Over the Air (OTA) Updates: Requirements for a Full System Solution

John H. Floros

Field Application Engineer

October 2018 | AMF-AUT-T3180

Agenda

- Introduction
- OTA Architecture
- Update Methods
- S32K1xx Features and Use Cases
- S32K Next Gen Features and Use Cases
- Summary

For More Information...

Objective

- Overview of OTA and its challenges
- Understand how NXP handle over the air updated in their portfolio
- Understand how to handle over the air updates in edge nodes MCUs such as S32K devices

What are Over-the-Air Updates?

Vehicle firmware updates received wirelessly (Wi-Fi, cellular...) from the cloud instead of through wired connection in a repair garage (sometimes referred to as FOTA).

Car Manufacturer (OEM) Demands

- Minimal impact on driver (no down time)
- No risk of leaving vehicle unusable
- Security to prevent rogue updates or theft

OEM Benefits

- Save money no recall required
- Ability to patch critical bugs/security vulnerabilities
- Revenue generation with new features

Key Drivers for OTA Updates

- Premium vehicles have over 100M lines of code! (Windows 10 has 50M)
- 15% of vehicle recalls and 60% of warranty costs are firmware related

- Firmware updates require vehicle to be returned to the garage
- Time-consuming and costly
- No guarantee customer will return it for recall

- Difficult to deliver new features to vehicle owners
- OEMs are missing post-purchase, revenue-generation opportunities

Automotive Software Recalls Are Growing!

Record Numbers of Software Complaints and Recalls Threaten Trust in Automotive Technology

BY JOSEPH DOBRIAN, MAY 27, 2016

Vehicle software has been growing steadily as a source of consumer complaints over the past several years, and so far in 2016 they're coming in on pace with the record-setting level of 2015, according to data collected by J.D. Power through its SafetylQ program.

The Car Connection's Bengt Halvorson wrote in *Popular Science* that routine, wireless software upgrades — like those currently offered by Tesla Motors — could help resolve those issues. The report tabbed the potential industry-wide savings from those updates at \$35 billion.

Source: C3X Marketing

Common Recall Process

Vector and Redbend (2014). *Update ECUs using Delta- and Over-the-Air-Technology* [PDF Slides]. Retrieved April 22, 2016 from

https://vector.com/portal/medien/cmc/events/Webinars/2014/Vector_RedBend Webinar Flashing over the air and delta technology 20140121 EN.pdf

OTA Update Concerns

- Cybersecurity / hijack attacks
- Problem causing inoperable vehicle

Fiat Chrysler sent an over-the-air update that is causing Uconnect to endlessly reboot

The company is 'investigating the cause and working towards a resolution'
By Star (TKane) | @solution | | Feb 13, 2018, 9:40em EST

Applicability across vehicle

GM has no plans for 'over-the-air' upgrades on safety systems

Posted By GMbeat 643 Days Ago on Articles

http://www.autonews.com - GM will not use 'over-the-air' upgrades, a way of remotely updating software on its vehicles, for safety-critical vehicle systems such as brakes, the automaker's product development chief said on Wednesday.

Implementation

- Is implementation vulnerable to cyber attacks?
- Can firmware be rolled back if problem?
- Can OTA update be done w/o down time?

As more carmakers adopt "over the air (OTA)" software updates for their increasingly connected and autonomous cars, is the risk of hacker hijack

Consumer acceptance

- Ask customer for every update?
- Will customer continually postpone updates?
- Will customer refuse certain updates?

It is an Attractive Target for Hackers!

High Vulnerability Valuable Data Collection of data/info Increasing number of nodes More advanced features Storage of data Diagnostic functions X-by-Wire

Protect Privacy

Increase Safety

Easy (Remote) Access

- Fully Connected Car
- External & internal interfaces
- Wired & wireless interfaces

Prevent Unauthorized Access

Full-Vehicle OTA Update Flow

OEM Cloud Server

Vehicle database

- Contains details of all vehicles by VIN / serial number
- Lists software currently on each vehicle
- Manages dependency between firmware versions on multiple nodes

Software database

- Contains all software, firmware, maps etc.
- Generates diff files is required

Real-time monitoring and reporting

- Receives usage information and error codes from active vehicles
- Able to poll vehicles to update local database

Backend Connection (TCU)

IP Connectivity

- Establishes physical communication link and IP connections
- Handles multiple comms protocols (Wi-Fi, cellular, V2X, etc.)

