
Company External – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of

NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

FAEs

John Floros, Alejandro Cervantes

S32K14x FlexNVM & CSEc
Workshop

October 2018 | AMF-AUT-T3374

PUBLIC 11PUBLIC

• Introduction of FlexNVM

• Why do we need security?

• NXP Layered security model

• S32K Overview

• Lab #1 Enable the S32K CSEc

• SHE Specification Overview

• Lab #2 How to Store Secret Keys

• CSEc Details

• Lab #3 Encrypt Image

• Lab #4 Erase CSEc Keys

• Lab #5 Disable CSEc

• Use Cases

Agenda

PUBLIC 2

S32K Overview

PUBLIC 3

S32K144 Block Diagram

Crossbar Switch with MPU

RAM

Up To

64KB

System

P
e

ri
p

h
e

ra
l

B
ri

d
g

e

N
V

IC

Cortex M4F

112 MHz

FPU, DSP, MPU,

4 KB I/D-Cache

RTC

PMC
2.7 - 5.5V

FLL Clk Mult

Ext Osc
(8 - 40MHz)

Fast R/C OSC
(48MHz 1%)

LP OSC
(128KHz 10%)

SCG

High performance

• ARM Cortex M4F up to 112MHz w FPU

• eDMA from 57xxx family

Software Friendly Architecture

• High RAM to Flash ratio

• Independent CPU and peripheral clocking

• 48MHz 1% IRC – no PLL init required in LP

• Registers maintained in all modes

• Programmable triggers for ADC  no SW delay

counters or extra interrupts

Functional safety

• ISO26262 support for ASIL B or higher

• Memory Protection Unit

• ECC on Flash/Dataflash and RAM

• Independent internal OSC for Watchdog

• Diversity between ADC and ACMP

• Diversity between SPI/SCI and FlexIO

• Core self test libraries

• Scalable LVD protection

• CRC

Low power

• Low leakage technology

• Multiple VLP modes and IRC combos

• Wake-up on analog thresholds

Security

• CSEc (SHE-spec)

Digital

Components

5V Analogue

Components
MCU Core

and Memories

Operating Characteristics
• Voltage range: 2.7V to 5.5V

• Temperature (ambient): -40°C to +125°C

Packages & IO
• Open-drain for 3.3 V and hi-drive pins

• Powered ESD protection

• Packages: 100 BGA, 64 LQFP, 100 LQFP

s
e

c
u

ri
ty

Slow R/C OSC
(8MHz 3%)

16ch

eDMA

LVD

WDOG EWM

Debug

SWD JTAG

Communications / I/O System

2
x
 A

D
C

1
6
c
h
 1

2
b
it

A
C

M
P

W
 8

-b
it
 D

A
C

4
x
 F

le
x
T

im
e
r

8
c
h
 1

6
-B

it

3
x
 F

le
x
 C

A
N

1
 w

it
h
 F

D

2
x
 P

D
B

3
x
 S

P
I

1
x
 I

2
C

Flex IO

I2
S

U
A

R
T

S
P

IL
P

IT

C
R

C

3
x
 U

A
R

T
/L

IN

P-Flash

Up To

512KB

EEPROM

Up To

4KB

D-Flash

Up To

64KB

Last Updated 2nd May 2017

PUBLIC 4

Targeting General Purpose Applications

Battery Management Tire pressure receiverWireless chargingHuman machine interfaceBody control module

Climate control

Door/Window/sunroof Near Field Communication Lighting Secure transmission / encryption in cars

PMSM/BLDC motorcontrol Touch sensing Park assist
Nox reduction systems

Motorbike ECU/ABS

DC/DC converters

E-shifter

Rear view camera tilt Steering wheel electronics

PUBLIC 5

Introduction to S32K Memory

PUBLIC 6

Flash Block

Flash Controller

Prefetch buffer

Store buffer

Prefetch buffer

Store buffer

32 bits

XBAR
S0

EEPROM

Emulation

Program Flash

Bank 0

FlexNVM

Bank 1

FlexRAM

EEE

PUBLIC 7

Memory Mapping

PUBLIC 8

S32K144 Memory Architecture

P-Flash

D-Flash

FlexRAM

P-RAM

Program

Data

RAM/EEEPROM

CSEC

PUBLIC 9

Special Considerations

Only one at the same time!

PUBLIC 10

LAB #1: Flex-NVM Partition

PUBLIC 11

Partition Flex – NVM

• Task
− Configure S32K144 Clock

− Validate NVM factory settings

− Configure NVM memory for: D-Flash, EEPROM and CSEc

• Learn
− Identify if the device can be enabled for CSEc operation?

− How to verify EEEPROM status?

− How to use command interface to configure EEEPROM and enable CSEc?

− Flash status register

• Note
− You will need to run S32K144_NVM_Lab1 project for this Lab.

PUBLIC 12

Debugging by Serial Session

• Open a Tera Term sesión:

1. File -> New connection -> Serial connection

2. Setup -> Serial Port ->

PUBLIC 13

What is the Default Configuration Status?

• By default CSEc and emulated-EEPROM functions are disabled

− FTFC_FCNFG – Flash Memory Module Flash Configuration Register

EEERDY = 0 : FlexRAM is not

available for emulated EEPROM

operation

RAMRDY = 1 : FlexRAM is

available for traditional RAM

operations only

PUBLIC 14

Does My Part Have a CSEc?

• How to locate if your part has CSEc in it or not?

− SIM_SDID – System Integration Module System Device Identification register

Features on this part

are:
Security = CSEc enabled

CAN-FD Enabled

FlexIO Enabled

PUBLIC 15

To Enable the CSEc the Memory Need to Be Partitioned for

EEPROM

• To access the CSEc feature set, the part

must be configured for EEE operation,

using the PGMPART command.

• By enabling security features and

configuring a number of user keys, the

total size of the 4 Kbyte FlexRAM used

for EEEPROM will be reduced by the

space required to store the user keys.

• The user key space will then effectively

be unaddressable space in the FlexRAM.

512kB

P-Flash

64kB

D-Flash

4kB System

RAM

1 read

partition

1 read

partition

2 x 256kB
(128-bit interleaved)

1 x 64kB
(64-bit non-interleaved)

0000_0000

0007_FFFF

1000_0000

1000_FFFF

1000_FFFF

1400_0000

1400_0FFF

CSEc Disabled

PUBLIC 16

S32K144 P/D-Flash Memory Mapping

512kB

P-Flash

64kB

D-Flash

32kB

D-Flash

16kB

D-Flash

4kB System

RAM

4kB FlexRAM

-
4kB FlexRAM

-

4kB FlexRAM

-
128B PRAM 512B PRAM256B PRAM

32kB

For

EEEPROM

48kB

For

EEEPROM

64kB

For

EEEPROM

CSEc Enabled(w/o CSEc, remove the PRAM)

1 read

partition

1 read

partition

512kB

P-Flash

512kB

P-Flash

512kB

P-Flash2 x 256kB
(128-bit interleaved)

1 x 64kB
(64-bit non-interleaved)

0000_0000

0007_FFFF

1000_0000

1000_FFFF

1000_FFFF

1400_0000

1400_0FFF

0000_0000

0007_FFFF

1000_0000

1000_FFFF

1400_0000

1400_0FFF

D-Flash not

memory mapped

CSEc Disabled

PUBLIC 17

Enable CSEc and Configure Flash for EEPROM & D-Flash

Operations
• FTFC Program Partition Command(PRGPART) configures part for CSEc and EEEPROM

operations

− Issue PRGPART command using FCCOB[0-F] registers

− FCCOB[0-F] are located inside FTFC module and are part of Host Interface

FCCOB

Number
Content Description Data Comments

0 Program Partition Command 0x80 Command

1 CSEc Key Size 0x03 0x00 – CSEc Disabled;

0x01 – 5 Keys; 0x02 – 10 Keys; 0x03 – 20 Keys

2 SFE 0x00 Verify only functionality disabled

3 FlexRAM load during reset option (only

bit 0 used):

0x00 0 - FlexRAM loaded with valid EEPROM data

during reset sequence

1 - FlexRAM not loaded during reset sequence

4 EEPROM Data Set Size Code 0x02 4k of FlexRAM reserved for EEPROM operation

5 FlexNVM Partition Code 0x03 32k of FlexNVM is reserved for EEPROM-

backup operation and 32K is used for D-Flash

NOTE:

EESIZE must be 0x2

for 4kB

DEPART must not be

0x0; For Lab set to 0x3

PUBLIC 18

Enable EEPROM,CSEc & D-Flash With Flash Command

Write Sequence

PUBLIC 19

Enable CSEc With Flash Command Write Sequence
See FCCOB Program Partition command requirements (below) from S32K1xx reference manual. Also,

below is part of the C-Code used for the this Lab.

