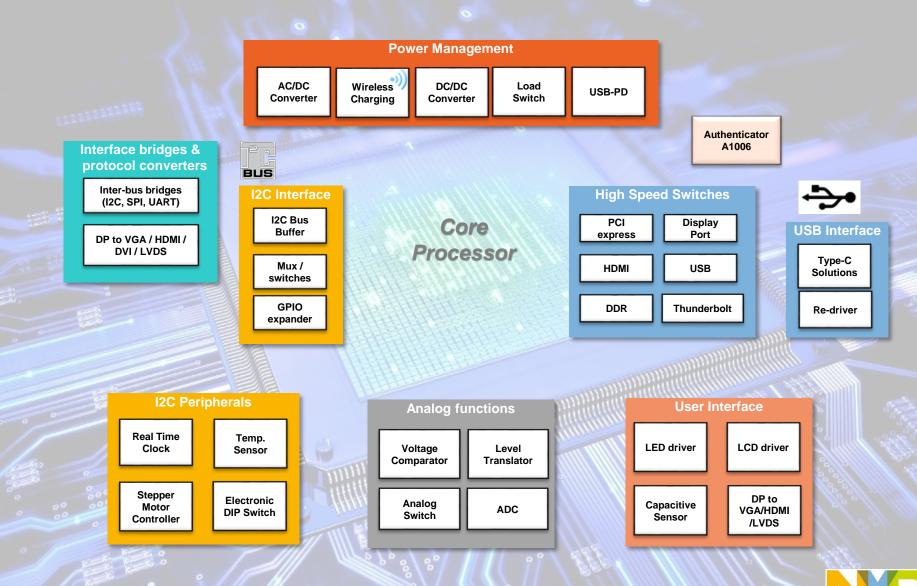
USB Type C Seamless connectivity of Data, Video, Security and Power over a single Connector


Business Line Secure Interfaces & Power (BL SIP) May 2016

SECURE CONNECTIONS FOR A SMARTER WORLD

BL SIP: Solutions Around the Core

USB TYPE C INTRODUCTION

Introduction to USB Type C

- USB Type C is a new connector standard, billed as the 'Last Connector'
- USB Type C main benefits:
 - Universal connector: it is not a proprietary connector
 - Small: a third the size of an USB Type A plug.
 - Reversible: it plugs in both ways; it is flippable .
 - Support USB 3.1: 10Gbps USB data.
 - Support flexible *alternate modes* for **non-USB data**, i.e. it allows to have adapters that can output HDMI, VGA, DP or other types of connections.
 - Support up to 100W (20V/5A) Power Delivery (PD) capability; PD directional control, also from the peripheral to the host ('role swap') and power level management.

USB Type C Standards

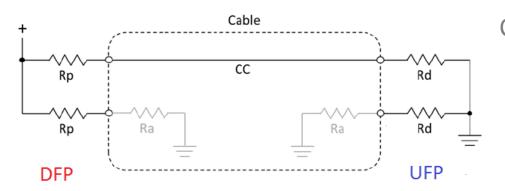
USB Type C Standard

- USB 2.0 and USB 3.1 (Gen1: 5Gbps, Gen 2: 10Gbps)
- Up to 15W (5V and 1.5A or 3A)

• USB Power Delivery (PD) Standard

- Scalable power charging up to 100W (20V, 5A)
- Various power profile defined:
 - Profile # 1 capable of supplying 5V @ 2A
 - Profile # 2 capable of supplying 5V @ 2A, 12V @ 1.5A
 - Profile # 3 capable of supplying 5V @ 2A, 12V @ 3A
 - Profile # 4 capable of supplying 5V @ 2A, 12V and 20V @ 3A respectively
 - Profile # 5 capable of supplying 5V @ 2A, 12V and 20V at 5A respectively
 - Note that these power profiles are guidelines only. A design does not need to stick to one of these profiles.
- · Possible to change the power flow: "role-swap"
- USB Type C Alternate Mode Standard
 - Allows signals other than USB to pass through the Type-C connector.
 - E.g. up to 4-lanes of Display Port (DP) signals can be sent through Type-C interface.

