
NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property

of their respective owners. © 2017 NXP B.V.

PUBLIC

PRODUCT MANAGER
NFC CONTROLLER / NFC SOFTWARE

AMF-DES-T2709 | JUNE 2017

NFC INTEGRATION IN REAL-

TIME AND NON-REAL-TIME

OPERATING SYSTEMS

MICHAEL NEUROHR

PUBLIC 1

AGENDA
• NFC readers software development design-in

support

• NFC Frontend integration in Linux

• NFC Reader Library integration in Linux

• Host interface access on Linux systems

• Latency analysis: Linux vs bare metal

• Overcoming Linux higher latency for time-

sensitive applications

PUBLIC 2

NFC readers software development

design-in support

01.

PUBLIC 3

We make NFC easy

Decide the
functionality

NFC implementation process
We reduce complexity, streamline tasks, and add flexibility at every point in development,

so you can deliver a competitive advantage in record time.

Select
IC

Evaluate
features

Hardware
design

Software
development

Test &
debug

Get
certified

We know each step in the NFC implementation process

Our support package simplifies the process and reduces time to market

We have the right material for each design step

Full range of development kits, design files, sample code, app notes, online training, tutorials

Directly find answers to your questions

Through our technical NFC community and NXP certified Independent Design Houses (IDHs)

PUBLIC 4

NXP’s software development support

NFC implementation process

NFC Reader Library

Sample code

Design files for
development kits

App notes

Online training on SW
integration & tutorials

NFC Cockpit

You can re-use design of NXP development boards and sample code

examples to speed up your SW development tasks.

PUBLIC 5

NXP software support for integration into any platform

Connected NFC tags

Connected NFC

tag

NTAG I2C plus

NFC frontends

NFC controllers with integrated FW

NFC controllers with customizable FW

NFC

frontend

PN5180

NFC controller

with integrated

firmware

PN71xx

NFC controller with

application

PN7462

Software integration

Bare metal

RTOS

Linux OS

Other

OS

This session covers related topics about

NFC frontend software integration in Linux

PUBLIC 6

An increasing number of devices running Linux

IoT gateways.

Healthcare
and medical devices

Set top boxesAccess control &
Ticketing readers

Audio devices

Payment terminals

PUBLIC 7

NFC Frontend integration in Linux

02.

PUBLIC 8

Host interface

• This register interface is a low level access

to the contactless interface providing full

access to this IP.

• This could be a direct CLIF-mapped

interface (CLRC663, PN512) or a software

emulated register interface (PN5180).

• The host controller uses the register

access to the contactless interface for:

• to configure RF framing and

signaling .

• to finally transfer the RF digital

protocol based blocks to/from a

counterpart.

NFC frontend expose a host interface and a contactless interface

NFC frontends expose a ‘register interface’ towards

the host controller through the host interface

NFC frontend

H
o

s
t

in
te

rf
a

c
e

R
F

 i
n

te
rf

a
c

e

RF interface

• An NFC frontend is an RF transceiver

enabling the contactless communication.

• It deals with the signal modulation and

handles the data transmission through the RF

interface.

• The NFC frontend needs to be selected

according to application requirements:

• RF performance

• RF protocols

• NFC modes of operation

• Host interfaces

• Power consumption

• Device to interact with

• Others…

PUBLIC 9

NFC frontend is controlled by the external host controller SW

NFC frontend

H
o

s
t

in
te

rf
a

c
e

R
F

 i
n

te
rf

a
c

e

Host controller

The host controller drives and controls the NFC

frontend according to register settings configuration

Host controller

M
a

tc
h

in
g

Register configs RF communication

• Contains the software implementing the

application logic

• The RF digital protocols are implemented

on the host controller

• The host controller platform needs to be

selected according to system requirements:

• Memory requirements

• Clock frequency

• MCU architecture

• Host interfaces

• Power consumption

• GPIOs and other peripherals

TODAY: Based on Linux OS architecture

SW stack

PUBLIC 10

Host controller SW: Linux OS architecture - User space

Host controller

Linux OS

stack

H
o

s
t

in
te

rf
a

c
e

HW platform

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

System Libraries

App 1 App 2 App 3 App n

GNU C

Library

DRM

Library
Other libs

• Applications and user programs run in User

Space (non-privileged mode).