/* Enables CSEc by issuing the Program Partition Command, procedure: Figure 33-8 in RM, Configures for all 24 Keys */
uint8_t configure_part_CSEc(void)
{

while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != FTFC_FSTAT_CCIF_MASK); /* Wait until any ongoing flash operation is completed */
FTFC->FSTAT = (FTFC_FSTAT_FPVIOL_MASK | FTFC_FSTAT_ACCERR_MASK); /* Write 1 to clear error flags */

*/
FTFC->FCCOB[2] = 0x03; /* FCCOB1 = 2b11, 1 - 20 keys
FTFC->FCCOB[3] = 0x80; /* FCCOB0 = 0x80, program partition command */
FTFC->FCCOB[1] = 0x00; /* FCCOB2 = 0x00, SFE = 0, VERIFY_ONLY attribute functionality disable */
FTFC->FCCOB[0] = 0x00; /* FCCOB3 = 0x00, FlexRAM will be loaded with valid EEPROM data during reset sequence */
FTFC->FCCOB[7] = 0x02; /* FCCOB4 = 0x02, 4k EEPROM Data Set Size */
FTFC->FCCOB[6] = 0x04; /* FCCOB5 = 0x04, no data flash, 64k(all) EEPROM backup */

FTFC->FSTAT = FTFC_FSTAT_CCIF_MASK; /* Start command execution by writing 1 to clear CCIF bit */

while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != FTFC_FSTAT_CCIF_MASK); /* Wait until ongoing flash operation is completed */

flash_error_status = FTFC->FSTAT; /* Read the flash status register for any Execution Error */

return flash_error_status;
}

PUBLIC 20

FTFC_FSTAT – Flash Status Register

Check for following before & after issuing command

• Flash operation may be going on

− Chances of conflict

− Always check CCIF flag

• Check for potential flash errors

− If they exist take necessary actions and clear them

Command Complete

Interrupt Flag

CCIF=0 : FTFC

command or emulated

EEPROM operation or

CSEc operation in

progress

CCIF=1 : FTFC

command or emulated

EEPROM operation or

CSEc operation has

completed

Read Collision

Error Flag
• Read while manipulating

Flash Access Error

Flag
• Illegal access or

• Illegal command

Flash Protection

Violation Flag
• Attempt to program or

erase an address in a

protected area

PUBLIC 21

Output Message on Serial Terminal

PUBLIC 22

Verify Whether Device is Configured Correctly?

• FTFC_FCNFG – Flash Memory Module Flash Configuration Register

• Try to access the memory area reserved for keys

− Access location: 1400_0E00

RAMRDY = 0 : FlexRAM is NOT

available for traditional RAM

operations only.

EEERDY = 1 : FlexRAM is

available for emulated EEPROM

operation

PUBLIC 23

Recap

512kB

P-Flash

64kB

D-Flash

32kB

D-Flash

16kB

D-Flash

4kB System

RAM
4kB FlexRAM - 4kB FlexRAM - 4kB FlexRAM -

128B PRAM 512B PRAM256B PRAM

32kB

For EEEPROM

48kB

For EEEPROM

64kB

For EEEPROM

CSEc Enabled(w/o CSEc, remove the PRAM)

1 read

partition

1 read

partition

512kB

P-Flash

512kB

P-Flash

512kB

P-Flash2 x 256kB
(128-bit interleaved)

1 x 64kB
(64-bit non-interleaved)

0000_0000

0007_FFFF

1000_0000

1000_FFFF

1000_FFFF

1400_0000

1400_0FFF

0000_0000

0007_FFFF

1000_0000

1000_FFFF

1400_0000

1400_0FFF

D-Flash not

memory mapped

CSEc Disabled

PUBLIC 24

Lab 2: D-Flash Writing

PUBLIC 25

Lab 2. D-Flash Writing

• Task

• Write information into D-Flash memory through the FCCOB

• Validate the writing/erase function in the first sector of the D-Flash

• Learn

• Use of FCCOB commands for writing and erasing D-Flash.

• Understand the differences between blocks and sectors

• Note

• You will need to run S32K144_NVM_Lab2 project for this Lab.

PUBLIC 26

Memory Block

Sector 0

Sector 1

Sector 2

Sector 3

Sector n

1010010101

01110111011

01101110001

1100011

4Kb

11111111111111

11111111111111

11111111111111

Partition n

Partition 1

Partition 0

PUBLIC 27

Sector and Bank

• Sector: smaller erasable area that can be erased from flash

• Bank: partitions in which the flash block is divided into.

PUBLIC 28

P-Flash / D-Flash

• FlexNVM is configured by
default as D-Flash.

• P-Flash is split into 512kB
blocks known as read
partitions.

• Read-While-Write feature
applies between read
partitions.

Block

1

Block

0

Block

0

Block

2

PUBLIC 29

P-Flash / D-Flash

512kB

Block 0

512kB

Block 2

0x0000_0000

0x0010_0000

0x08
0x08
0x00
0x00

0x00 08 _00 00

FTFC->FSTAT |= FTFC_FSTAT_CCIF_MASK;

512kB

Block 1

10101110101010101010101101010…11111111111111111111111111111…

Erase Flash Block Command

PUBLIC 30

On S32 Design Studio

1. Verify if there are space in the FlexNVM for D-Flash

In case there is no configuration for D-Flash the program will stay in an infinite loop

PUBLIC 31

On S32 Design Studio..

• Erasing the first and second sectors of D-flash

• Changing the 32-bit address for a 24-bit address (Adding 1 or 0 in the most

significant bit for P-Flash or D-Flash)

PUBLIC 32

On S32 Design Studio

Writing 3 times:

• 2 in the first sector of D-Flash and 1 in the begining of the second sector

• Open Memory view to validate the data into the D-Flash

PUBLIC 33

On S32 Design Studio

• Use Erase command to erase in a “random” locality of sector 1

• Open Memory view to validate that the data in 0x7C0 and 0x000 was erased but no the data in

sector 2

PUBLIC 34

Lab 3: EEPROM vs. EEPROM

Quick Writes

PUBLIC 35

Lab 3. EEPROM vs. EEPROM Quick Writes

• Task
− Write information into EEPROM

− Write information into EEPROM using Quick Writes configuration

• Learn
− Advantages of writing into EEPROM using the FlexRam

− Configuration of FlexRam for QuickWrites

− Diferences between EEPROM and EEPROM Quick Writes

• Note
− You will need to run S32K144_NVM_Lab3 project for this Lab.

PUBLIC 36

Emulated EEPROM (EEE)

• How much of the total FlexRAM memory will be used as EEPROM data

• How much of the total FlexNVM memory will be used as EEPROM backup data

4kB

EEERAM

10100011
0x1400_0000

Record

PUBLIC 37

Debugging by Serial Session

• Open a Tera Term sesión:

1. File -> New connection -> Serial connection

2. Setup -> Serial Port ->

PUBLIC 38

Lab 3. EEPROM vs EEPROM Quick Writes

Using the EEPROM_write function a buffer size of 128 bytes (32-bit

aligned) Will be writing into FlexRam memory space (0x1400 0000)

PUBLIC 39

Lab 3. Configuring FlexRam for QuickWrites

• Change to FlexRam for QuickWrites configuration.

− Config FlexRam for saving 128 bytes

PUBLIC 40

Emulated EEPROM – Quick Write

4kB

EEERAM

10100011
0x1400_0000

Record

Record

00110110

Invalid

Maintenance!!10100101 11100011 00001111 00001111

11100101 10011011 01101001 00000000

Record

Record

All quick write words have been written! Do Maintenance!!

Invalid

PUBLIC 41

How Quick Are Quick Writes?

The data writing speed is the same as normal writes, the difference is on

the data maintenance

PUBLIC 42

Lab 3. EEPROM Quick Writes

Validate the storage of the 128 bytes into the FlexRam by checking the

Memory window or in terminal

PUBLIC 43

Recommendations

• Any software driver that uses CSEc, EEPROM (writes only) or Flash

controller commands must not be placed in FlexNVM’s PFlash

• Any Configuration Data (constant parameters) that must be read

during a CSEc or EEPROM write or program/erase operation must

not be placed in FlexNVM’s Dflash

• Any ISR associated to an interrupt that has to be served during

CSEc or EEPROM write or program/erase operation must not be

placed in FlexNVM’s Pflash. The same restriction applies to the

functions called from ISRs.

PUBLIC 44

In Conclusion

• The FlexNVM can be used as:

− D-Flash

− P-Flash

− EEEPROM

• The FlexNVM is an important part of other modules functionality such as CSEC

and EEPROM emulation.

• Some recommendations should be followed as the ones presented in this

video. Mainly, due to only one transaction can be executed in the same

partition!

PUBLIC 45

References

• AN12003. Using S32K148 FlexNVM Memory

• AN11983. Using the S32K1xx EEPROM Functionality

• AN5401. Getting started with CSEc security module.

