
EE403W Senior Project
DesignDesign

Section 4 Embedded SystemsSection 4 – Embedded Systems
C Tutorial

QUIZ

// initialization section
unsigned char x = 2;unsigned char x 2;

// execution section
if (x = 7)

x = 0;

Aft thi d h t i th l t d i th• After this code runs, what is the value stored in the memory
location referenced by the variable ‘x’?

2

‘C’ Programming Language

Why program microcontrollers in ‘C’?
• More compact code (visually speaking)p (y p g)
• Less cryptic code – easier to understand
• Easier to maintain/update
• Easier to manage large projects w/ multiple programmers• Easier to manage large projects w/ multiple programmers
• More portable (to an extent)
• ‘C’ is a more marketable skill (than BASIC, etc)

Why NOT program in ‘C’?
• $$$ for a compiler$$$ for a compiler
• Assembly potentially more compact code (memory size, execution speed)

- Assuming you have a competent assembly programmer on-hand
M b i k / i f ll j t t d i ASM (< 1kb t)

3

• May be quicker/easier for very small projects to code in ASM (< 1kbyte)

‘C’ Programming Language

C vs. Assembly Language

C Assembly MachineC Assembly Machine
i = 3 LDAA #$03 4000:86 03

STAA $800 4002:7A 08 00

j = 5 LDAA #$05 4005:86 05
STAA $801 4007:7A 08 01$

k = i + j LDAA $800 400A:B6 08 00
ADDA $801 400D:BB 08 01ADDA $801 400D:BB 08 01
STAA $803 4010:7A 08 03

A bl t

Compiler converts

D l d d

4

Assembler converts Downloaded
to chip

‘C’ Programming Language

Going from Assembly to Machine Code requires an Assembler

Example.asm Assembler
Example.s19

Linker

Source code Executable - 1s & 0s
that get loaded into

Object code

program memory

5

‘C’ Programming Language

Going from ‘C’ to Machine Code requires a Compiler,
Assembler & Linker

Adds lib function calls

Example.c

Compiler

Example.s19
Pre-
processor Linker

Adds .lib, function calls,
and links all object files

p

Source code

p

Compile

Optimize

Example.oAssembler

Example asmSource code

Executable - 1s & 0s that
get loaded into program
memory

Optimize

Iterative process,
multiple passes

Example.asm

memory

Usually a compiler option
– optimize for code size,
execution speed

multiple passes

execution speed

‘C’ Programming Language

Basic Program Structure
#______ are preprocessor directives

#include < stdio.h>

Every program needs 1 (and only 1)
void main()
{

Every program needs 1 (and only 1)
main function

printf("\nHello World\n");
} printf() is a function defined in stdio.h

Function is in brackets

‘C’ Programming Language

Use Lots of Comments!!!

1. Traditional ‘C’ comments
/* Everything between is a comment */

2. C++ style comments
// Everything on this line is a comment// Everything on this line is a comment

3. Preprocessor-enforced comments
#if (0)

Everything between is a comment;

8

#endif

‘C’ Programming Language

Variable Names & Keywords

Variable Names - can be up to 31 characters long
- may use upper/lower case letters, digits 0-9, and ‘_’
- compiler & library vars use ‘_’ as first char in names

Reserved keywords – can’t be used for var names
auto double int struct
break else long switch
case enum register typedef
h t t ichar extern return union

const float short unsigned
continue for signed void
default goto sizeof volatiledefault goto sizeof volatile
do if static while

‘C’ Programming Language

Data Types

char 8 bits Integers types are signed by
short 16 bits default.
l 32 bilong 32 bits
long long 64 bits
float 32 bits +/-10+/-38 ~ 6.5 significant digitsfloat 32 bits / 10 6.5 significant digits
double 64 bits +/-10+/-308 ~ 15 significant digits
int Usually depends on architecture

(32-bits for x86s 16 bits for HCS08)

Signed #s use Two’s complement formSigned #s use Two s complement form
• signed char is 8 bits, range is -128 to +127
• unsigned char is 8 bits, range is 0 to +255

‘C’ Programming Language

10111001

Straight binary (unsigned)
MSB LSB

= 0x9D10111001

1 x 27 + 0 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 15710

 0x9D

Total range of possible values is 010 25510

To di ide b t o shift one position to the leftTo divide by two, shift one position to the left