Logical Connectivity to Cloud Servers (Services)

→ depends on vehicle architecture. Logical connections can also be managed by gateway.

- Authenticates the vehicle and server
 - Uses Secure Element as root of trust
- Establish secure connection between vehicle and OEMs server
- Handle loss of connection issues
- Hand off package to the OTA Manager

Gateway (OTA Manager)

- Contains database of all ECUs
- Perform hashing and authentication on received image
- Unpack the received file and split for individual ECUs
- Stores updates until ready to install
- Can be used to create diffs
- Synchronize updates across multiple nodes
- Establish secure channel with ECU (end node)
- Prompt IVI to display update details to driver (if required)
- Commence UDS diagnostic session with end node
- Success message is reported back to the cloud

End Node (OTA Client)

- Verify/Authenticate image
- Decrypt Image (optional)
- Use version number to confirm firmware is new
- Perform diff calculation (diff updates only)
- Erase flash block
- Program update
- Switch to new version and notify OTA Manager

Software:

- Runs on the end node to be updated
- Performs actual the flashing operation
- Typically works along with bootloader
- Can be very small (<2K)

OTA Assumptions

- End node:
 - gets partial or full image for flashing
 - will have at least enough spare erased flash for a full image
 - receives updated software over serial link
 - has boot block which never changes with OTA updates
- Best case: update is performed while running existing software
- Before new software becomes active, application/boot software can perform:
 - Security validation
 - Functional validation
- New software starts on reset following the update completion

Over the Air (OTA) Update Methods 1/2

In general, there are 2 methods for performing updates to an end node

In Place Update:

Update is performed on top of existing version

Advantages:

No need for additional flash

Cost:

- Requires vehicle downtime during update process
- Not possible to instantly "roll-back" if an issue occurs
- Higher risk to have an ECU inoperable

Note: Bootloader is typically not updated via OTA.

Over the Air (OTA) Update Methods 2/2

A/B Swap Update:

2 versions of firmware exist in internal flash at the same time.

Advantages:

- Update can be carried out whilst application is actively running from flash
- Always have original firmware to roll back to in case of issue
- Vehicle always available guaranteed no vehicle downtime regardless of update errors

Cost:

- Requires 2x flash application storage
- Higher max current (run current in block A + erase/program current in block B)

Note: Bootloader is typically not updated via OTA

MCU Features to Facilitate OTA Updates - 1/2

RWW Flash

Allows read accesses from a flash block whilst another block is being erased or programmed.
Allows application to continue executing during update process.

Multi Core

Can allow one core to perform the update whilst the other is dedicated to running the existing application, minimising performance impact.

Lockable Flash Regions

Provides additional protection to critical code such as the bootloader during the update process to prevent accidental deletion.

Brownout Detection and Recovery

A reset during an update can leave the flash in an undefined state. The MCU should be able to detect an occurrence of this, and aid the bootloader in performing a recovery upon exit from reset.

MCU Features to Facilitate OTA Updates - 2/2

Flash Remapping / MMU

Allows instant switching between new and old firmware images stored in different physical locations in flash.

Cryptographic Security

Enables storage of private keys and fast decryption and authentication of incoming update. Also authenticates firmware each boot to prevent tampering

Lifecycle Management

Securely log the current firmware version and prevent illegal attempts to rollback to a previous version or to install unauthorised software or hardware.

Small code flash block sizes

Smaller flash blocks will improve update speed and efficiency. An inplace differential update will only modify a small number of locations, which need to be backed up, erased and reprogrammed.

S32K1xx: OTA Client Features

- OTA Client
- Software Features (Bootloader)
 - Version Control
 - Brownout and communication monitor.
- Roll back functionality
- External memory support.
 - QSPI
- Communication protocols

S32K1xx OTA Scenario: A-B Swap

Pros/Limitations

- Pro: A-B swap allows backup immediately available
- Limitations: compared to large MCUs with multiple code partitions, updating the image cannot be done live.