• S32K14x Series Reference Manual

https://www.nxp.com/docs/en/application-note/AN12003.pdf
https://www.nxp.com/docs/en/reference-manual/S32K-RM.pdf

PUBLIC 46

CSEc Configuration

PUBLIC 47

CSEc

CSEc_PRAM

Memory space (not available and subtracted from EEERAM)

allocated for users keys

Memory available for setting/getting CSEc parameters

PUBLIC 48

The Need for Security

PUBLIC 49

NXP – #1 Global Auto Semi Powerhouse

+60
YEARS OF

AUTOMOTIVE

EXPERIENCE

~40%
OF NXP’S

REVENUE IS

FROM AUTO

2400+
AUTO

ENGINEERS

#1
AUTO SEMI

SUPPLIER

GLOBALLY

>30
AUTO SITES

IN ALL

REGIONS

PUBLIC 50

Increasing Connectivity = Increasing Risks
FBI: Estimated 3 Trillion USD Annual Damage from Hacking

Privacy Personal Assets Lives

Requiring maximum protection of . . .

PUBLIC 51

Car Hacking is ‘Hot’

PUBLIC 52

The Connected Car…
A Cloud-connected Computer Network on Wheels

• A networked computer
– up to 100 ECUs per car

– and many sensors

– inter-connected by wires

– more and more software

• Increasingly connected to

its environment
– to vehicles & infrastructure

– to user devices

– to cloud services
NFC

802.11p

802.11p

Radar

LF, UHF

NFC Portable

Device

Connectivity
NFC

http://www.jasonfrasca.com/wp-content/uploads/2013/04/WIFI.png

PUBLIC 53

… is an Attractive Target for Hackers!

Prevent

Unauthorized Access

Valuable Data

• Collection of data/info

• Storage of data

• Diagnostic functions

Protect Privacy

High Vulnerability

• Increasing number of nodes

• More advanced features

• X-by-Wire

Easy (Remote) Access

• Fully Connected Car

• External & internal

interfaces

• Wired & wireless interfaces

Increase Safety

Cloud Connection

In-Vehicle Network Car2X

Consumer Device Integration

PUBLIC 54

Layered Security Model

PUBLIC 55

NXP Automotive Vehicle Security Architecture (4 +1

Solution)
Security Requires a Layered Approach For Connected Cars like your Home.

• Multiple security techniques, at different

levels (a.k.a. defense-in-depth)

• To mitigate the risk of one component of

the defense being compromised or

circumvented

1

2

3

4

SECURE

CAR ACCESS

+

1
NFC

SECURE

PROCESSING

4

SECURE

NETWORK

3

SECURE

GATEWAY

2

SECURE

INTERFACES

1

Secure Cloud Connections (V2X, Telematics,
cGW)
Secure Element

Central Gateway
Secure Routing, Firewall

Secure on-board
communication
Secure
Transceivers

Secure “Brains”
Secure MCU/MPU

Secure Car Access
Immobilizer, RKE/PKE & Smart Car
Access

PUBLIC 56

The 4 Layers to Securing an Automobile

Layer 2: Secure Gateway
Domain isolation, firewall/filter, centralized intrusion detection (IDS)

OBD

TCU

Gateway
Safety domain

Comfort domain

SE

IVI

Body

Braking Powertrain

Cluster

ADAS

Layer 1: Secure Interface
Secure M2M authentication, secure key storage

OBD
Body

TCU
Braking Powertrain

ClusterIVI

ADASSE

Layer 3: Secure Network
Message authentication, CAN ID killer, distributed intrusion detection (IDS)

OBD

TCU
SE

IVI
Safety domain

Comfort domain

Body

Braking Powertrain

Cluster

ADAS

Gateway

Layer 4: Secure Processing
Secure boot, run time integrity, OTA updates

OBD

TCU

Gateway

SE

IVI
Safety domain

Comfort domain

Body

Braking Powertrain

Cluster

ADAS

PUBLIC 57

Layer +1 – Secure Car Access: What is It?

Remote Keyless

Entry (RKE)

Passive Keyless

Entry (PKE)

Consisting of:

• Car theft protection

• Remote car door lock

and unlock

Consisting of:

• Car Theft protection

• Remote car door lock

and unlock

• Passive keyless entry

• Passive Start

Immobilizer

• Car theft protection

Connected

Keyless Entry

• Car Access via NFC

enabled

phones/wearables

• NFC key advantage:

secure transport of keys

• Alternative: Car access via

phone using BLE and key

fob as ‘Gateway’

Car-key communication

for:

• Remote start

• Car finder

• Alarm Systems

• Tire pressure information

• Fuel level / Charging

state

• Door lock status

Smart

Car Management

PUBLIC 58

Layer 4 – Secure Processing: What is It?

• Secure MCU - Defined by

hardware accelerated

Crypto capability

• IP can be applied to any

MCU/Processor

• Use cases:

− CAN Message authentication

− Secure boot – FW auth.

− Key storage

− Encryption

− OTA software updates in the field

ADAS
Advanced Driver

Assistance Systems

Radar

Vison

Fusion

Gateway

GPIS
General Purpose &

Integrated

C&S
Connectivity & Security

VDS
Vehicle Dynamics &

Safety

Chassis

& Safety

Powertrain

8 Bit

16/32 Bit

Integrated Custom

S32K1xx CSEc

PUBLIC 59

S32K Security Module (CSEc) – Overview

• Implemented directly in the flash
system
(close to the secure information)

• Direct memory access to the flash
data for fast and simple secure
boot support

• Data in SRAM / Peripheral are
accessable via Core or DMA
transfers.

• Supports the complete SHE
Specification and the enhanced
SHE+ features (more keys etc.)

• Small easy to use security
implementation

FLASH Subsystem

Includes CSEC.

Direct access to flash

contents.

No CSEc

access here

PUBLIC 60

S32K Security Module (CSEc) – Overview

• FTFC core is utilized for
processing both FLASH as
well as CSEc commands

• Host Interface is used to
issue flash commands and
read back flash-subsystem
status(including CSEc).
− Registers like FCCOB

• FlexNVM and FlexRAM
are configured to work
together to emulate
EEPROM

• Part of emulated-
EEPROM is used as
secure storage

• CSEc_PRAM is
programming interface for
CSEc operations

PUBLIC 61

S32K Security Module (CSEc) – Commands
• CSEc Commads to FTFC.

• CCOB command set is effectively extended to include SHE commands related to ECB, CBC and CMAC features.

• Similar protocol to the FCCOB commands, CCOB interface will be locked until completion.

• CSEc command constructed by writing data to a Parameter Memory (PRAM) followed by a command header.

• Operation Start as indicated by CCIF, transition from 1 to 0.

• Operation complete: CCIF transition from 0 to 1. User read PRAM to verify results.

PUBLIC 62

SHE Specification Overview

PUBLIC 63

SHE – Secure Hardware Extension: Introduction

• The Secure Hardware Extension (SHE) is an on-chip extension to any given
microcontroller. It is intended to move the control over cryptographic keys from
the software domain into the hardware domain and therefore protect those keys
from software attacks. However, it is not meant to replace highly secure solutions
like TPM chips or smart cards, i.e. no tamper resistance is required by the
specification.

• The main goals are
− Protect cryptographic keys from software attacks

− Provide an authentic software environment

− Let the security only depend on the strength of the underlying algorithm and the confidentiality of the
keys

− Allow for distributed key ownerships

− Keep the flexibility high and the costs low

PUBLIC 64

SHE Specification – Introduction

• Note – all information is in reference to the official HIS / SHE (Secure
Hardware Extension) specification version 1.1 – Rev:: 439 -
01.04.2009

• The Re-view of the Spec. was done by Freescale/NXP in an early
phase

• Key features to attain goals of the SHE specification are:
− A secure storage for crypto keys

− Crypto algorithm acceleration (AES-128)

− Secure Boot mechanism to verify custom firmware after reset

− Offers 19 security specific functions

− Up to 10 general and 5 special purpose crypto keys

PUBLIC 65

Simplified Block Diagram of the SHE Specification

CPU

AES

RAM + Flash + ROM

Control

Logic

Peripherals (CAN, UART, external memory interface)

SHE – Secure Hardware Extension

Secure Zone

PUBLIC 66

ECU Controller

SHE

AES 128 non-volatile

ROM

RAM

RAM_KEY (16 Byte)

Regular Peripherals/Busses

PRNG_KEY (16 Byte)

PRNG_STATE (16

Byte)

SECRET_KEY (16

Byte)

UID (15 Byte)

decode

encode

CMAC

Miyaguchi-

Preneel

Control

Logic

CPU

MASTER_ECU_KEY (16 Byte)

BOOT_MAC_KEY (16 Byte)

BOOT_MAC (16 Byte)

KEY_<n> (3-10 X 16

Byte)

PRNG_SEED (16Byte)

S
e
c
u
re

 Z
o
n
e

Detailed Block Diagram of the SHE Specification

PUBLIC 67

SHE Specification – Algorithms

• Encryption / Decryption

− SHE has to support the Electronic Cipher Cook mode (ECB) for processing single blocks of

data and the Cipher Clock Chaining mode (CBC) for processing larger amounts of data

• MAC Generation / Verification

− The MAC generation and verification has to be implemented as a CMAC using the AES-128 as

specified by [NIST800_38B]

• Compression Function

− The Miyaguchi-Preneel construction (see [HAC] Algorithm 9.43) with the AES as block cipher

is used as compression function within SHE. Messages have to be preprocessed before feeding

them to the compression algorithm, i.e. they have to be padded and parsed into 128 bit chunks.