• User Space code has no ability to access

hardware or drivers directly.

• Due to the protection afforded by this sort of

isolation, crashes in user mode are always

recoverable.

• Each process in user space process occupies

its own virtual address space

User Space

PUBLIC 11

i386

Privilege separation: i386 and ARM architecture

• Most processors define so called privilege

levels.

• i386 knows 4.

• ARM v7 knows 3.

• ARM v7

• PL0 – Unprivileged level for user

applications. User mode

• PL1 – Privileged level for operating system.

• PL2 – Hypervisor mode. Can switch between

guest OS that execute in PL0.

Level 0
OS Kernel

Level 1
OS Services -
Device drivers

Level 2
OS Services -
Device drivers

Level 3
Applications

L
o

w
e

s
t

3 2 1

H
ig

h
e

s
t

0

Privilege Levels

PUBLIC 12

Privilege separation: switching the level

• Switching the privilege level must be
controlled

• On ARM a super visor call (SVC) is used to
enable user mode code to access OS
functions

• SVC provides a well defined handler to
switch the processor mode.

• The SVC triggers a processor exception.

ARM

Platform

OS

Application

Code

Privileged Mode

User Mode

SVC

Application

code

Exception occurs

Vector

table
Save CPU and

register state

Handle the

exception

Restore CPU and

register state

PUBLIC 13

Privilege separation: context switch

• Changing privilege level on an OS
always comes with a context
switch.

What is a context switch?

• Storing current processor state and
restoring another.

• The interrupt handler manages the
context switch.

• The interrupt handler has to:

− Switch to privileged mode

− Save defined registers to the process
stack.

− Save current task’s Process Stack
Pointer (PSP) to memory.

− Load next tasks stack pointer and
assign to PSP.

− Load registers from process stack.

− Switch back to unprivileged mode.

Registers

Stack ptr

Prgm ctrt0

Registers

Stack ptr

Prgm ctrt1

Save Restore

Thread t0 Thread t1Context switch

Time

Processor

PUBLIC 14

Host controller SW: Linux OS architecture – System call interface

Host controller

Linux OS

stack

HW platform

• Provides the means to perform function calls

from user space into the kernel space

• Code running in user mode must delegate to

system call APIs to access hardware or

memory.

• Most operations interacting with the system

require permissions not available to a user

level process (e.g. Input / Output operations)

• Input/output (I/O) is any program, operation or

device that transfers data to or from the CPU

and to or from a peripheral device

System call interface

H
o

s
t

in
te

rf
a

c
e

Syscall Interface

Syscall Dispatcher
K

e
rn

e
l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

PUBLIC 15

Host controller SW: Linux OS architecture - Kernel space

Host controller

Linux OS

stack

HW platform

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver I2C driver

• The kernel connects the application software

to the hardware platform.

• The executing code has complete and

unrestricted access to the underlying

hardware.

• Kernel mode is generally reserved for the

lowest-level, most trusted functions of the

operating system

• Kernel Mode "prevents" User Mode

applications from damaging the system or its

features  Crashes in kernel mode are

catastrophic.

• Kernel space runs on the single address

space.

Kernel Space

H
o

s
t

in
te

rf
a

c
e

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

PUBLIC 16

Integrating the NFC Reader Library in Linux

03.