USB Type C Pins



High Speed Data Path (TX f USB, or for DP Alt Mode							(RX 1	High Speed Data Path for USB, or TX for DP Alt Mode					
_	A1	A2	A3	A 4	A5	A6	A7	A8	A9	A10	A11	A12	
	GND	TX1+	TX1-	VBUS	CC1	D+	D-	SBU1	VBUS	RX2-	RX2+	GND	
													1
l	GND	RX1+	RX1-	VBUS	SBU2	D-	D+	CC2	VBUS	TX2-	TX2+	GND	
	B12	B11	B10	B9	B8	B7	B6	В5	В4	B3	B2	B1	
Cable Ground			В	Cabl us Po	ower Bus			Plug Configuration Detection • One becomes Vconn,					
Table 4-1 USB Type-C List of Signals Signal Group Signal					tion		•	CC is u	able po used fo mmuni	r USB-	PD		
USB 3.1 SSTXp1, SSTXn1 SSRXp1, SSRXn1 SSTXp2, SSTXn2 SSRXp2, SSRXn2			n1 dif n2 set	SuperSpeed USB serial data interface defines 1 differential transmit pair and 1 differential receive pair. On a USB Type-C receptacle, two sets of SuperSpeed USB signal pins are defined to enable plug flipping feature									
USB 2.0 Dp1, Dn1 Dp2, Dn2			dif tw	<u>USB 2.0</u> serial data interface defines a differential pair. On a USB Type-C receptacle, two set of <u>USB 2.0</u> signal pins are defined to enable plug flipping feature									
Configuration CC1, CC2 (receptacle) CC (plug)				CC channel in the plug used for connection detect, interface configuration and VCONN									
Auxil	iary <mark>signa</mark> l	s	SBU1, SBU2	Sic	leband Use				V _{BU}	_s : USB	cable b	us pow	er
			VBUS		B cable bus	*/6					. .		
	Power	1	CONN (plug)		B plug powe		-		V _{co}	_{NN} : USI	3 plug p	ower	
			GND USB cable return current path										

6.

USB Type C Ports

Port Type	Description
DFP – Downstream Facing Port	"USB host" & initial V _{BUS} /V _{CONN} source, Typical Standard-A host
UFP – Upstream Facing Port	"USB device" & initial V _{BUS} sink, Typical Standard-B device
DRP – Dual Role Port	A port that may operate as a DFP or UFP

CC pins and functionality

- Attach/Detach detection
- Determination Plug orientation
- Initial Port role determination
- USB PD Type C Communication (For PD)
 - Modification of initial port roles
 - Negotiation of USB PD power contracts
- Management of Functional Extensions (For PD)
 - Structured Vendor Defined Messages (VDM)

USB Type-C Connector – Pinout and Alignment

	Receptacle (Front View)										
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
GND	TX1+	TX1-	VBUS	CC1	D+	D-	SBU1	VBUS	RX2-	RX2+	GND
GND	RX1+	RX1-	VBUS	SBU2	D-	D+	CC2	VBUS	TX2-	TX2+	GND
GND B12	RX1+ B11	RX1 - B10	VBUS B9	SBU2 B8	D- B7	D+ B6	CC2 B5	VBUS B4	TX2- B3	TX2+ B2	GND B1

A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1
GND	RX1+	RX1-	VBUS	SBU2			VCONN	VBUS	TX2-	TX2+	GND
GND	TX1+	тх1-	VBUS	сс	D+	D-	SBU1	VBUS	RX2-	RX2+	GND
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12

USB Type-C Connector – Pinout and Alignment

	Receptacle (Front View)										
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
GND	TX1+	TX1-	VBUS	CC1	D+	D-	SBU1	VBUS	RX2-	RX2+	GND
GND	RX1+	RX1-	VBUS	SBU2	D-	D+	CC2	VBUS	TX2-	TX2+	GND
B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
	USB3.0				USB2.0					33.0	
	Normal Plug Reverse Plug										
A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1
							_				
GND	RX2+	RX2-	VBUS	SBU1	D-	D+	СС	VBUS	ТХ1-	TX1+	GND
GND	RX2+	RX2-	VBUS	SBU1	D-	D+	СС	VBUS	TX1-	TX1+	
GND				SBU1 VCONN	D-	D+	CC SBU2		TX1-		

USB Type C Applications

Video, Data and Charging over the same cable

- Computing:
 - Notebook
 - Desktops
 - Docking stations
 - Monitors
- Portable devices
 - Tablets
 - Smartphones
 - Hard drives
 - Cameras
- Accessories:
 - Dongles
 - Cables

