EUF-NET-T1745

ARM® V8 VIRTUALIZATION FOR LAYERSCAPE MULTICORE COMMUNICATIONS PROCESSORS

NXP TECH DAY טל אביב - 22 MARCH 2016

PETER.VANACKEREN@NXP.COM - SR. FAE EMEA

SECURE CONNECTIONS FOR A SMARTER WORLD

Agenda

- Virtualization Introduction
- Layerscape ARM®v8 Virtualization Status & Roadmap
- I/O in KVM Environments
 - Device Virtualization virtio
 - Device Direct-Assignment VFIO
- Q&A

VIRTUALIZATION INTRODUCTION

Virtualization Technologies for QorIQ Layerscape architecture

KVM Linux ® Hypervisor Resource Virtualization Resource Oversubscription 3rd Party OSs VM App App App OS OS **KVM** Linux Multicore Hardware

KVM/QEMU - Overview

- KVM/QEMU- open source virtualization technology based on the linux kernel
- KVM is a Linux kernel module
- QEMU is a user space emulator that uses KVM for acceleration
- Run virtual machines alongside Linux applications
- No or minimal OS changes required
- Virtual I/O capabilities
- Direct/pass thru I/O assign I/O devices to VMs

KVM/QEMU

- QEMU is a user space emulator that uses KVM for acceleration
 - -Uses dedicated threads for vcpus and I/O
 - -KVM leverages hardware virtualization to run guest with higher privileges
 - -Virtual chip emulation in kernel
 - I/O
 - Provides dedicated virtio I/O devices and standard drivers in Linux kernel
 - Uses VFIO Linux framework to direct assign physical PCI devices
 - Direct notifications between I/O threads and KVM using eventfds
 - vhost provides virtio emulation and I/O thread and in kernel
 - Multi-queue virtio devices connected to multi-queue tap devices
 - Provides services for console, debug, reset, watchdog, etc

Linux Containers

- LinuX Containers is based on a collection of technologies including kernel components (cgroups, namespaces) and user-space tools (LXC).
- OS level virtualization
- Guest kernel is the same as the host kernel, but OS appears isolated
- Low overhead, lightweight, secure partitioning of Linux applications into different domains
- Can control resource utilization of domains – CPU, Memory, I/O bandwidth

Libvirt

- A toolkit to interact with the virtualization capabilities of Linux (and other OSes / hypervisors)
- Goal: to provide a common and stable layer sufficient to securely manage domains on a node, possibly remote
- Has drivers for KVM/QEMU and Linux containers
- Many management applications supported
- http://libvirt.org/

Linux Containers

- Platforms supported: all ... not platform dependent
- Features
 - -Technologies: LXC, Docker, Libvirt
 - -Setups: Busybox system containers, application containers
 - Networking
 - Shared with host
 - Host interface assignment
 - Virtual Ethernet device pair
 - VLAN / MACVLAN
 - USDPAA
 - -Security: capabilities, seccomp, user namespace
- Upstream status: upstream

Container Technologies

Other Technologies

Jails FreeBSD

Zones Solaris

OpenVZ

Linux VServer

Google Containers

Container Comparison

LXC/LXD	Docker	Libvirt
 Full system and application containers Focus on performance and stability 	 Single application virtualization engine based on containers 	 Virtualization high-level API with support for containers
• Lightweight Linux containers	 Focus on ease of use. Easy delivery of apps in a Docker container 	 Focus on unification with different virtualization technologies
 Containers are like VMs with a fully functional OS 	 Each application has its own container. "Container as an app" 	 Own version of container API – libvirt_lxc tradeoff in order to fit the overall
 Comprehensive set of tools for container lifecycle management 	 Docker restricts the container to a single process only 	architecture of libvirt • Developed by Red Hat
 Data can be saved in a container or outside 	• Instances are ephemeral. Persistent data is stored in host	beveloped by Ned Hat
 LXD allows you to use LXC to create containers on other machines 	• Trade off in complexity and constraints.	
 LXD aiming to used hardware that "guaranteed isolation of containers" on 	Suitable for read only app that is 'frozen in state'	
the chip level	 Container Distribution Platform – Docker Hub 	
 Container distribution platform – Flockport.com 	• Developed by PaaS providers (dotCloud)	
 Developed by Ubuntu/Canonical 		
"Blindingly fast virtualization"	"Great application delivery mechanism"	

Containers vs Hypervisors

	Linux Containers	Embedded Hypervisor	KVM
HW Support Needed?	No	Yes	Yes
Overhead	Low	Yes	Yes
Isolation	Good	High	High
Partitioning	Yes	Yes	Yes
Virtualization	Yes	Yes	Yes
Multi OS	No (Linux Only)	Yes Linux RTOS Bare-board 3rd Party OSs	Yes Linux Bare-board 3rd Party OSs
Features		Failover	Oversubscription
Licensing	Mainstream Open Source	Private Open Source	Mainstream Open Source Mature