PUBLIC 17

NFC Reader Library: The SW stack to develop NFC applications

Host controller

Linux OS

stack

H
o

s
t

in
te

rf
a

c
e

HW platform

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual File

System

Network

Stack

USB driver
Display

Driver
SPI driver I2C driver

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

NFC Reader Library SW integration

• The NFC Reader Library provides an API

including everything you need to deploy for

NFC applications:

• Host platform drivers

• RF digital protocols

• Full feature set according to NFC Forum

• NXP NFC frontends hardware drivers

• MIFARE cards and NFC Forum tag

operation

• The NFC Reader Library runs within the User

Space.

• The customer NFC app is built on top of the

NFC Reader Library, taking advantage of the

offered API

The NFC Reader Library is the NXP software stack to develop NFC

applications and there is an existing version for Linux OS architecture!

PUBLIC 18

NFC Reader Library & available resources

NFC Reader Library

For additional information and source code, please visit: www.nxp.com/pages/:NFC-READER-LIBRARY

The NFC Reader Library is everything you need to create your

own software stack and application for a contactless reader

Software examples

Example 1: BasicDiscoveryLoop
Example 2: AdvancedDiscoveryLoop
Example 3: NFCForum
Example 4: MIFARE Classic
Example 5: ISO15693
Example 6: EMVCo Loopback
Example 7: EMVCo Polling
Example 8: HCE T4T
Example 9: NTAG I2C
Example 10: SimplifiedAPI_EMVCo
Example 11: SimplifiedAPI_ISO

Don’t start from scratch, available software

examples to test and re-use

Features: Modular, multi-layered, ANSI-C language, portable to multiple

platforms and free download

http://www.nxp.com/pages/:NFC-READER-LIBRARY

PUBLIC 19

NFC Reader Library architecture

AL contains application-specific implementations for

various contactless cards (card command sets)

Discovery loop component implements a poll mode*

and a listen mode** for contactless card and NFC

device detection

HCE component implements the card emulation of

NFC Forum Type 4A tag

Contains the implementation of LLPC and SNEP

protocol for NFC P2P mode

High level abstraction of the NFC

Reader Library. Two profiles for:

EMVCo and ISO

PUBLIC 20

NFC Reader Library architecture (II)

The common layer implements a set of utilities

independent of any card and hardware

BAL layer implement the interface between host

controller and the NFC reader IC

HAL components abstract the functionality of the

NFC reader IC to a generic interface

PAL components contain hardware-independent

implementations of contactless protocols

Raspberry Pi is used as reference platform for Linux

version of the NFC Reader Library

PUBLIC 21

NFC Reader Library – building the SW stack

• The build setup and functionality is set in

the file: ../intfs/ph_NxpBuild.h.

• This file defines the modules to be

included into the build setup or to be

excluded from the build setup .

• There is a specific macro defined for

including / excluding each SW component

• Components can be included / excluded

depending on the application requirements

or to optimize memory footprint.

#define NXPBUILD__PHBAL_REG_LINUX_USER_SPI

#define NXPBUILD__PHHAL_HW_PN5180

Modules can be enabled / disabled to

optimize code size and memory footprint

Components not included in the project build

PUBLIC 22

Host interface access on Linux systems

04.

PUBLIC 23

Linux based application: System call interface

Host controller

Linux OS

stack

HW platform

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver SPI driver

NFC

frontend

H
o

s
t

in
te

rf
a

c
e

The NFC application needs to switch from User

Space to Kernel Space for every SPI interface access

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

s
y
s
te

m
 c

a
ll

fu
n

c
ti
o

n
 c

a
ll

A system call leads to a so-called

context switch. This context switch

changes the execution context from

user space to kernel space

PUBLIC 24

Transition between User mode and Kernel mode

User

application
System Call

System

Call API

Triggered soft

interrupt

Interrupt vector

table

Address SWI

routine

IVT do the

necessary

steps

Kernel

mode

Switching from User mode to Kernel mode
Advantage:

• Well defined interface.

• Horizontal separation: Avoids that a crashing

application crashes the whole system and protects

system resources.