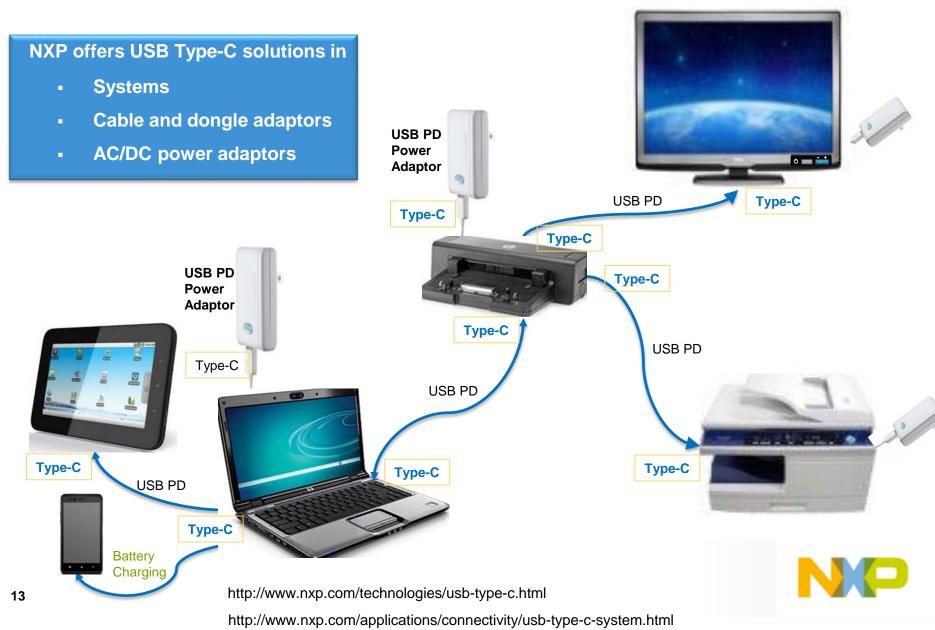
- AC/DC wall chargers
- Printers
- Etc.

NXP USB Type C

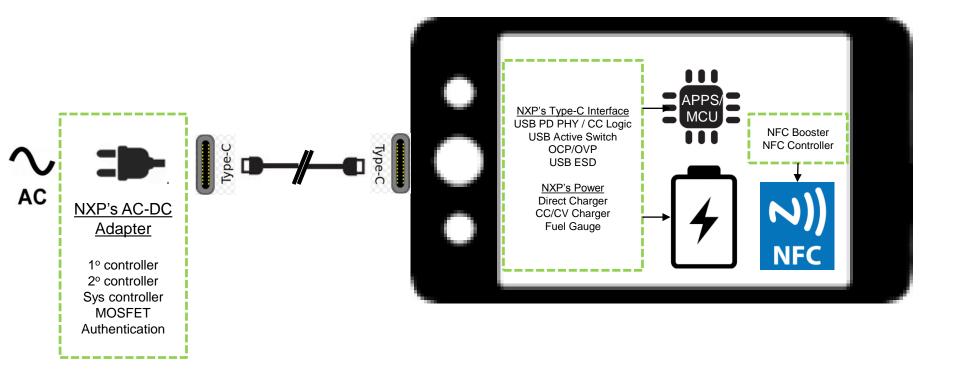
- NXP Vision: seamless connectivity of Data, Video, Security and Power over a single Connector
- NXP Value Proposition:
 - A long-time leader in USB systems and member of the USB-IF, NXP helped define the Type-C specification. This gives our engineers a keen understanding of Type-C implementations, complemented by a solutions portfolio fully equipped to support every aspect of Type-C design.
 - Broad portfolio of best-in-class USB Type C solutions, i.e. USB-Power Delivery, X-Bar Switches, Load Switches and ESD/EMI solutions, microcontrollers, authentication, AC/DC adapter components.