• Key Derivations

− Keys are derived using the Miyaguchi-Preneel compression algorithm based on

[NIST800_108].

PUBLIC 68

SHE Specification – Cipher Modes

AES

Encryption/

Decryption in

ECB or CBC

mode

Electronic codebook

(ECB)

Cipher-block chaining

(CBC)

Scheme
Each block is encoded/decoded

indecently from the others

Diagram

Pro Random access possible Secure for messages longer as block size

Cont

Insecure for message longer as

the block size (statistical

analysis)

No random access possible, (before the last block can be

decode all other must be decode)

Example

Each block is encoded/decoded

independently from the others

Random access possible

Insecure for longer messages

(statistical analysis)

Previous result is XORed with actual plaintext

Secure for long messages, decryption can be parallelized

Encryption takes longer since you have to wait for each

block

PUBLIC 69

SHE Specification – CMAC Generator

• Cipher based Message Authentication Code (CMAC)

• A MAC algorithm inputs:

− Secret key

− Message of arbitrary length

• A MAC algorithm output:

− MAC value

− The MAC value protects both a message's data integrity as well as its authenticity.

MAC Algorithm

Message

Key

MAC

PUBLIC 70

SHE: Non-volatile Memory Slots
(Including Extension on CSEc)

Key Name
Key Block

Select (KBS)

Address

(KeyID)

Memory

Area
Description

SECRET_KEY X 0x0 ROM Inserted during chip fabrication by the semiconductor manufacturer and

should not be stored outside of SHE

UID (Unique

identification)

X 0x0 ROM A serial number of at most 120 bits. Inserted during chip fabrication by

the semiconductor manufacturer.

MASTER_ECU_KEY X 0x1 NVM Only used for updating other memory slots inside of SHE

BOOT_MAC_KEY X 0x2 NVM Used by the secure booting mechanism to verify the authenticity of the

software. The BOOT_MAC_KEY may also be used to verify a MAC.

BOOT_MAC X 0x3 NVM Used to store the MAC of the Bootloader of the secure booting

mechanism and may only be accessible to the booting mechanism of

SHE

KEY_<1 - 10> 1’b0 0x4 – 0xD NVM Can be used for arbitrary functions. The usage of the keys has to be

selected between encryption/decryption or MAC generation/verification

on programming time by setting the key usage flag accordingly.

KEY_<11 – 17> is extended on CSEc over SHE

KEY_<11 - 17> 1’b1 0x4 – 0xA NVM

RESERVED 1’b0 / 1’b1 0xE RESERVED RESERVED

RAM_KEY X 0xF SRAM Can be used for arbitrary operations. Can be exported if it was loaded as

plaintext.

PUBLIC 71

SHE Specification – Keys
Key values moved from public memory space to secure memory space.

The secure memory space is only accessible by the security module. Application work with key references!

W
ri
te

P
ro

te
c
ti
o
n

S
e
c
u
re

B
o
o
t

F
a

ilu
re

D
e

b
u

g
g
e

r

A
c
ti
v
a
ti
o
n

W
ild

c
a
rd

 U
ID

K
e
y
 U

s
a
g
e

P
la

in
 K

e
y

C
o
u
n
te

r

O
v
e
ra

ll
d
a
ta

b
it
s

MASTER_ECU_KEY X X X X X 160

BOOT_MAC_KEY X X X X 159

BOOT_MAC X X X X 159

KEY_<n> X X X X X X 161

RAM_KEY X 129

SECRET_KEY X1 X1 128

UID 120

1 SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

PUBLIC 72

SHE Specification – Keys
Key values moved from public memory space to secure memory space.

The secure memory space is only accessible by the security module. Application work with key references!

W
ri
te

P
ro

te
c
ti
o
n

S
e
c
u
re

B
o
o
t

F
a

ilu
re

D
e

b
u

g
g
e

r

A
c
ti
v
a
ti
o
n

W
ild

c
a
rd

 U
ID

K
e
y
 U

s
a
g
e

P
la

in
 K

e
y

C
o
u
n
te

r

O
v
e
ra

ll
d
a
ta

b
it
s

MASTER_ECU_KEY X X X X X 160

BOOT_MAC_KEY X X X X 159

BOOT_MAC X X X X 159

KEY_<n> X X X X X X 161

RAM_KEY X 129

SECRET_KEY X1 X1 128

UID 120

1 SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

If set, the key cannot

ever be updated even

if an authorizing key

(secret) is known

PUBLIC 73

SHE Specification – Keys
Key values moved from public memory space to secure memory space.

The secure memory space is only accessible by the security module. Application work with key references!

W
ri
te

P
ro

te
c
ti
o
n

S
e
c
u
re

B
o
o
t

F
a

ilu
re

D
e

b
u

g
g
e

r

A
c
ti
v
a
ti
o
n

W
ild

c
a
rd

 U
ID

K
e
y
 U

s
a
g
e

P
la

in
 K

e
y

C
o
u
n
te

r

O
v
e
ra

ll
d
a
ta

b
it
s

MASTER_ECU_KEY X X X X X 160

BOOT_MAC_KEY X X X X 159

BOOT_MAC X X X X 159

KEY_<n> X X X X X X 161

RAM_KEY X 129

SECRET_KEY X1 X1 128

UID 120

1 SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

If set, key cannot be

used if MAC value

comparison failed at

Boot

PUBLIC 74

SHE Specification – Keys
Key values moved from public memory space to secure memory space.

The secure memory space is only accessible by the security module. Application work with key references!

W
ri
te

P
ro

te
c
ti
o
n

S
e
c
u
re

B
o
o
t

F
a

ilu
re

D
e

b
u

g
g
e

r

A
c
ti
v
a
ti
o
n

W
ild

c
a
rd

 U
ID

K
e
y
 U

s
a
g
e

P
la

in
 K

e
y

C
o
u
n
te

r

O
v
e
ra

ll
d
a
ta

b
it
s

MASTER_ECU_KEY X X X X X 160

BOOT_MAC_KEY X X X X 159

BOOT_MAC X X X X 159

KEY_<n> X X X X X X 161

RAM_KEY X 129

SECRET_KEY X1 X1 128

UID 120

1 SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

If set, key cannot be

used if a debugger is

(or has ever been)

connected to the MCU

PUBLIC 75

SHE Specification – Keys
Key values moved from public memory space to secure memory space.

The secure memory space is only accessible by the security module. Application work with key references!

W
ri
te

P
ro

te
c
ti
o
n

S
e
c
u
re

B
o
o
t

F
a

ilu
re

D
e

b
u

g
g
e

r

A
c
ti
v
a
ti
o
n

W
ild

c
a
rd

 U
ID

K
e
y
 U

s
a
g
e

P
la

in
 K

e
y

C
o
u
n
te

r

O
v
e
ra

ll
d
a
ta

b
it
s

MASTER_ECU_KEY X X X X X 160

BOOT_MAC_KEY X X X X 159

BOOT_MAC X X X X 159

KEY_<n> X X X X X X 161

RAM_KEY X 129

SECRET_KEY X1 X1 128

UID 120

1 SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

If set, the key cannot

be updated by

supplying a special

wildcard (UID=0).

PUBLIC 76

SHE Specification – Keys
Key values moved from public memory space to secure memory space.

The secure memory space is only accessible by the security module. Application work with key references!

W
ri
te

P
ro

te
c
ti
o
n

S
e
c
u
re

B
o
o
t

F
a

ilu
re

D
e

b
u

g
g
e

r

A
c
ti
v
a
ti
o
n

W
ild

c
a
rd

 U
ID

K
e
y
 U

s
a
g
e

P
la

in
 K

e
y

C
o
u
n
te

r

O
v
e
ra

ll
d
a
ta

b
it
s

MASTER_ECU_KEY X X X X X 160

BOOT_MAC_KEY X X X X 159

BOOT_MAC X X X X 159

KEY_<n> X X X X X X 161

RAM_KEY X 129

SECRET_KEY X1 X1 128

UID 120

1 SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

Determines if a key can be used for

encryption/decryption or for MAC

generation/verification (CMAC).

Set: MAC

Clear: Encryption/Decryption

PUBLIC 77

SHE Specification – Keys
Key values moved from public memory space to secure memory space.

The secure memory space is only accessible by the security module. Application work with key references!