S32K148 A/B Swap Use Cases

- Use of external QuadSPI
- 512kB update while running application
- Only a specific section to be updated

S32K144 A/B Swap

010110010110011001010101010 New 1101010111110000101010101010 firmware 101010101010101010101010101 010101010101001011110000010 image 110010101010010101010101011 S32K144 Device Over the air update Block 0 Block 1 Flash driver Update over CAN Bootloader Bootloader Flags MPC5748G Image A Image B User data 256 KB 256 KB 64 KB Device Program Flash Data Flash **GATEWAY** Bank 0 Bank 1 New image Sector to update 60KB SRAM

S32K148: ASIL B 2M General Purpose MCU With HW

Security

Specifications:

- Cores: ARM Cortex-M4F @112 MHz max
- Memory: 2 MB Flash, 256 KB RAM (252 KB with ECC, 4 KB FlexRAM/EEPROM)
- **Temp Range:** Ta -40 to 125°C (Tj=135°C)
- Power Supplies: 2.7-5.5 V
- Packaging: 11 x 11 mm, 1 mm pitch 100 MapBGA (up to 89 usable pins). 20 x 20 mm, 0.5 mm pitch 144 LQFP (up to 128 usable pins). 24 x 24 mm, 0.5 mm pitch 176 LQFP (up to 156 usable pins).

Footnote:

- 1. 112MHz not valid with M temp (125C).

Key Features:

- High Performance: Powerful ARM Cortex-M4F core
- Advanced Automotive Communication: CAN FD + Ethernet + Audio interface
- Functional Safety: Developed as per ISO 26262 with target ASIL B
- **Security:** HW security engine (SHE+ compliant)
- Low Power: Low leakage tech. Best in class STOP current: 25-40 uA (device dependent)
- Full solution offering: AUTOSAR, SDK, Design Studio IDE

S32K14x: Flash Architecture

S32K14x: Flash Architecture

FOTA Relevant Features:

Device	Program Flash	Program Flash sector size	Program Flash Read partitions	Flex memory	Flex memory sector size
S32K142	256kB	2kB	1	64kB	2kB
S32K144	512kB	4kB	1	64kB	2kB
S32K146	1MB	4kB	2	64kB	2kB
S32K148	1.5MB	4kB	3	512kB	4kB

- RWW between Dflash and Program Flash
- RWW between Program Flash read partitions

Key Additional Flash Features:

- **C90TFS** (Thin-Film-Storage) technology
- ECC support: Single Bit Error Correction and Double Bit Error Detection
 - 32bit ECC word in data flash
 - 64bit ECC word in program flash
- Access time: Flash clock is about #1/4 of the core clock

S32K Security Module (CSEc) – Overview

- SHE functionality moves from dedicated master module into the flash system
- SHE Specification compliant
- Secure key storage only accessible by CSEc
- True Random Number System
- Sequential boot / parallel boot supported
- CSEc supports AES-128 with ECB, CBC and CMAC mode
- Crypto Keys
 - Several General-Purpose keys
 - Special Purpose keys (e.g. Secret, Master and Secure-Boot Key & CMAC)
 - Support of additional encrypted keys in public flash memory.
- KEY-Properies
 - Write-protection
 - Secure-Boot-Failure
 - Debug-Connect
 - Wildcard-UID
 - Key-Usage (key or CMAC)
 - Verify-Only
 - 28bit-Update-Counter

S32K144 Use Case: Memory Map for A/B Swap

- Default Interrupt table and bootloader not erased.
- 0x000000004 -> stores bootloader Reset Handler
- Reset Handler located at Bootloader space
- FW HEADER:
 - Fw version .
 - Developers information.
 - Validation.
 - Erased/Updated after each firmware update
 - Size: 4kB (sector size)
- FW size 248kB (62 sectors)
- RWW between bootloader and firmware application.
- EEPROM: Store secure keys, application usage.