NXP USB Type-C campaign page:

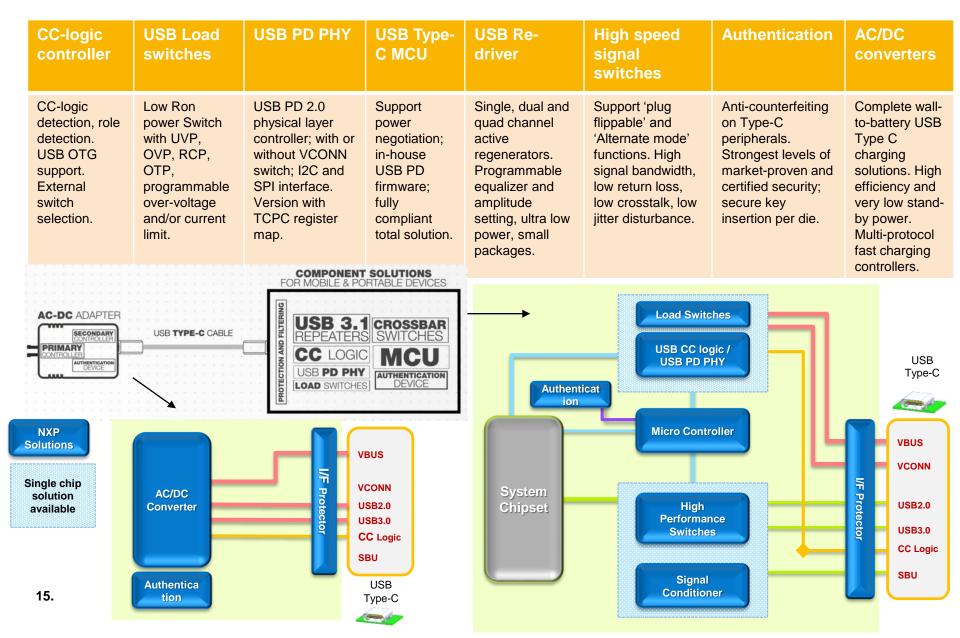
http://www.nxp.com/technologies/usb-type-c.html#ecosystem