W
ri
te

P
ro

te
c
ti
o
n

S
e
c
u
re

B
o
o
t

F
a

ilu
re

D
e

b
u

g
g
e

r

A
c
ti
v
a
ti
o
n

W
ild

c
a
rd

 U
ID

K
e
y
 U

s
a
g
e

P
la

in
 K

e
y

C
o
u
n
te

r

O
v
e
ra

ll
d
a
ta

b
it
s

MASTER_ECU_KEY X X X X X 160

BOOT_MAC_KEY X X X X 159

BOOT_MAC X X X X 159

KEY_<n> X X X X X X 161

RAM_KEY X 129

SECRET_KEY X1 X1 128

UID 120

1 SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

28 bit counter. Must be

increase on every

update.

PUBLIC 78

SHE Specification – Functions

SHE – Functions Usage

1

2

3

4

CMD_ENCRYPT_ECB

CMD_ENCRYPT_CBC

CMD_DECRYPT_ECB

CMD_DECRYPT_CBC

Encryption /

Decryption

5

6

CMD_GENERATE_MAC

CMD_VERIFY_MAC

Signing /

Authentication

7

8

9

CMD_LOAD_KEY

CMD_LOAD_PLAIN_KEY

CMD_EXPORT_RAM_KEY

Key Management

10

11

12

CMD_INIT_RNG

CMD_EXTEND_SEED

CMD_RND

Random Number

System

13

14

15

CMD_SECURE_BOOT

CMD_BOOT_FAILURE

CMD_BOOT_OK

Secure Boot

16

17

18

19

CMD_GET_STATUS

CMD_GET_ID

CMD_CANCEL

CMD_DEBUG

Module Handling

K1 = KDF(KAuthID, KEY_UPDATE_ENC_C)

K2 = KDF(KAuthID, KEY_UPDATE_MAC_C)

M1 = UID’|ID|AuthID

M2 = ENCCBC,K1,IV=0(CID’|FID’|“0...0"95|KID’)

M3 = CMACK2(M1|M2)

CMD_LOAD_KEY

stores key value in secure

NVM

Note:

To be able to update a key you have to know the

actual key value or the MASTER_ECU_KEY

value.

Can anybody add/update keys?

No!

User must know the authorizing key before updating a key
Note: In factory, for the very first time: use default value of key – i.e. all 1s

PUBLIC 79

SHE Specification – Memory Update Protocol

• To add user keys the protocol

as defined in the SHE

specification must be used.

• This ensures confidentiality,

integrity, authenticity and

protects against replay

attacks.

• To update the memory

containing the keys the

following must be calculated

and passed to CSE: K1, K2,

M1 ,M2 and M3.

Key Calculation Size

K1

KDF(KAuthID,KEY_UPDATE_ENC_C)

KDF is key derivation function
128 bit

K2

KDF(KAuthID, KEY_UPDATE_MAC_C)

KDF is key derivation function

128 bit

M1
UID’|ID|AuthID - 256 bits

128 bit

M2

ENCCBC,K1,IV=0(CID’|FID’|“0...0"95|KID’)

CBC encryption using K1 256 bit

M3

CMACK2(M1|M2)

CMAC calculation using K2

128 bit

PUBLIC 82

SHE – Random Number Generators

• Use Case
− Key generation

− Noise/Salt to prevent re-play attacks

• Pseudo Random Number Generation (PRNG)
− re-producible value generated by a deterministic algorithm

− digital IP

− fast

• TRUE Random Number Generation (TRNG)
− value generated via measurement of physical effects (e.g. thermal noise)

− includes analog elements (e.g. simple A/D-converter)

− slow

PUBLIC 83

Lab #2 How to Store Secret Keys

PUBLIC 84

How to Store Secret Keys

• Task
− Initialize pseudo random number generator

− Generate random number

− Generate secret keys

− Store secret keys into secure memory

• Learn
− How to use CSEc programming interface(CSEc PRAM) for your security operations?

• Note
− You will need to run S32K144_EVB_CSEc_Step2_CreateStore_Keys project for this Lab.

PUBLIC 85

How to Store Keys in the CSEC Secure Memory

• How to store keys?
− Recall: all you got is CSEc PRAM

− Use LOAD_KEY command to store keys to the secure memory slot

▪ Takes Crypto key, Security Flags and Counter value in an encrypted form only

▪ On command completion outputs encrypted values only

• This is to validate successful key update

• The first Key to be loaded is MASTER_ECU_KEY
− It is used to update all other keys

• By default all keys have value all
1s(i.e.0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF)

PUBLIC 86

Random Number Generator

• Pseudo random number generator

• Command: CMD_INIT_RNG

Input Parameter

PUBLIC 87

Input Parameters: What is an Encrypted Form?

• SHE specification defines the secure memory update protocol

− Supply keys in terms of M1, M2 and M3

▪ M1 = UID’|ID|AuthID – 128 bits

▪ M2 = ENCCBC, K1, IV=0(CID’|FID’|“0...0”95|KID’) – 256 bits : SFE==0x00

M2 = ENCCBC, K1, IV=0(CID’|FID’|“0...0”94|KID’) – 256 bits : SFE==0x01

▪ M3 = CMACK2 (M1|M2) – 128 bits

• K1 = KDF(KEYAuthID, KEY_UPDATE_ENC_C)

• K2 = KDF(KEYAuthID, KEY_UPDATE_MAC_C)

CSEc PRAM input for LOAD_KEY command

3’0 | KBS(1bit) | KeyIDx(4bit)

Refer AN5401 for detail

description

CID’ – the new counter value

(28 bits).Starts from

0x0000001

FID’ – New Protection flags

• For SFE == 0x00:

WRITE_PROT | BOOT_PROT |

DEBUG_PROT | KEY_USAGE |

WILD_CARD (5 bits)

• For SFE == 0x01:

WRITE_PROT | BOOT_PROT |

DEBUG_PROT | KEY_USAGE |

WILD_CARD | VERIFY_ONLY (6 bits)

KEYID’ – The new key value

(128 bits)

KEYAuthID: Authorizing key

value

AuthID: the keyID of the key

that authorizes the key

update

PUBLIC 88

Output Parameters

• M4 = UID|ID|AuthID|M4*

• M5 = CMACK4(M4)

CSEc PRAM input for LOAD_KEY command

PUBLIC 89

Let’s Load the KEY

• Used CSEc to generate M1, M2, M3, M4 and M5

• Load keys using LOAD_KEY command

• Compare user generated M4/M5 value with CSEc PRAM returned

M4/M5 value

− This validates that key write was successful

PUBLIC 90

Keys Used In This Lab

Keys used in this lab can be found in CSEc_keys.h in the project

#ifndef CSEC_KEYS_H_
#define CSEC_KEYS_H_

uint32_t BLANK_KEY_VALUE[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; //When key value is not
written it is all FFs
uint32_t MASTER_ECU_KEY_VALUE[4] ={0xD275F12C, 0xA863A7B5, 0xF933DF92, 0x6498FB4D}; //MASTER_ECU_KEY
uint32_t BOOT_MAC_KEY_VALUE[4] ={0x12340000, 0x00000000, 0x00000000, 0x00005678}; //BOOT_MAC_KEY
uint32_t KEY_1_VALUE[4] ={0x2FF8B03C, 0x5C540546, 0x5A9C94BD, 0x2D863279}; //KEY_1
uint32_t KEY_11_VALUE[4] ={0x85852FF8, 0xE7860C89, 0xB3AB9D63, 0xB8D6288F}; //KEY_11
uint32_t RAM_KEY_VALUE[4] ={0x68B674CB, 0x8198A250, 0x3A285100, 0xF4DDC40A}; //RAM_KEY

#endif /* CSEC_KEYS_H_ */}

PUBLIC 91

Code to Create and Load Keys Into CSEc

Code can be found in main.c in the project

csec_error = INIT_RNG();

/* Load MASTER_ECU_KEY */
calculate_M1_to_M5(M1, M2, M3, M4, M5, BLANK_KEY_VALUE, MASTER_ECU_KEY_VALUE, MASTER_ECU_KEY, MASTER_ECU_KEY, 1, 0); /* Calculate M1 to M5 in Software */
csec_error = LOAD_KEY(M4_out, M5_out, M1, M2, M3, MASTER_ECU_KEY); /* Load the key using SW calculated M1 to M3, and it returns M4 and M5 */
result = compare_results(M4, M4_out); /* Compare M4 generated by SW with the M4_out returned by CSEc */

/* Load KEY_1 */ /* Calculate M1 to M5 in Software, Authorizing Key = Master ECU Key */
calculate_M1_to_M5(M1, M2, M3, M4, M5, MASTER_ECU_KEY_VALUE, KEY_1_VALUE, MASTER_ECU_KEY, KEY_1, 1, 0);
csec_error = LOAD_KEY(M4_out, M5_out, M1, M2, M3, KEY_1); /* Load the key using M1 to M3, returns M4 and M5 */
result = compare_results(M4, M4_out); /* Compare M4 generated by SW with the M4_out returned by CSEc */