S32K144 Use Case: Memory Map for A/B Swap

- 1. After Reset: fetch PC value @ 0x00000004
- 2. Bootloader init peripherals
- 3. Bootloader search for oldest and newest image.
 - Check FW Header information
 - Value 0x55AA55AA, at end of fw header
 - Assign FW to be updates (Oldest)
- 4. Jump to newest application
 - Relocate VTOR table
 - PC fetch value from new firmware interrupt table

S32K144 Use Case: Memory Map for A/B Swap

- 1. After Reset: fetch PC value @ 0x00000004
- 2. Bootloader init peripherals
- 3. Bootloader search for oldest and newest image.
 - Check FW Header information
 - Value 0x55AA55AA, at end of fw header
 - Assign FW to be updates (Oldest)
- 4. Update trigger received.
 - Receive header first
 - Validate is a new version
 - Start updating new firmware in oldest location
- 5. Update Completed
 - Deinit bootloader peripherals
 - Update new firmware header
 - Erase/Update older firmware header
- 6. Jump to new application
 - Relocate VTOR table
 - PC fetch value from new firmware interrupt table

S32K144 Use Case: A/B Swap Options Without Flash Remapping

Problem:

- 2 images in different physical address.
- No flash swap, flash remapping feature

Solutions:

- Separate object file for each firmware.
 - Requires more overhead in file management!
- Position independent code
 - Same linker file for all firmware updates
 - No file management
 - No absolute branches
 - Offset to each interrupt table entry needs to be added. Done automatically by bootloader!
 - Addresses of the interrupt table, should be modified.

IAR ropi feature

S32K144 Use Case: Communication Process

Step 1: Trigger update

- Communication Message from Host to edge node (bootloader fw)
- Response of ack form host to edge node.

Step 2: Transmit Header

- Host sends address
- Edge node responds with Ack
- Host sends header data
- Edge node validate data
- Edge node responds with Ack

Step 3: Transmit Application

- Host sends app logic address
- Edge node responds with Ack
- Host sends app data
- Edge node receives and write data into flash
- Edge node responds with Ack

S32K144 Use Case: Secure Communication Process

- Random number: protects against replay attacks
- Encryption: protects against eavesdropping
- CMAC

Authenticity and freshness of message

Confidentiality

Data integrity

Over The Air (OTA) Update Methods

S32K next generation will fully support both update methods:

<u>A/B:</u>

2 versions of firmware exist in internal flash.

Advantages:

- Update can be carried out whilst application is actively running from flash
- Always have original firmware to roll back to in case of issue
- Vehicle always available guaranteed no vehicle downtime regardless of update errors

Cost:

Requires 2x flash application storage

In Place:

Update is performed on top of existing version

Advantages:

 No need for additional flash (although 1 additional empty flash block typically required during update process)

Cost:

- Requires vehicle downtime during update process
- Not possible to instantly "roll-back" if an issue occurs
- Higher risk to have an ECU inoperable

S32K Next Gen: OTA Flash Features

Flash Read-While-Write Functionality

This feature allows for the firmware to be updated whilst the vehicle is in motion

- When OTA is enable in the part, device flash divides in 2 types of blocks.
- Allows for the flash to be updated whilst simultaneously executing code from it
- Active blocks is the where the application code is located.
- Passive blocks is where the rollback image is located.
- RWW available between active and passive blocks.
 Allows for the flash to be updated whilst simultaneously executing code from it

S32K2xx: OTA Remapping Features

Flash Swap

- Allows for instant switching between firmware versions
- Automatic firmware translation
- Instant version swap after device reset.
- Rollback capability.

- 1. Cores executes firmware from flash blocks 0&1 (active) after all flash blocks are erased.
- 2. After new image is uploaded to passive flash blocks 2&3 (OTA indicator updated) a device reset can be triggered.
- 3. After device reset, passive flash blocks 2&3 will become active, mapped at low address space and new firmware image will execute.