QORIQ LAYERSCAPE SDK

VIRTUALIZATION STATUS & ROADMAP

SDK Virtualization Status

Technology	e500v2	e500mc	e5500	e6500	ARMv7	ARMv8
KVM-PPC	Up	Up	Up	Up		
KVM-ARM					Leveraged	Leveraging
FSL Hypervisor (bare metal)		Public Sources				
LXC	Leveraged & Fixes				Leveraging	
Libvirt		Leveraged & Fixes			Leveraged	Leveraging

- 3 complementary solutions supported on multiple platforms
- Focus on enabling core virtualization support, upstreaming and good OOB experience in NXP SDK
- I/O performance optimization in progress

Layerscape ARM®v8 Virtualization Roadmap

LS1043 BSP 0.5 [KVM] Basic KVM [KVM] virtio [LXC] LXC Support LS2080 SDK 1.0 [KVM] Kernel 4.1 & QEMU 2.4

MSI support
vhost-net, vhost-blk dataplane

[LXC] LXC [Libvirt] Libvirt

LS2 POC

[KVM]

- DPAA 2.x Direct Assignment with interrupts
- KVM-RT on LS2

[Docker] Docker engine on LS2

LS2 EAR 0.6

[LXC] LXC with seccomp [Docker] Docker engine

Benchmarking

[KVM] Benchmarking

POC

[KVM] PCI device assignment to KVM VMs **[LXC]** CRIU Demo

1Q

SDK 2.0

[KVM]

- DPAA 2.x Direct Assignment v1 (VFIO)
- PCI Device Assignment (VFIO-PCI)

Upstreaming

[KVM] DPAA 2.x Direct Assignment v2 (VFIO)

POC

[KVM]

- LS2 User Space (e.g ODP) direct assignment in guest
- Performance improvements
- · LE Guest on BE Host
- BE Guest on LE Host
- Direct assignment of SEC
- DPAA 2.x vhost-user optimizations
- · Live Migration Demo

2Q

Upstreaming

[KVM] DPAA 2.x Direct Assignment v2 (VFIO)

POC

[KVM]

Current Release

- Performance improvements
- Direct assignment of platform devices

3Q

- · virtio-crypto demo
- · USB pass-through
- · Shared-memory (ivshmem)

Italic features depend on upstream support

2016

Color Legend

Released

Roadmap Date

Major Release

EXTERNAL USE

2015

KVM - Out-Of-Box RFS Enablement

- Required components :
 - –KVM support enabled in kernel
 - -Guest image
 - -Guest root file system
 - -QEMU

	Kernel config	Guest rootfs	Guest image	QEMU
fsl-image-core	NO	NO	NO	NO
fsl-image-full	NO	NO	NO	YES
fsl-image-virt	NO	YES	YES	YES

I/O IN KVM ENVIRONMENTS

I/O Virtualization - Performance vs Flexibility

Device Usage in Virtual Environments

• Fast native performance • Direct access to hardware OS OS OS Driver I/O I/O

Emulated

DEVICE VIRTUALIZATION VIRTIO

virtio

- Device abstraction layer of paravirtualized hypervisor
 - -Standard for VMs/VNFs
 - Appearance as physical devices
 - Uses standard virtual drivers and discovery mechanisms
 - virtio-net : Ethernet virtual driver
 - vhost-net: optimizes Ethernet virtual driver by eliminating QEMU context switch
 - virtio-pci
- Backend drivers are vendor specific in host Linux; transparent to VM/VNFs

virtio

- Device facilities
 - Device status field / Feature bits / Device Configuration space / virtqueues
- Transport protocols: PCI, MMIO
- virtio specification, defined by OASIS technical committee
 - -Straightforward use normal bus mechanisms for interrupts and DMA
 - Efficient rings of input/output descriptors
 - -Standard no assumptions about guest environment beyond supporting MMIO, Channel I/O or PCI bus transports.
 - -Extensible devices contain feature bits acknowledged by the guest OS

KVM/Qemu virtio Back-end Drivers

virtio front-end	Qemu/KVM back-ends		
virtio-net	virtio-net (legacy)	Qemu	
	virtio-net (data-plane)	Qemu, I/O thread	
	vhost	Kernel	
	vhost-user	User space	
virtio-blk	virtio-blk	Qemu	
	virtio-blk data-plane	Qemu, I/O thread	
virtio-scsi	virtio-scsi	Qemu	
	vhost-tcm	Kernel	

Back-end - virtio-net (legacy)

IRQ Path Kick Path

Back-end - virtio-net (data-plane)

Back-end - vhost

IRQ Path Kick Path

Back-end - vhost-user

Back-end - virtio-blk

Back-end - virtio-blk data-plane

Back-end virtio-scsi - vhost-tcm

IRQ Path Kick Path

Back-end Acceleration - vhost-acc (preliminary)

DEVICE DIRECT-ASSIGNMENT VFIO

Device Direct-Assignment

- Device drivers access from user-space
 - Device pass-through (libusb, libscsi)
 - Map /mem (not recommended)
 - UIO (User-space I/O)
 - Device access (mmap device MMIO regions)
 - Interrupt support
 - No isolation or translation
 - -VFIO (Virtual Function IO)
 - Linux user space driver infrastructure for DMA devices
 - Device access (mmap device MMIO regions)
 - Enforces IOMMU translation and isolation (iova to real address)
 - High performance interrupt support (INTx, MSIs & MSI-X)