/* Load KEY_11 */ /* Calculate M1 to M5 in Software, Authorizing Key = Master ECU Key, Key Usage=1(for CMAC operations) */
calculate_M1_to_M5(M1, M2, M3, M4, M5, MASTER_ECU_KEY_VALUE, KEY_11_VALUE, MASTER_ECU_KEY, KEY_11, 1, 0x04);
csec_error = LOAD_KEY(M4_out, M5_out, M1, M2, M3, KEY_11); /* Load the key using M1 to M3, returns M4 and M5 */
result = compare_results(M4, M4_out); /* Compare M4 generated by SW with the M4_out returned by CSEc */

PUBLIC 92

Initialize Random Number Generator (RNG)

Code can be found in CSEc_functions.c in the project

/* Initialize Random Number Generator */
uint16_t INIT_RNG(void)
{
while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != FTFC_FSTAT_CCIF_MASK); //Check for the ongoing FLASH command

FTFC->FSTAT = (FTFC_FSTAT_FPVIOL_MASK | FTFC_FSTAT_ACCERR_MASK); // Write 1 to clear error flags

/* Start command by writing Header */
CSE_PRAM->RAMn[0].DATA_32= (CMD_INIT_RNG << 24) | (CMD_FORMAT_COPY << 16) | (CALL_SEQ_FIRST << 8) | (0x00);
//Write to Page0 Word0, Value = 0x0A000000

while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != 0x80); //Check for the ongoing FLASH command

csec_error_bits = CSE_PRAM->RAMn[1].DATA_32 >> 16; //Read Page0 Word1, Error Bits

return csec_error_bits;
}

PUBLIC 93

Load Keys

Code can be found in CSEc_functions.c in the project

uint16_t LOAD_KEY(uint32_t *M4_out, uint32_t *M5_out, uint32_t *M1_in, uint32_t *M2_in, uint32_t *M3_in, uint8_t key_id)
{

while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != FTFC_FSTAT_CCIF_MASK); //Check for the ongoing FLASH command

FTFC->FSTAT = (FTFC_FSTAT_FPVIOL_MASK | FTFC_FSTAT_ACCERR_MASK); // Write 1 to clear error flags

for(i=4,j=0; i<8; i++,j++) //Write to Page1
CSE_PRAM->RAMn[i].DATA_32 = M1_in[j];

for(i=8,j=0; i<16; i++,j++) //Write to Page2-3
CSE_PRAM->RAMn[i].DATA_32 = M2_in[j];

for(i=16,j=0; i<20; i++,j++) //Write to Page4
CSE_PRAM->RAMn[i].DATA_32 = M3_in[j];

/* Start command by writing Header */
CSE_PRAM->RAMn[0].DATA_32= (CMD_LOAD_KEY << 24) | (CMD_FORMAT_COPY << 16) | (CALL_SEQ_FIRST << 8) | key_id;// Write to Page0 Word0, Value =
0x07000000 | key_id

while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != 0x80); //Check for the ongoing FLASH command

csec_error_bits = CSE_PRAM->RAMn[1].DATA_32 >> 16; //Read Page0 Word1, Error Bits

for(i=20,j=0; i<28; i++,j++) //Read from Page5-6
M4_out[j] = CSE_PRAM->RAMn[i].DATA_32;

for(i=28,j=0; i<32; i++,j++) //Read from Page7
M5_out[j] = CSE_PRAM->RAMn[i].DATA_32;

return csec_error_bits;
}

PUBLIC 94

CSEC Details

PUBLIC 95

CSEc Security Block Diagram

Supports OEM Requirements for End Node Security

Supports >SHE functionality

• Secure key storage

• AES-128 encryption/decryption

• AES-128 Cypher-based Message

Authentication Code (CMAC) calculation

and authentication

• True and Pseudo random number

generation

• User configurable Secure Boot Mode

(Sequential, Strict, or Parallel Boot)

PUBLIC 96

CSEc: CSE PRAM Interface Structure

The PRAM interface can be thought of a 128-bit wide SRAM with eight

128-bit pages

(3) The last write which is to the

command header. This is

because writing to the command

header (any write to any of the

bytes 0-3) triggers the macro to

lock the PRAM interface so

CSEc operation may start.(1) User should first enter the data as required, in 128-bit blocks, as many

blocks as desired (within the seven pages allowed at one given time).

(2) Any associated control

information such as

‘MESSAGE_LENGTH’.

PUBLIC 97

S32K Security Module (CSEc) – Commands Header

• FuncID: CSEc ID to
execute

• Func Format: specify data
transfer to CSEc:
parameters directly copied
to PRAM or pointer method

• CallSeq: long data could be
managed

• Key ID: SHE key index
(KeyIdx) and key block
selec (KBS)

• Error bits: Located in
FCESTAT

PUBLIC 98

CSEc PRAM – Command Header

User Accessible

Functions/Com

mands/APIs

Error codes:

updated after

every command

execution

Defines “how to access data?”
Pointer method only available for MAC

commands

Pointer can only points to flash locations

Indicates continuation of same

function with more data
Useful in case when data size can not fit into the

CSEc PRAM.

Directs to the

Key to be used

for this operation

PUBLIC 99

CSEc: Activity Confliction With Flash/EEPROM Operations

• CSEc is shared with Flash controller. CSEc command is not

accepted during Flash command is executed (CCIF=0)

− Ex1) Program Flash is programmed/erased

− Ex2) EEPROM is programmed.

NOTE from RM

1. It is not possible to concurrently execute CCOB commands related to Program, Erase (or

other standard FTFC flash commands) along with CSEc commands.

2. Execution of a CSEc command while in Erase Suspend (ERSSUSP) will result in the

Suspended Erase operation being aborted (not able to be resumed).

3. It is also not possible to execute a different CSEc command in the middle of a continuation of

an ongoing CSEc command.

4. It is possible to execute a FCCOB command in the middle of a continuation of an ongoing

CSEc command, BUT the result is the existing CSEc command will be canceled.

5. Starting execution of CCOB commands or CSEc commands will lock out the CCOB interface,

the EEERAM and the PRAM. The lock is in place until the requested command completes.

PUBLIC 100

CSEc: Example - CBC Encryption – CallSeq Usage
CallSeq = 0

CallSeq = 1

PUBLIC 101

S32K Security Module (CSEc) – Keys

Key name KBS Key Index

SECRET_KEY X 0x0

UID X 0x0

MASTER_ECU_KEY X 0x1

BOOT_MAC_KEY X 0x2

BOOT_MAC X 0x3

KEY 01 – KEY 10 0 0x4-0xA

KEY 11 – KEY 17 1 0x4-0xA (CSEC Ext.)

RAM_KEY X 0xF

PUBLIC 102

S32K Security Module (CSEc) – CMAC Verification

• The Verify MAC command
verifies a MAC of a given
MESSAGE

• Two options
− Data Directly copied to PRAM

− Pointer method

• Command Parameters
− Key ID

− Message Length

− Message

− MAC

− MAC Length

PUBLIC 103

S32K Security Module (CSEc) – CMAC Command

• Generate MAC command
operates on a MESSAGE
using a key

• Two options
− Data Directly copied to PRAM

− Pointer method

• Command Parameters
− Key ID

− Message Length

− Message

Command Parameters

Data Directly Copied to PRAM

Pointer Method

PUBLIC 104

S32K Security Module (CSEc) – Boot Define

• Allow user to define the Boot size

• User to select the boot mode

• Input Parameters

− Boot size

− Boot Flavor

PUBLIC 105

Lab #3 Encrypt Image

PUBLIC 106

Encrypt Image Task

• Task
− Encrypt an image using the CSEc

• Learn
− How to use CSEc to encrypt data using Keys?

• DIY
− Use ENC_ECB command to encrypt the image

− Use ENC_CBC command to encrypt the image

− What do you expect to see?

− Use KEY_11 vs. KEY_1, what did you see?

• Note
− You will need to run S32K144_EVB_CSEc_Step3_EncryptLogo project for this Lab.

PUBLIC 107

Lab Technical Details (Misc)

• EVB Configuration

− SOSC w/ 8MHz crystal

− VCO_CLK = 8 x 40 = 320MHz, SPLL_CLK = 320 / 2 = 160MHz

− CORE_CLK / SYS_CLK = 160 / 2 = 80MHz

− BUS_CLK = 80 / 2 = 40MHz, FLASH_CLK = 80 / 3 = 26.6MHz

• The size of NXP logo is 80x200 pixels in RGB565 format

(1pixel=2byte), thus 32000 bytes in total

• To maximize the throughput, the pre-encrypted NXP logo bitmap

data is transferred from Flash to SRAM by DMA in the initialization

routine

PUBLIC 108

Lab Software Requirements

• Display plain text array of the NXP image on LCD (Done)

• Press SW2 to Encrypt plain text array (Need to Do)

• During encryption display encypted cipher text array on the LCD

(Done)

• The encrypted logo is gradually drawn from top to bottom on the LCD

(Done)

• Elapsed times and encryption and display data rates are shown on

LCD (Done)

• Press reset to start again.