MSB LSB LSB = 0 if even #
01110010

0 x 27 + 1 x 26 + 0 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 7810

= 1 if odd #= 0x4E

‘C’ Programming Language

Useful #
conversion
chart

12

‘C’ Programming Language

ASCII text
A i St d d C d

ASCII i f d i

American Standard Code
for Information Interchange

• ASCII is often used in
computer systems to
represent characters

H- Hyperterm
- Many LCD screens

13

‘C’ Programming Language

Math Operators

+ Addition
- Subtraction- Subtraction
* Multiplication Note: ‘*’ and ‘/’ have higher
/ Division precedence than ‘+’ and ‘-’p
% Modulus operator

if Ans, Rem and the numbers 5 and 8 are integers, then
Ans = 5/8; // result is 0
Rem = 5%8; // result is 5

‘C’ Programming Language

Convert a number to ASCII
i d h lunsigned char value;

…

value = 0xF5; // 245 base 10;

temp1 = (value%10)+0x30;
temp2 = value/10;
temp3 = temp2/10+0x30;

2

On hyperterm window you’d see …

temp3 = temp2/10+0x30;
temp2 = temp2%10+0x30;

printf(temp3”\n"); // MSB

4

5

printf(temp2”\n");
printf(temp1”\n"); // LSB

‘C’ Programming Language

Increment & Decrement

i = i + 1; is equivalent to … i++;
k = k - 1; “ “ k--;

C ll d t i ti d d t d tiC allows pre- and post-incrementing and pre- and post-decrementing

num = 1;
while (num++ < 3)

num = 0;
while (++num < 3)

{
// do something

};

{
// do something

}

Are these
code snippets
equivalent?equivalent?

‘C’ Programming Language

Shift

x = 8;
x = x >> 2;

0000 1000 (810) → 0000 0010 (210)
Equivalent to dividing by 22

y = 8;
y = y << 3;

0000 1000 (8) 0100 0000 (64)0000 1000 (810) → 0100 0000 (6410)
Equivalent to multiplying by 23

May take less clocks than executing a multiply or divide instruction

‘C’ Programming Language

Logical Operators NOTE:
< less than
<= less than or equal to

h

if (0); // Is always false

if (1); // Is always true> greater than
>= greater than or equal to
== is equal to

if (1); // Is always true

== is equal to
!= is not equal to
&& AND

Logical operators are binary operators
The statement

|| OR if (A >= B) …

Returns 0 if the statement is false and 1
if true

‘C’ Programming Language

Bitwise Operators

& Bitwise AND
| Bitwise OR
~ Bitwise NOT
^ Bitwise Exclusive OR

Note:

B &= MASK;

#define MASK (%1111 0000)

A = 0x88 & MASK; // result is 0x80

is equivalent to

B = B & MASK;
A 0x88 & MASK; // result is 0x80

B = 0x88 | MASK; // result is 0xF8

C = 0x88 ^ MASK; // result is 0x78;

C = ~C; // result is 0x87

‘C’ Programming Language

Loops – for loop

start end increment

for (i=0; i<10; i++)
power[i] = volts[i] * current[i];

for(;;)
{

//loop forever
}}

‘C’ Programming Language

Loops – while loop

cntr = 0;
while (cntr < 10) // loop will execute 10 times
{{

num[cntr] = 5;
cntr++;

}}

while (1)
{

// this loop will execute forever
}}

‘C’ Programming Language

Loops – do while loop

cntr = 0;
ddo
{

[]num[cntr] = 5;
cntr++;

} while (cntr < 10); // still executes 10 times

‘C’ Programming Language

If statement

if (num <= 10 || eli==7)
{

// d thi

‘else if’ and ‘else’ never get tested if
“if (num<=10) is TRUE

// do something
}
else if (num >= 20)
{

Can have only one ‘if’ and one ‘else’, but
{

// do something
}

y
as many ‘else if’s as you want

else
{

// default case
}

‘C’ Programming Language

The switch statement
switch (buffer[3]) If you were to look at the assemblyswitch (buffer[3])
{
case 1:

// execute function 1
b k

If you were to look at the assembly
or machine code, switch and if-else
statements are functionally
equivalent. But if there are many

break;
case 2:

//function eli
case 3:

cases, a switch statement is usually
easier to look at, add to, etc.

case 5:
// execute function 2
break;

Switch statements lend themselves
well to things like command parsers

d t t hi…
case n:

// execute function n
break;

and state machines.

default:
// execute function _ERROR
break;

}

‘C’ Programming Language

Functions
FUNCTION

type function_name(type, type, type, …) PROTOTYPE

- At top of ‘C’ file or
included in header

Return argument – can
be char, int, etc.