• User application initiate switching to kernel mode making a system call

(e.g. open, read, write, etc)

• A software interrupt (SWI) is triggered

• The interrupt vector table launch the handler routine which performs all

the required steps to switch the user application to kernel mode

• Start execution of kernel instructions on behalf of the user process.

Disadvantage:

• Performance degradation: A syscall is much

slower than a direct function call

Could challenge the design of

time-critical NFC applications

PUBLIC 25

Latency analysis: Linux vs bare metal

05.

PUBLIC 26

Hardware setup

PN5180
H

o
s

t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c

e

Raspberry

Pi

M
a

tc
h

in
g

PN5180

H
o

s
t

in
te

rf
a

c
e

R
F

 i
n

te
rf

a
c

e

LPC 1769

M
a

tc
h

in
g

Linux hardware platform

 Raspberry Pi 3 Model B

 1.2 GHz 64-bit quad-core ARMv8 CPU

Limited to 1 Core @ 100 MHz (3 cores disabled)

 1 GB RAM

 PNEV5180B (with LPC bypassed)

 SPI host interface

Bare metal hardware platform

 NXP LPC1769 uC

 ARM 1 core @ 96 MHz

 LPC-Link2 connected for debugging

 PNEV5180B

 SPI host interface

We limited Raspberry Pi clock and MCU cores to

achieve a comparable setup with LPC1769

Bare metal setupLinux setup

PUBLIC 27

Software setup

PN5180
H

o
s

t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c

e

Raspberry

Pi

M
a

tc
h

in
g

PN5180

H
o

s
t

in
te

rf
a

c
e

R
F

 i
n

te
rf

a
c

e

LPC 1769

M
a

tc
h

in
g

Bare metal setupLinux setup

ARMv8 CPU

Raspbian Jessie

Kernel 4.4

NFC Reader Library

EMVCo polling example

NXP LPC1769

NFC Reader Library

EMVCo polling example

We execute the NFC

Reader Library and the

same SW example in

both platforms

EMVCo polling example:

Discovery loop for EMVCo

card detection and APDU

command exchange

PUBLIC 28

Measurement setup

PN5180
H

o
s

t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c

e

Raspberry

Pi

M
a

tc
h

in
g

PN5180

H
o

s
t

in
te

rf
a

c
e

R
F

 i
n

te
rf

a
c

e

LPC 1769

M
a

tc
h

in
g

Bare metal setupLinux setup

Logical analyzer / scope Logical analyzer / scope

Perform transaction RF communication Perform transaction RF communication

Measurements conducted

Time from GPIO toggle to SPI transfer

Time between two SPI accesses

Time for EMVCo polling initialization

Time for EMVCo loopback transaction

We compared the results in

the next slides

We use a logical analyzer /

scope connected in the SPI

interface between the Host

controller & PN5180

We use a logical analyzer /

scope connected in the SPI

interface between the Host

controller & PN5180

PUBLIC 29

Measured time from GPIO toggle to SPI transfer

Bare metal setupLinux setup

* GPIO toggling execution takes less than 350us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. Set_GPIO(Low);

* GPIO toggling execution takes less than 3us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. Set_GPIO(Low);

Until we start writing into the SPI

interface, it takes 0.478 ms
Until we start writing into the

SPI interface, it takes 2.5 us

* Pseudo-code extracted from the real EMVCo polling source code

example from the NFC Reader Library

PUBLIC 30

Measured time between two SPI accesses

Bare metal setupLinux setup

Until we start writing the second

SPI transfer, it takes 1.8 ms
Until we start writing the second

SPI transfer, it takes 74.5us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. phhalHw_PN5180_WriteRegister(…);

4. Set_GPIO(Low);

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. phhalHw_PN5180_WriteRegister(…);

4. Set_GPIO(Low);

* Pseudo-code extracted from the real EMVCo polling source code example from the NFC Reader Library

PUBLIC 31

Measured time for EMVCo polling initialization

* During the initialization, several registers are written.