PUBLIC 109

Crypto Tasks

• ECB Encoding

• Command:

CMD_ENC_ECB

Input Parameter

Output Parameter

PUBLIC 110

Crypto Tasks

• ECB Decoding

• Command:

CMD_DEC_ECB

Input Parameter

Output Parameter

PUBLIC 111

Crypto Tasks

• CBC Encoding

• Command: CMD_ENC_CBC

Input Parameter

Output Parameter

PUBLIC 112

Crypto Tasks

• CBC Decoding

• Command: CMD_DEC_CBC
Input Parameter

Output Parameter

PUBLIC 113

CSE_PRAM Macro Definition in Header File

• Below text macro has been defined in “S32K144.h” header file

• The “RAMn[]” array is defined with “uint32_t”

CSE_PRAM_BASE

(0x14001000)
RAMn[0] RAMn[1] RAMn[2] RAMn[3]

RAMn[4] RAMn[5] RAMn[6] RAMn[7]

RAMn[8] RAMn[9] RAMn[10] RAMn[11]

RAMn[12] RAMn[13] RAMn[14] RAMn[15]

RAMn[16] RAMn[17] RAMn[18] RAMn[19]

RAMn[20] RAMn[21] RAMn[22] RAMn[23]

RAMn[24] RAMn[25] RAMn[26] RAMn[27]

RAMn[28] RAMn[29] RAMn[30] RAMn[31]

Example: CSE_PRAM->RAMn[i].DATA_32 = plain_text[j];

PUBLIC 114

Software Coding Example – ENC_CBC Case
/* Encode the data using CBC: Cipher Block Chaining Mode

* For simplicity this function is developed for up to first 6 pages of data(96 bytes)

*/

uint16_t ENC_CBC(uint32_t *cipher_text, uint32_t *IV, uint8_t key_id, uint32_t *plain_text, uint16_t page_length)

{

while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != FTFC_FSTAT_CCIF_MASK); //Check for the ongoing FLASH command

FTFC->FSTAT = 0x30; // Clear old errors

for(i=4,j=0; i<8; i++,j++) //Write to Page1

CSE_PRAM->RAMn[i].DATA_32 = IV[j];

for(i=8,j=0; i<(page_length*4+8); i++,j++) // Fill all other pages, word by word

CSE_PRAM->RAMn[i].DATA_32 = plain_text[j];

CSE_PRAM->RAMn[3].DATA_32= page_length; // Write to Page0 Word3, Value = Number of Pages

/* Start command by writing Header */

CSE_PRAM->RAMn[0].DATA_32=(CMD_ENC_CBC << 24) | (CMD_FORMAT_COPY << 16) | (CALL_SEQ_FIRST << 8) | key_id; // Write to Page0 Word0, Value = 0x02000000 | key_id

while((FTFC->FSTAT & FTFC_FSTAT_CCIF_MASK) != 0x80); //Check for the ongoing FLASH command

csec_error_bits = CSE_PRAM->RAMn[1].DATA_32 >> 16; //Write to Page0 Word1

for(i=8,j=0; i<(page_length*4+8); i++,j++)

cipher_text[j] = CSE_PRAM->RAMn[i].DATA_32; //Read Page0 Word1, Error Bits

return csec_error_bits;

}

PUBLIC 115

Display the Image

• Run S32K144_EVB_CSEc_Step3_EncryptLogo

• Press SW2

• Should see Blank image

• How much time did it take?

CSEc Functions can be found in CSEc_functions.c

Time = 0.105s

PUBLIC 116

DIY: Encrypt the Image Using CBC Mode

• ECB Encoding Decoding using KEY_1

• Command: CMD_ENC_ECB

• Function: ENC_ECB

• Run project with your modification, press SW2

• How much time did it take?

CSEc Functions can be found in CSEc_functions.c

Time = 0.147s

PUBLIC 117

DIY: Encrypt the Image Using CBC Mode

• ECB Encoding Decoding using KEY_1

• Command: CMD_ENC_CBC

• Function: ENC_CBC

• Run project with your modification, press SW2

• How much time did it take?

CSEc Functions can be found in CSEc_functions.c

Time = 0.153s

PUBLIC 118

DIY: Encrypt the Image Using CBC Mode

• ECB Encoding Decoding using KEY_11

• Command: CMD_ENC_CBC

• Function: ENC_CBC

• Run project with your modification, press SW2

• What did you see? Why?

CSEc Functions can be found in CSEc_functions.c

Time = 0.147s

PUBLIC 119

Lab #4 Erase CSEC Keys

PUBLIC 120

Erase CSEc Keys

• Task

− Erase all keys

• Learn

− Erase Keys based on process defined by SHE and Implement by the CSEc?

• Note

− You will need to run S32K144_EVB_CSEc_Step4_Erase_CSEc_Keys project for this

Lab.

PUBLIC 121

Erase CSEc Keys

• SHE describes a process to reset the secure flash to the state it was in
when it left the factory which the CSEc has implemented.

• This can only be done if no user keys have been write protected.

• CMD_DBG_CHAL and CMD_DBG_AUTH FCCOB commands are used to
erase the secure flash.

• What do you mean by secure flash back to factory?
− The device does not have user keys (MASTER_ECU_KEY, BOOT_MAC, BOOT_MAC_KEY,

KEY1..KEY17 are all erased)

PUBLIC 122

Erase CSEc Keys

It is a 2 step process

1. Issue CMD_DBG_CHAL command request a random number (let say CHALLENGE –

128-bits)

2. Issue CMD_DBG_AUTH command to return the authorization parameter to CSEc (let

say AUTHORIZATION – 128bits)

• AUTHORIZATION value can be generated using CHALLENGE and MASTER_ECU_KEY

• K = KDF(KEYMASTER_ECU_KEY, DEBUG_KEY_C)

• AUTHORIZATION = CMACK (CHALLENGE | UID)

PUBLIC 123

Erase CSEc Keys Challenge/Authorization
• Issue Challenge

• Command: CMD_DBG_CHAL

Input Parameter

Output Parameter

PUBLIC 124

Erase CSEc Keys Challenge/Authorization

• Return authorization

• Command: CMD_DBG_AUTH

Input Parameter

K = KDF(KEYMASTER_ECU_KEY, DEBUG_KEY_C)

AUTHORIZATION = CMACK (CHALLENGE | UID)

PUBLIC 125

LAB #5 Disable CSEC

PUBLIC 126

Disable CSEc (Reset Device to Factory State)

• Task

− Disable CSEc and reset device to factory state

• Learn

− How to put back the device so that FlexRAM is no longer used for EEPROM (factory

state) which will also disable the CSEc.

• Note

− You will need to run S32K144_EVB_CSEc_Step5_Disable_CSEc project for this Lab.

PUBLIC 127

Erase All Flash
To disable the CSEc the Data Flash 0 IFR must be erased which was written to during step 1 to

configure the CSEc and use the FlexRAM with Data Flash as EEEPROM and secure Flash.

4kB FlexRAM

-
512B PRAM

64kB

For

EEEPROM

512kB

P-Flash

0000_0000

0007_FFFF

1000_0000

1000_FFFF

1400_0000

1400_0FFF

512kB

P-Flash

64kB

D-Flash

4kB System

RAM

1 read

partition

1 read

partition

2 x 256kB
(128-bit interleaved)

1 x 64kB
(64-bit non-interleaved)

0000_0000

0007_FFFF

1000_0000

1000_FFFF

1000_FFFF

1400_0000

1400_0FFF

Put Memory back

to Factory State

PUBLIC 128

Erase All Flash Block Command
• Erase All Flash Blocks

• Command: Erase All Blocks

• Power Cycle Device

• Like you did after Lab 1 Check for:

FCNFG[RAMRDY] == 1 & FCNFG[EEERDY] == 0

• i.e. emulated-EEPROM is not available now and we are back to the factory state of the MCU

Input Parameter

PUBLIC 129

Use Cases

PUBLIC 130

Secure Boot – Check Boot Loader for Integrity and

Authenticity

• MAC protects against modification of bootloader and depends on the (secret) boot key  integrity and authenticity of bootloader.

• Only if calculated MAC value matches stored boot MAC value: successful secure boot  set respective bit in host interface and

unlock keys for further usage (see next demos)

AES-128

Random

number

generator

Unique ID Keys

Bus master

CSEc module

Flash

Step 1: After power on: CSE module reads

bootloader via its bus master interface.

Step 2: CSE module uses the boot key to

calculates the MAC value of the bootloader.

Step 3: CSE module compares calculated

MAC with stored boot MAC. If identical:

successful secure boot  set respective bit

in host interface and unlock keys

Step 4: MCU always starts bootloader.

MAC value

Bootloader:

Part of flash memory

Bit for successful

secure boot

Host Interface

S32K

Boot key

1

2a

2b

2c
3a

3b

Keys unlocked

Boot MAC

3c

Start bootloader4

PUBLIC 131

Secure Communication

• Random number: protects against replay attacks.

• Encryption: protects against eavesdropping.

• Random number and encryption: ensures data integrity and authenticity.