‘void’ means no return

Values passed to a
function – one way
copy to function

included in header
file

void means no return
argument

If not ‘void’ function
d ‘ t (l)’

copy to function

‘void’ means no
values passed

needs a ‘return (value)’
statement at the end

‘C’ Programming Language

// Function PROTOTYPES

// Includes
#include <Timer.h>

Functions (cont.)
// Function PROTOTYPES
void config_Timer (void);// Function PROTOTYPES

void config_IO (void);

// MAIN Routine
void main (void)void main (void)
{

// Configure Port I/O
config_IO ();
// Initialize Timer 3

fi Ti ()config_Timer();
}

}

// Other Routines
Timer.h

void config_IO (void)
{

//Set up micro I/O ports
} Main.c

EE403W.4 Spring 26

‘C’ Programming Language

Note on Recursion / Reentrancy

n! = n * (n-1) * (n-2) * …

l f i l (i)
Function calculates a factorial by
calling itself until n = 0long factorial (int n)

{
if (n == 0)

calling itself until n = 0.

Need to be careful doing this, every
function call puts multiple bytes on theif (n == 0)

return (1);
else

function call puts multiple bytes on the
stack. If not terminated correctly could
overflow the stack very easily.

return (n * factorial (n-1));
}

‘C’ Programming Language

Why use functions?

• Makes code more modular – easier to read
• If sections of code are repeated multiple times, putting that

code in a function saves code space
• If section of code is not repeated more than once, function call

adds extra code (and hence runtime)adds extra code (and hence runtime)

• What if you want the modularity but not the extra stuff, what f y y ff
do you do?

‘C’ Programming Language

Macros

A way to “modularize” code without the penalty of a function call

In ‘file_name.h’ …
#define square (x) (x) * (x)

In ‘file name.c’ …In file_name.c …
Power = square (I) * R;

If you look at the compiled code the macro definition gets insertedIf you look at the compiled code, the macro definition gets inserted
as in-line code, whereas functions get treated as jumps to a single
block of code somewhere else in memory.

‘C’ Programming Language

Local Variables vs. Global Variables
// Function PROTOTYPES
void calc_number (void);
static unsigned char this_is_global;

// Main Routine
void main (void)void main (void)
{

unsigned char this_is_local;
this_is_global = 10;
this_is_local = this_is_global;

This won’t compile - error.

calc_number ();
}

// Other Routines
void calc number (void)

Why? Global var’s get dedicated
memory locations, local variables

void calc_number (void)
{

unsigned temp1, temp2;
temp1 = this_is_global;
temp2 = this_is_local;

}

all share a section of ‘scratchpad’
memory – the compiler figures out
exactly which variable gets which

l ti t ti} memory location at any one time.

‘C’ Programming Language

How to share Global Variables among multiple ‘C’ files
// Main.c
#include <main.h>
unsigned char this_is_global = 7;

// Main Routine
id i (id)

// main.h
extern unsigned char this_is_global;
extern void calc_number ();

void main (void)
{

unsigned char this_is_local;
this_is_local = this_is_global;
calc_number ();

// Algorithm.c
#include <main.h>

// R tirun_algorithm ();
}

// Other Routines
void calc number (void)

// Routine
void run_algorithm (void)
{

unsigned char this_is_local_too;
this is local too = this is global;void calc_number (void)

{
unsigned temp1;
temp1 = this_is_global;

}

_ _ _ _ _g
calc_number ();

}

Variables and functions can be external / global.

‘C’ Programming Language

Arrays

unsigned char cnum[5] = {5, 7, 2, 8, 17}; // 5 bytes of memory
unsigned int inum[5]; // 10 bytes
fl f [5] // 20 bfloat fnum[5]; // 20 bytes

Mem Location ValueMem Location Value
0100 5
0101 7

Address of cnum[0]

0102 2
0103 8
0104 170104 17

‘C’ Programming Language

Multidimensional Arrays

unsigned char cnum[2][3];
cnum[0][0] = 3;
cnum[0][1] = 6; i lcnum[0][1] 6;
cnum[0][2] = 8;
cnum[1][0] = 1;

[1][1] 0

Mem Location Value

0100 3
0101 6cnum[1][1] = 0;

cnum[1][2] = 12;