The process is repeated 10 times to get an average

Measured time for 10

EMVCo polling inits.

1 init ~30.1ms

Measured time for 10

EMVCo polling inits.

1 init ~8.07 ms

Bare metal setupLinux setup

PUBLIC 32

Measured time for EMVCo loopback

Bare metal setupLinux setup

Measured time for a

EMVCo loopback

transaction takes

33.5ms

Measured time for a

EMVCo loopback

transaction takes

6.9ms

*phStatus EMVCoDataLoopBack(…){

1. Set_GPIO(High);

2. EMVCoDataExchange(…);

3. phhalHw_PN5180_WriteRegister();

* Pseudo-code extracted from the real EMVCo polling source code example from the NFC Reader Library

PUBLIC 33

Real Time
What is real-time

06.

PUBLIC 34

Soft real-time - Examples

What is Real Time?

Real Time – Definition

• In case a system needs to execute a

certain action or task within a given

time frame then we are talking about

real time

• Hard real-time means that exceeding

this time frame is not allowed and

could lead to malfunction/failure

• In Soft real-time there is no hard

deadline but rather a typical limit until

certain tasks can be finished

• Firm real-time also “allows”

exceeding the deadline, but the result

could be invalid/outdated

• During EMVCo L1 certification of a

terminal the measured guard time

between a WUPA and a WUPB must

not exceed 10ms

• So, the system must guarantee that

the WUPB frame is sent after latest

10ms

• If this is not achieved the device is

not EMVCo L1 compliant and fails

certification

Hard real-time - Examples

• The same terminal in field operation

should not exceed the guard time of

10ms between a WUPA and a WUPB

• If it’s exceeded the system is still

working and operable with typically no

negative impact

PUBLIC 35

Real Time – Definition

• What is Real Time?

− In case a system needs to
execute a certain action or task
within a given time frame then we
are talking about real time

− Hard real-time means that
exceeding this time frame is not
allowed and could lead to
malfunction/failure

− In Soft real-time there is no hard
deadline but rather a typical limit
until certain tasks can be finished

− Firm real-time also “allows”
exceeding the deadline, but the
result could be invalid/outdated

• Hard real-time - Examples

− During EMVCo L1 certification of a terminal the
measured guard time between a WUPA and a
WUPB must not exceed 10ms

− So, the system must guarantee that the WUPB
frame is sent after latest 10ms

− If this is not achieved the device is not EMVCo
L1 compliant and fails certification

• Soft real-time - Examples

− The same terminal in field operation should not
exceed the guard time of 10ms between a
WUPA and a WUPB

− If it’s exceeded the system is still working and
operable with typically no negative impact

PUBLIC 36

Overcoming Linux higher latency for

time-sensitive applications

07.

PUBLIC 37

Recommendations to reduce Linux latency

NFC

frontend

H
o

s
t

in
te

rf
a

c
e

R
F

 i
n

te
rf

a
c

e

Host controller

M
a

tc
h

in
g

Linux-based NFC reader architecture

Linux OS stack

HW platform

The major parameter influencing the Linux

latency is the large time required to access the

host interface from the host controller due to

the Linux SW stack architecture

Solutions

• Increase CPU/SPI clock as much as the MCU can

process.

• Reduce SPI / host interface interactions as much as

possible: Linux driver are optimized for few long

transactions rather than lots of short ones

• Move NFC Reader Library BAL module to

Kernel space
The most effective solution !!

PUBLIC 38

NFC Reader Library support of BAL module in Kernel space

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver SPI driver

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

SPI

driver

NFC frontend NFC frontend

Linux architecture Linux architecture

Option 1: Default NFC Reader Library

integration in Linux with all lib in user space

Option 2: NFC Reader Library integration

in Linux with BAL module in kernel space

PUBLIC 39

NFC Reader Library BAL module: User Space vs Kernel space

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

SPI

driver

NFC frontend

Linux architecture

1. Read GPIO to wait for BUSY line from

previous command going low.

