Audio Tuners

Consumer & Healthcare

Wearables **Smart appliances**

TVs

Game Controllers

Mobile patient care, Blood pressure monitor

> Activity & wellness monitor

Exercise equipment with display

Home & Building Automation

HVAC climate control Security

Lighting control panels

IoT gateways

Smoke Detectors

Thermostats

Industrial Computing

EBS

PLCs

Factory automation

Test and measurement

HMI control assembly line robotics

QR Readers

Barcode Scanners

Motor Control & Power Conversion

3D printers

Thermal printers

Unmanned autonomous vehicles

> Robotic vacuum cleaners

> > **Drones**

Objective: Develop example software code for multiple features of the i.MX RT1010 crossover MCU.

Features of the i.MX RT1010 Crossover MCU and i.MX RT1010 EVK

Juan Mendoza, Systems Engineering Manager, NXP

i.MX RT1010 SoC

Features

- 500Mhz Cortex M7
- 128K SRAM
- FlexIO (Displays)
- Security
- Rich Audio Features
- Motor Control

i.MX RT1010 Evaluation Kit (MIMXRT1010-EVK)

FEATURES

Memory

128Mb QSPI Flash

Audio

- Wolfson Stereo Codec
- 3.5mm headphone jack
- Microphone
- L/R Speaker out connections
- S/PDIF (coax, not populated)

Connectivity • HS USB

- Arduino® interface
- **Motor Control Expansion** port

Software

- MCUXpresso SDK with optional Amazon FreeRTOS support
- MCUXpresso IDE
- MCUX presso Configuration Tools
- Arm Mbed™ OS
- Zephyr® OS

RESOURCES

- SoC reference material
 - IMXRT1010RM
 - Documentation Application-Notes
- **Users Guides**

 - Quick Start Guide i.MX RT1010 Evaluation Kit MIMXRT1010 Evaluation Kit Hardware User's Guide Getting Started with i.MX RT1010 Evaluation Kit
- **Design Resources** i.MX RT1010 EVK Design Files, Schematics

How To Get Started with MCUXpresso Software and Tools on i.MX RT1010 EVK

Clark Jarvis, MCUXpresso Product Manager, NXP

Getting Started Guide for i.MX RT1010

https://www.nxp.com/MIMXRT1010-EVK

Includes:

- Getting started videos
- Links to MCUXpresso IDE and MCUXpresso SDK
- Basic examples walk-through

2.1 Jump Start Your Design with the MCUXpresso SDK!

Want to learn about SDK

Download and Install SDK for i.MX RT1010

https://mcuxpresso.nxp.com/en/select?device=EVK-MIMXRT1010

- As desired add additional software component
- Download SDK and Documentation
- Drag-and-Drop downloaded archive into IDE

Import example application

Steps

- Import (copy) an existing project based on MIMXRT1010-EVK
- Build and Debug basic "Hello World" application
- Step-though application and observed console output

Library of example application

Software Specific (Graphics, Wi-Fi, USB)

Build / Debug Example Application in IDE

Flash and Debug Application on Board

Create new IDE project

Quickstart Panel -> New Project...

Steps

- Create a new project based on MIMXRT1010-EVK
- Add SDK driver for Periodic Interrupt Timer (PIT)
- Review new project settings

Generate code with Config Tool Perspective

Project -> Open Pins (then Peripheral Tool)

Steps

- Configure LED (Pin 1) as output with custom identifier
- Add PIT peripheral with 250ms frequency and Interrupt
- "Update Code" to generate configuration files and return to Development Perspective