AES-128

Random

number

generators

Unique ID

CSEc module

Step 2: Sensor ECU reads

sensor value and asks CSE

module to encrypt it and the

received random number

(using key #x)

Step 3: Sensor ECU sends

encrypted message to

central ECU.

Step 4: Central ECU asks

CSE module to decrypt

received message (using

key #x).

Keys

Encrypted

(sensor value;RND)

Central ECU with MPC5646C or S32K

AES-128

Random

number

generators

Unique ID

CSEc module

Keys

Sensor ECU

E.g.

CAN Key #x

Step 5: Central ECU checks

sent random number vs.

received/decrypted random

number.

Sensor value

Decrypted

(sensor value;RND)

Step 1: Central ECU obtains

random number and sends

it to sensors ECU (e.g., after

power-on of car)

RND

Keys

Key #x

PUBLIC 132

CSEc: Module Interaction & Data-Flow
Scenario: CAN Rx Message Authentication

1. CAN data stored in local buffer

2. FlexCAN triggers interrupt to

CORE/DMA

3. Transfer Data to CSEc Memory

(max. 12 CAN message á 8 Bytes +

16 Byte CMAC)

4. Trigger CSEc CMAC

calculation/verification

5. CSEc triggers interrupt to Core

6. Core processed message data

CAN

Cortex-M4

CSEcSRAM

XBAR

DMA

(1)

(2)

(3)

(4)

(5)

(6)

Rx Tx

INT CSE_PRAM INT

Command Header

PUBLIC 133

Component Protection
(Detect replacement or Modification of Components)

Replacement or modification of ECU <n> will change its unique ID and/or keys. Both will be detected with this proposal for component protection.

AES-128

Random

number

generators

Unique ID

CSE module

Step 1: Master ECU

obtains random number

and sends it to ECU

<n>.

Step 2: ECU <n>

appends its unique ID to

received RND, encrypts

this message with key

#x, and sends encrypted

message to master ECU

Step 3: Master ECU

decrypts received

message with key #x.

Step 4: Master ECU

checks decrypted RND

and ID with sent RND

and with stored ID <n>.

If match: ECU <n> is ok.

Keys

Flash

RND

ID <n> Decrypted(RND;ID)

Encrypted(RND;ID)

Master ECU with MPC5646C/S32K

AES-128

Random

number

generators

Unique ID

CSE module

Keys

ECU <n> with MPC5646C/S32K

E.g.

CANKey #x Key #x

Keys Keys

PUBLIC 134

Mileage Protection – Protect Mileage Meter Against

Modification

• MAC protects mileage

against modification.

• Distributing mileage on

other ECUs protects

against replay-attacks

(i.e., overwriting

mileage and MAC with

read old mileage and

its MAC).

Step 3: Application checks bit and asks other

ECUs for mileage (via secure

communication). If bit is set and other ECUs

reports same mileage: stored mileage is ok.

Step 4: ECU gets new mileage. Application

asks CSE module to generate MAC of new

mileage (using key #x).

Step 2: CSE module reads mileage and MAC.

CSE module uses key #x to calculates MAC.

CSE module compares both MACs. If

identical: CSE module sets bit in host

interface.

Step 5: CSE module reads new mileage.

CSE module uses key #x to calculates MAC.

CSE module writes MAC to system RAM.
Stored mileage + MAC

AES-128

Random

number

generator

Unique ID Keys

Bus master

CSEc module

Flash

Host Interface

S32K

Key #x

System RAM

New mileage

Step 1: Application asks CSE module to verify

MAC of stored mileage (using key #x)

Step 6: Host writes new mileage and its MAC

into flash. Host sends new mileage to other

nodes (secure communication)

Calculated MAC
Bit for valid

MAC

MAC

S32K
CSEc

module

Flash

Other

ECUs

mileage

2a

2b

2c

2a

2d

2e

3a

3b

5a

5a

5c

5c

PUBLIC 135

Summary

PUBLIC 136

Summary – CSEc Workshop

• Demonstrated how to enable the CSEc through the
Configuration/Partitioning of the FlexRAM and Data Flash EEEPROM.

• How to create and store Secret keys using the CSEc interface PRAM.

• In the Do It Yourself portion you encrypted the NXP logo in both EBC and
CBC mode using the CSEc AES-128 hardware and secret key.

• Demonstrated how to clear the secret keys (as long as they are not
locked).

• Showed how to restore the device back to factory state.

• Additionally the workshop demonstrated how much time the encryption
takes in both EBC and CBC mode.

PUBLIC 137

Summary – CSEc in Your Application

• CSEc can help you to encrypt your data and generate CMAC values to verify
data The CSEc is compliant with “SHE” security standard which means 1) comes
with dedicated AES-128 hardware for much faster security processing, and 2)
keys used for the encryption / decryption / authentication are stored in the special
EEPROM storage which CPU can’t access.

• Secure communication is and Firmware authentication is possible with S32K All
of S32K1xx family products from 128KB to 2MB flash products equip the
“Cryptography-Service-Engine-compressed” (or CSEc) for secured
communication (message encryption and/or authentication), and firmware code
authentication.

• Future Proof – Combining with CAN FD feature, S32K MCU family is the best
choice to achieve more secure automotive applications from small body control
nodes to in-vehicle network gateway.

PUBLIC 138

Software

Decryption

Node

“CSEc”

Hardware

Decryption

Node

Crossbar Switch with MPU

System

N
V

IC

Cortex M4F

112 MHz

FPU, DSP

4 KB I/D-Cache

RTC

PMC
2.7 - 5.5V

PLL Clk Mult

Ext Osc
(4 - 40MHz)

Fast R/C OSC
(48MHz 1%)

LP OSC
(128KHz 10%)

SCG

Slow R/C OSC
(8MHz 3%)

16ch

eDMA

LVD

WDOG EWM

Communications / I/O System

2
x
 A

D
C

1
6
c
h
 1

2
b
it

A
C

M
P

w
/

8
-

b
it
 D

A
C

4
x
 F

le
x
T

im
e
r

8
c
h

 1
6

-B
it

3
x
 F

le
x
 C

A
N

1
 w

it
h
 F

D

2
x
 P

D
B

3
x
 S

P
I

1
x
 I

2
C

Flex IO

I2
S

U
A

R
T

S
P

IL
P

IT

C
R

C

3
x
 U

A
R

T
/L

IN

RAM

Up To

64KB

Flash

Up To

512K

EEPROM

Up To

4KBs
e
c
u

ri
ty

P
e
ri
p

h
e
ra

l

B
ri
d

g
e

SWD JTAG

Debug Boundary

ScanEncrypted

Image

Decrypted

Image

• Fast execution of encryption/decryption/authentication by hardware

• Complaint with “SHE” standard specification with secured key storage

• Available in all S32K1xx products from 128KB to 2MB flash memory

Summary – S32K144 CSEc Image Decryption Demo

Encrypted

Image

Decrypted

Image

PUBLIC 139

Summary – CSEc Image Decryption Demo

Software Decryption Node

CSEc Decryption Node

RESET

button

START

button

DC12V Plug/Jack

Pre-encrypted Image

Decrypted ImageDecrypted Image

Pre-encrypted Image

PUBLIC 140

AUTOSAR Cryptographic Service Engine Driver (CSEc)
Implementing Synchronous access to CSEc HW

Implementing AUTOSAR 4.0 conventions

(AUTOSAR 4.2 support in progress)

Driver configuration using Autosar tooling

Driver API abstracting CSEc HW commands

Secure cryptographic key storage

AES-128 encryption and decryption (ECB and CBC)

AES-128 CMAC calculation and verification

True and pseudo random number generation

Miyaguchi-Preneel compression function

Secure boot mode (user configurable)
Configurable parameters in Elektrobit Tresos

Validated with multiple compilers

Supporting S32K142, S32K144, S32K148

Support for S32K146 in progress

Complex Device Driver for Autosar

Fully compatible with NXP Autosar MCAL product

Compatible with running in parallel with EEPRom or Flash

drivers (sharing HW peripherals)

Main services:

Easy to integrate into Autosar Crypto stacks (4.0/4.2)

PUBLIC 141

AUTOSAR CSEc Sample Application
• Part of CSEc driver installer

• Demonstrates usage of CSEc driver in parallel with synchronous EEP and FLS drivers

• After each FLS, EEP and CSEC operation, messages are printed over UART

• Self-contained application delivered with a built system (makefiles) that compiles and delivers the elf

file to be programmed with a debugger/programmer.

Initializes CSEc HW (S32K14x partitioned for emulated EEPROM,

512 bytes subtracted from EERAM space for keys)

Loads master key and user key 2

Encrypts a 16-byte buffer using AES – 128 ECB protocol

Erases the stored keys (master key and user key 2)

Reads the UID of the chip

Hyperterminal log

Used Compilers:

GHS: 2015.1.4

IAR: V7.50.3

GCC: 4.9.3 20150529

S32K142

S32K144

S32K148

NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

www.nxp.com

http://www.nxp.com/