OTA Use Case: 2 FW Versions in Internal Memory

Example ECU A

Flash: 2x internal flash available

Security: Supports CMAC authentication

and AES-128 decryption

Connection to Gateway: FlexRay

Vehicle Downtime: none

Security: **high**

Steps:

- Encrypted binary trickle downloaded and stored onto empty "B" flash on ECU.
- Firmware is decrypted and integrity checked as it is downloaded. Allows end-to-end security
- Once download complete, GW switches ECU to use new firmware from next boot

S32K Next Gen Over-the-Air Update – Use Cases

Use case: Both active and passive images stored in the internal code flash

FOTA Hardware Architecture

- Current firmware executes and simultaneously uploads new firmware image into passive flash blocks
- After new image is uploaded into passive flash blocks, verified and OTA indicator in passive flash block updated device can initiate reset
- After device reset new image will execute

Firmware Upload

OTA Use Case: 2 FW in Internal Memory + Local Repository

Example ECU B

Flash: Internal flash with external NAND flash for local storage of a local firmware repository.

Security: Supports CMAC authentication and AES-128 decryption Connection to Gateway: CAN

Vehicle Downtime: **none** Security: **high**

Steps:

- Encrypted binary downloaded and stored onto GW. Checks authentication and integrity.
- GW sends to ECU as a background task – stored in external NAND.
- Update triggered by GW. Binary decrypted by ECU.

S32K Next Gen Over-the-Air Update – Use Cases

Use case: Keep several application images in external SPI flash

- Current firmware executes in parallel with storing firmware images within an external SPI flash
- Selected firmware will uploaded to passive flash blocks
- After selected image is uploaded to passive flash blocks, verified and OTA indicator in passive flash block updated device can initiate reset
- After device reset selected new image will execute

Firmware Upload

OTA Use Case: 1 FW in Memory + External Memory

Example ECU C

Flash: Internal flash with external NAND flash for local storage of new binary

Security: Supports CMAC authentication

and AES-128 decryption

Connection to Gateway: CAN

Vehicle Downtime: long

Security: high

Steps:

- Encrypted binary downloaded and stored onto GW. Checks authentication and integrity
- GW sends to ECU as a background task
 stored in external NAND
- Update triggered by GW carried out during vehicle downtime. Binary decrypted by ECU

S32K Next Gen Over-the-Air Update – Use Cases

Use case: In place update using external flash.

FOTA Hardware Architecture

- In case the whole flash memory is required for firmware.
- Current firmware executes in parallel, while storing firmware images within an external SPI flash.
- After device reset selected new image will be uploaded to device flash.
- After verification, new firmware image is executed from flash.

Firmware Upload

Summary

Market Problem

 ECU reprogramming outside garage. Seamless update for driver (zero down time).

 Always guarantee a working firmware in ECU as backup.

Attractive target for hackers.
 Opens a door for security vulnerability.

Solutions

In vehicle OTA architecture

- OTA manager.
- OTA clients.

Reliable and robust update

- Power and communication loss detection.
- Multiple version of firmware available.

Attack protection

- Against firmware stealing.
- Against malicious firmware installation.

S32K Features

Memory features

- Read while write between flash banks.
- Automatic firmware address translation.
- OTA agent firmware.
- Backup firmware.

OTA client features

- Rollback functionality.
- In hw firmware version control.
- In hw brownout and communication monitor.

Security hardware

- Encryption/ decryption of data.
- Firmware authentication check.

Summary

- OTA: In field device reprogramming.
- Vehicle in field reprogramming its a new trend.
- Different reprogramming methods are applied to each vehicle ECU.
- NXP devices are prepared across different use cases.
- New use cases are always welcome.

Additional Resources From NXP

OTA Insights

- NXP Automotive Software Over-the-Air Updates Video
- "Making Full Vehicle OTA Updates a Reality" white paper by Daniel Mckenna
- Body Electronics: An OTA Solution for Edge Nodes Using S32K by Osvaldo Romero

Gateways and Security

- NXP Central Gateway Site
- NXP Security Layers for Connected Cars

NXP Products to Support OTA

- MPC574xB/C/G Automotive MCUs (body control and gateways)
- S32K Automotive General Purpose Microcontrollers (end nodes)

SECURE CONNECTIONS FOR A SMARTER WORLD