Create an interrupt function for the LED

Create IRQ function to Blink LED


```
Ic MyLED.c ⊠
                                                                                                    23 /* BOARD_InitPeripherals defines for PIT */
46@ void LED IRC(void) {
                                                                                                   24 /* Definition of peripheral ID. */
        uint32 t flags;
                                                                                                   25 #define PIT 1 PERIPHERAL PIT
 48
                                                                                                   26 /* Definition of clock source frequency. */
 49
        flags = PIT GetStatusFlags(PIT 1 PERIPHERAL, kPIT Chnl 0);
                                                                                                   27 #define PIT 1 CLK FREQ 62500000UL
 50
51
        PIT ClearStatusFlags(PIT 1 PERIPHERAL, kPIT Chnl 0, flags);
                                                                                                    28 /* Definition of ticks count for channel 0. */
        PIT GetStatusFlags(PIT 1 PERIPHERAL, kPIT Chnl 0);
                                                                                                    29 #define PIT_1 0_TICKS 15624999U
 52
                                                                                                   30 /* PIT 1 interrupt vector ID (number). */
 53
        GPIO PortToggle(BOARD INITPINS LED PERIPHERAL, 1U << BOARD INITPINS LED CHANNEL);
                                                                                                   31 #define PIT 1 IRQN PIT IRQn
                                                                                                   32 /* PIT 1 interrupt handler identifier. */
 55
                                                                                                  33 #define LED IRO PIT IROHandler
 56@ /*
     * @brief Application entry point.
                                                                                                    35@ /************************
 57
 58
 59⊖ int main(void) {
                                                                                                  h pin_muxh X
         /* Init board hardware. */
 61
                                                                                                    36
 62
        BOARD InitBootPins();
                                                                                                    37
        BOARD_InitBootClocks();
 63
                                                                                                        void BOARD InitBootPins(void);
 64
        BOARD_InitBootPeripherals();
 65
        /* Init FSL debug console. */
                                                                                                        /* GPIO 11 (number 1), GPIO 11 */
 66
        BOARD InitDebugConsole();
                                                                                                        #define BOARD INITPINS LED PERIPHERAL
 67
                                                                                                        #define BOARD_INITPINS_LED_SIGNAL
 68
        PRINTF("Hello World\n");
                                                                                                        #define BOARD INITPINS LED CHANNEL
 69
 70
        /* Force the counter to be placed into memory. */
                                                                                                    45
 71
        volatile static int i = 0;
        /* Enter an infinite loop, just incrementing a counter. */
                                                                                                         * @brief Configures pin routing and optionally pin electrical fea-
 73
        while(1) {
                                                                                                    48
            i++ :
                                                                                                                                                                       >
```


MCUXpresso SW and Tools Build / Debug MyLED Application in IDE

Flash and Debug Application on Board

MCUXpresso Software and Tools Additional Resources

Web pages

MCUXpresso Software and Tools – www.nxp.com/mcuxpresso

www.nxp.com/mcuxpresso/sdk MCUXpresso SDK: MCUXpresso IDE: www.nxp.com/mcuxpresso/ide MCUXpresso Config Tools: www.nxp.com/mcuxpresso/config

MCUXpresso SDK Builder – https://mcuxpresso.nxp.com

Communities

MCUXpresso Software and Tools - https://community.nxp.com/community/mcuxpresso

MCUXpresso SDK: https://community.nxp.com/community/mcuxpresso/mcuxpresso-sdk https://community.nxp.com/community/mcuxpresso/mcuxpresso-ide MCUXpresso IDE: MCUXpresso Config Tools: https://community.nxp.com/community/mcuxpresso/mcuxpresso-config

Supported Devices

- Supported Devices Table (Community Doc)

Get Started Now

- **Pro Tips:** use the examples project provided with the SDK:
 - **Device examples** are excellent tutorial projects for how to use the respective peripheral for a basic use case.
 - **Demo Applications** provide examples of multiple drivers, middleware, and other available code packages working together.
 - Other software specific examples provide basic use cases of a particular software package that is included directly within the SDK as an enabling software technology.
- Register for the contest https://www.hackster.io/contests/nxpcrossover
- How to post to GitHub (general guidelines) https://help.github.com/en/github/getting-started-withgithub/create-a-repo
- Get technical help
 - https://www.hackster.io/contests/nxpcrossover
 - https://community.nxp.com/community/imxrt

Questions?