VFIO

- · VFIO (Virtual Function IO): Linux user space driver infrastructure
 - Enforces IOMMU protection
 - Device access: mmap() device MMIO regions
 - IOMMU programming interface
 - High performance interrupt support
 - Bus support: PCI, platform devices, LS2 MC bus
- VFIO PCI abstracts devices as :
 - Regions:
 - PCI configuration space
 - MMIO and I/O port BAR spaces
 - MMIO PCI ROM access
 - IRQs include
 - INTx (legacy interrupts)
 - Message Signaled Interrupts (MSI & MSI-X)

VFIO Device Decomposition

VFIO for PCI Bus

IRQ Path Kick Path

DPAA 2 Secure Direct Assignment

- DPAA 2 architecture
 - Optimized for resource assignment to various software contexts through Management Complex
 - Linux MC bus
 - Resource management tool
 - IOMMU translation and protection for user-space (ODP and QEMU)
 - ICID (StreamID)
 - MC bus integration with VFIO
 - Device reset
 - DPAA secured with Authorization Tables

VFIO for MC Bus

virtio vs Direct Assignment (VFIO)

	virtio	Direct Assignment
Flexibility	High	Med
Guest Driver	Generic	HW dependent
Device Sharing	Yes	No
Live Migration	Yes	PoC prototyping
Performance	Medium	High
Processing	Backend is SW emulated in Host or in Firmware	Reduced processing in Host
HW support for isolation	No	Required (SMMU)
Licensing	Open Source*	Open Source
Upstreamable ?	Firmware accelerations - NO	YES
History	Started as software implementation in Linux and now API is standardized (OASIS) Standard add-ons may not be accepted in Linux upstream.	Framework implemented in Linux for PCI devices that is extended for Platform devices.

Q & A

SECURE CONNECTIONS FOR A SMARTER WORLD

VM LIVE MIGRATION

VM Live Migration with virtio devices

VM Live Migration with Direct Assignment

DATACENTER – SERVERS INIC SOLUTIONS

Increasing Server Intelligence and Performance

Server non-iNIC case - iNIC demo Traffic Flow

Server non-iNIC case - iNIC demo Traffic Flow

Enhanced L4-7 **Functionality**

- NFV/SDN/Firewall/ACL
- **IPSEC**
- TCP offload
- **Data Compression**
- **Deep Packet Inspection**
- Load Balancing
- OpenSSL + record offload
- Vendor defined applications

Benefits

- · Offloading of x86 CPU to increase aggregate with application performance cost effectively.
- Increase top end server performance
- Scalable iNIC platform performance T2080 to T4240. Reusable software.
- Hardware acceleration for Data Path, Pattern Matching, Security and Decompression /Compression, PKC/Record offload.

* Can be external

VCPE / EDGE NETWORK

VNFS

VIRTUALIZED NETWORKS FUNCTIONS

vCPE Solution (OPNFV Platform + vCPE functions)

vCPE Solution (LS1088/LS2088 ARM v8 ISA + Advanced Packet Processing)

- Up to 8 GPP cores available for vNFs
- Full OPNFV platform compliance.
- vNFs 100% source compatible with x86
- 1 to 8x performance scalability on a single software platform
- AIOP packet forwarding engine frees up GPP cores <u>AND</u> significantly improves network throughput

CONCLUSIONS

Conclusions

- I/O in virtualized environments is driven by new trends NFV, vCPE, vAccess
- Goal is to provide standard I/O support efficient and flexible
- KVM provides virtio, direct-assigned and pass-through devices
- Optimizing virtio, direct-assignment, pass-through is instrumental
- Supporting efficiently the Virtual Machine migration is a priority

NXP SOLUTIONS FOR VIRTUALIZATION

NFV/SDN Service Delivery - NXP Reference Designs

DC Solutions

- ❖ NFV Compute / Storage
- ❖ iNIC / SSL Accel
- ❖ C-RAN L1 Accel
- ❖ ADC / WoC
- ❖ToR Router

Metro Edge Solutions

- Metro Routers
- L4-7 Appliances
- Content Delivery
- WAN Optimization

Metro Access Solutions

- Aggregation Routers
- Broadband Gateway
- ❖ Mobile BTS / C-RAN

CPE Access Solutions

- Campus Router
- Broadband Access
- ❖ Wireless / Mobile AP

IoT Gateway

- ❖ Building / Factory
- Smart Energy
- Transportation
- Digital Signage
- Medical / Fitness
- Remote Monitoring

NFV iNIC / Compute (T4/T2+C29x)

iNIC OVS offload with DPDK support OpenStack / Open Daylight Framework VortiQa v1.3 OF-Controller+L4-7

CorlC **Processors**

SDN L2-7 Router + NFV (T2/LS2+C29x)

VortiQa OF-Agent+L4-7 Processing Virtualized data plane (QorlQ & Switch) NFV edge-based services

WLAN AP

IoT AP

OpenWRT

Mobile AP