2. Setup and start first SPI transfer.

3. Read GPIO to wait for BUSY going

low.

4. Setup and start second SPI transfer.

5.

BAL layer in User Space

1. System call read() leading to a context

switch

2. Access BAL kernel module with direct

access to the SPI and GPIO

frameworks.

BAL layer in Kernel Space

ONLY ONE SYSTEM

CALL  Much more

efficient instead of

having individual

access from user

space

Plenty of system

calls and context

switching operations

PUBLIC 40

NFC Reader Library BAL module: User Space vs Kernel space

BAL layer in Kernel Space: Measured time between two SPI transfers (Raspberry Pi 2 running Linux OS)

Until we start

writing into the

SPI interface, it

takes 2us

Until we start

writing into the

SPI interface, it

takes 86us

BAL layer in User Space: Measured time between two SPI transfers (Raspberry Pi 2 running Linux OS)

PUBLIC 41

NFC Reader Library BAL module in Kernel space: Resources

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

SPI

driver

NFC frontend

Linux architecture

[1] GitHub repo with:

• Information about building, configuring and

• An example the integration on Raspberry Pi is given.

[2] http://www.nxp.com/documents/application_note/AN11802.pdf

[2] App note with:

• Explanation of how the NFC Reader Library needs to be

changed in order to call the kernel module instead of using

the default BAL module running in user-space.

[1] https://github.com/NXPNFCLinux/nxprdlib-kernel-bal

http://www.nxp.com/documents/application_note/AN11802.pdf
https://github.com/NXPNFCLinux/nxprdlib-kernel-bal

PUBLIC 42

Further considerations

• Changing the scheduling policy.

− FIFO and RT.

• RT-Preempt Linux Kernel patch [1].

− Not part of Linux mainline. Needs to be applied manually.

• Dedicated MCU for timing sensitive parts.

− E.g. i.MX6 CPU with dedicated Cortex-M4 core.

[1] https://rt.wiki.kernel.org/index.php/Main_Page

PUBLIC 43

Selecting the right product

08.

PUBLIC 44

NXP software support for integration into any platform

Connected NFC tags

Connected NFC

tag

NTAG I2C plus

NFC frontends

NFC controllers with integrated FW

NFC controllers with customizable FW

NFC

frontend

PN5180

NFC controller

with integrated

firmware

PN71xx

NFC controller with

application

PN7462

Software integration

Bare metal

RTOS

Linux OS

Other

OS

This session covers related topics about

NFC frontend software integration in Linux

PUBLIC 45

Latest non-mobile NFC products

PN5180 CLRC663 plus NTAG I²C plus
PN7462

& derivates
PN7150

Commercial

tagline

The best full NFC frontend

in the market

Best performance at lowest

power consumption

Simplest and lowest BoM

NFC solution
All-in-one full NFC solutions

Best plug’n play, high-

performance full NFC solution -

Easy integration into any OS

environment

Positioning

Building on NXP’s trusted

leadership in the core NFC

markets

NXP next-gen multi-

protocol NFC frontend

Easy and reliable entry to the

world of NFC, incl. password

protection

The true innovation:

The all-in-one product

Following the success of

PN7120, PN7150 brings the

same plug ‘n play experience

with higher performance

Target markets
Payment

Access

Access

Payment

Gaming

Industrial

IoT

Mass market

Access

Gaming

Home banking

IoT

Consumer

Mass market

Required NFC

know-how,

targeted

applications

› NFC experts who want

to further optimize

and/or customize their

implementation

› NFC intermediates

› High performance with

low power requirements

for the most demanding

applications

› NFC beginners

› Simple applications, where

no reader functionality

needed

› Applications requiring

simple protection of data

› Applications requiring

multiple functionalities

(NFC, CT, USB)

› Freely programmable

› NFC integration into Linux and

Android

› Small and medium sized

enterprises (SMEs)

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