0101 6
0102 8

0103 1

0104 0
0105 12

‘C’ Programming Language

Pointers
Memory
Location

Value

* - deference operator
& - address of

Location
F004 F00C
F008

p
q

unsigned int *p, *q;
unsigned int i;

F00C 5
F010 F004
F014

i

r
g ;

unsigned int **r
F014

i = 5;
p = &i;
r = &p;

*p = 0; // like saying “set the contents of
// memory location pointed to by p r &p; // to 0” (i.e. i = 0)

**r = ?

‘C’ Programming Language

Pointers – another example

You are working on a 16 bit machine, and the memory
location at absolute address 0x67A9 needs to be set to an
initialization value of 0xAA55. How do you do it?

i t * tint *ptr;
ptr = (int *) 0x67A9; //Type Cast!
* 0 AA55*ptr = 0xAA55;

PORTA_DATA_REG = 1;

#define PORTA_DATA_REG *(unsigned char *)(0x0004)

‘C’ Programming Language

Advantage of Using Pointers
• Allows you to directly access machine

function callmemory
– i.e. contents of specific registers

• Helps to modularize code
BufCopy (num, &outputBuf, &inputBuf);

– can pass a pointer in a function call

void BufCopy (char nbytes, char *DstBufPtr, char *SrcBufPtr)
{
while (nbytes-- > 0)

{{
*DstBufPtr = *SrcBufPtr;
DstBufPtr++; SrcBufPtr++;

}
}

function

}

‘C’ Programming Language

typedef, struct and union

struct FOURBYTES
{

char byte4;
union FLOAT Impedance [8],
unsigned char I_bytes [8][4];

char byte3;
char byte2;
char byte1;

}

Impedance [6].f = 23.556;

I b t [6][0] I d [6] b b t 1};

typedef union FLOAT
{

I_bytes [6][0] = Impedance [6].b.byte1;
I_bytes [6][1] = Impedance [6].b.byte2;
I_bytes [6][2] = Impedance [6].b.byte3;
I bytes [6][3] = Impedance [6] b byte4;{

float f;
struct FOURBYTES b;

};

I_bytes [6][3] Impedance [6].b.byte4;

};

‘C’ Programming Language

typedef, struct and union
typedef struct

// Definition

typedef struct
{

unsigned char BIT_0 : 1;
unsigned char BIT 1 : 1;

BITFLAG UserFlags;

// In code

g _ ;
unsigned char BIT_2 : 1;
unsigned char BIT_3 : 1;
unsigned char BIT_4 : 1;

// In code
UserFlags.BIT_0 = TRUE;
UserFlags.BIT_1 = FALSE;

unsigned char BIT_5 : 1;
unsigned char BIT_6 : 1;
unsigned char BIT_7 : 1;

} BITFLAG} BITFLAG;

#define TRUE (1)
#define FALSE (0)#define FALSE (0)

‘C’ Programming Language

Preprocessor Directives

#include
#define

#d fi GREEN#pragma

Conditional compilation

#define GREEN
#define RED

…
#if (GREEN)p

#if / #ifdef / #ifndef
#elif

#if (GREEN)
//compile this code

…
#elif (RED)

#else
#endif

#elif (RED)
// compile this code

…
#endif

‘C’ Programming Language

Other keywords –
static

void process_buttons (void)
{static

1. Local variables declared
static maintain their value

static unsigned char button_old = 0;

button_new = PORTA & %0000 0001;
if (button_new & button_old)
{static maintain their value

between function
invocations

{
// button press TRUE 2 times
// in a row do something!

}
b ld b2. Functions declared static

can only be called by
functions in the same

button_old = button_new;
}

module

‘C’ Programming Language

Other keywords – volatile
Wh i bl i d l d l il h il i f d• When a variable is declared volatile, the compiler is forced to
reload that variable every time it is used in the program.
Reserved for variables that change frequently.
- Hardware Registers
- Variables used in interrupt service routines (ISR)

Variables shared by multiple tasks in multi threaded apps- Variables shared by multiple tasks in multi-threaded apps

Ex.
volatile unsigned char UART Buffer [48];volatile unsigned char UART_Buffer [48];
// UART_Buffer is used in the UART ISR to
// record the incoming data stream

‘C’ Programming Language

Other keywords – const

• Doesn’t mean ‘constant’, means ‘read-only’
• The program may not attempt to write a value to a const

i blvariable
• Generates tighter code, compiler can take advantage of some

additional optimizationsp