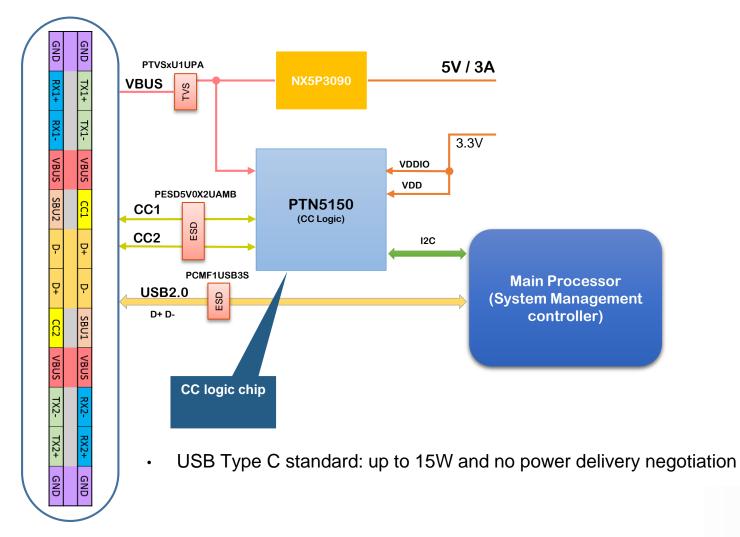
•


USB TYPE-C SYSTEM SOLUTION

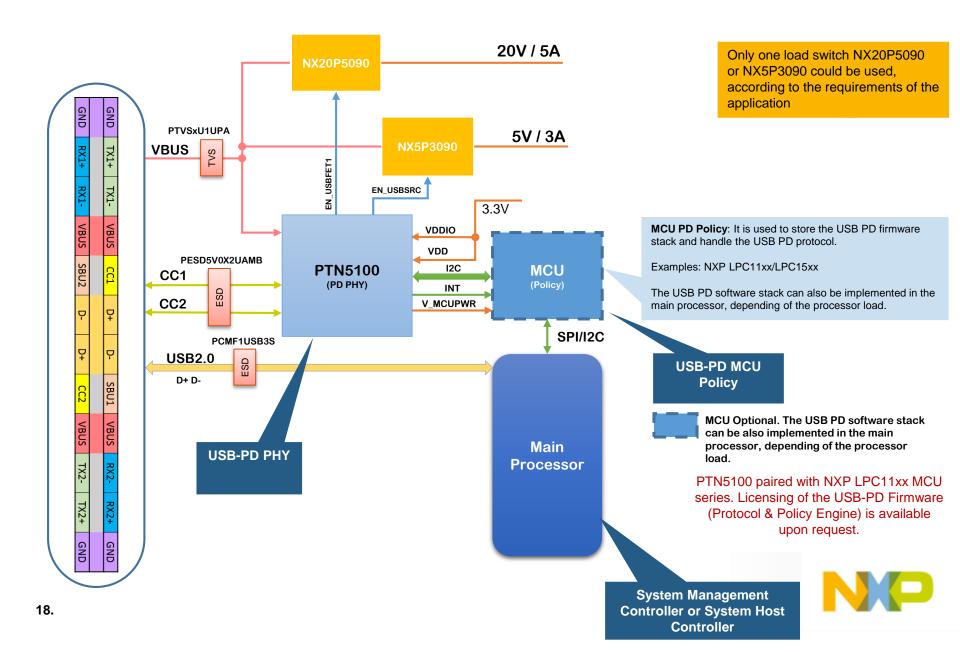
Ecosystem Illustration



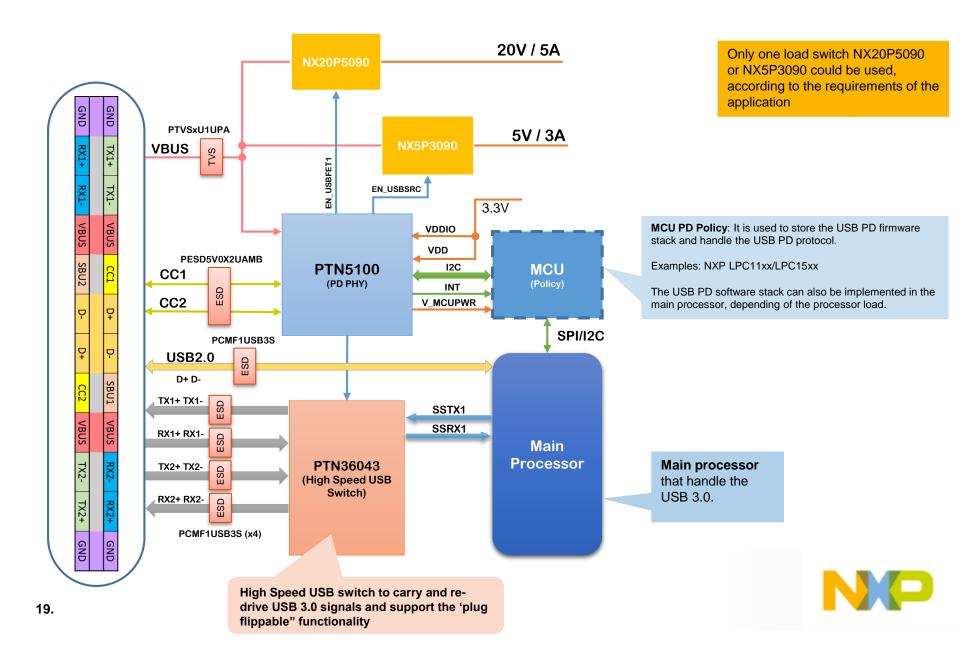
NXP USB Type-C & Smart charging

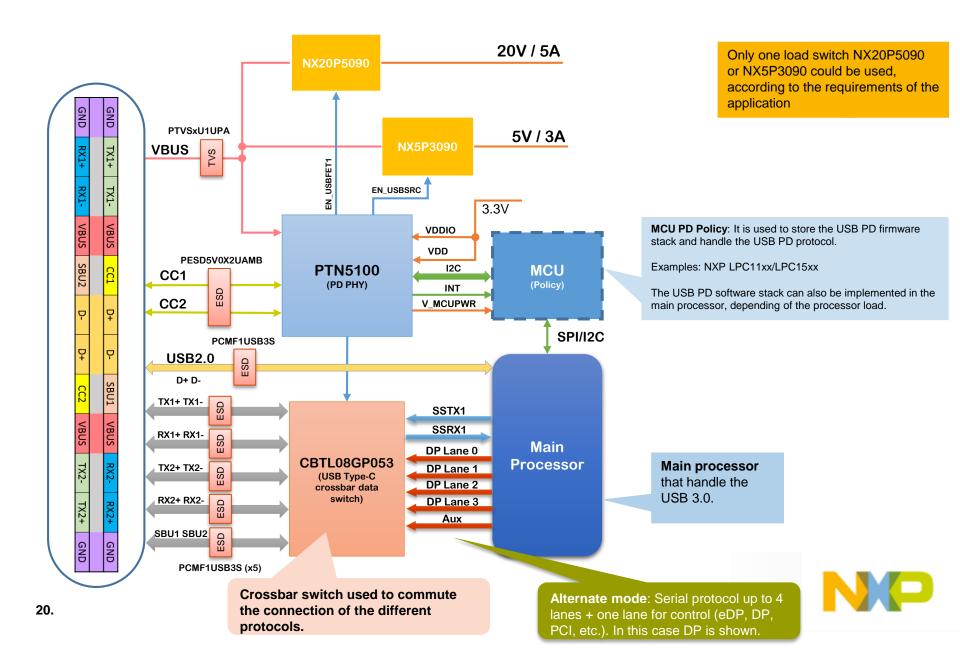


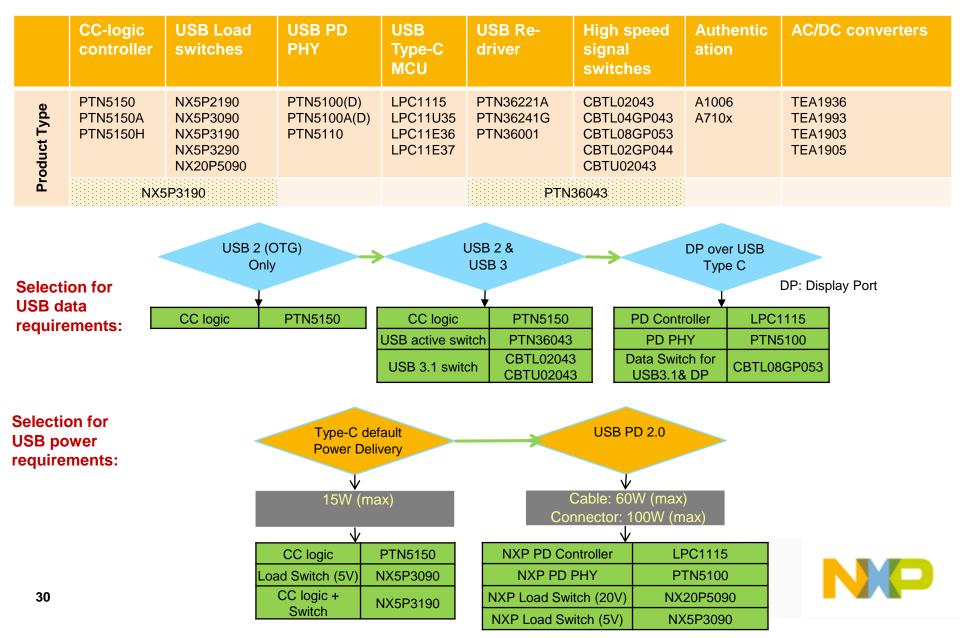
NXP USB Type-C system solutions



USB Type-C port + USB 2.0

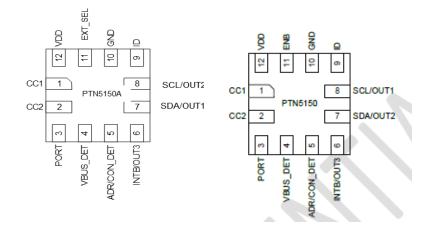


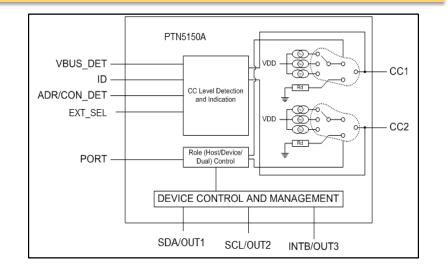

USB Type-C port + USB 2.0 + USB PD


USB Type-C port + USB 2.0/3.0 + USB PD

USB Type-C port + USB 2.0/3.0 + USB PD + DP Alt Mode

NXP USB Type C portfolio & selection criteria


USB TYPE-C PRODUCTS DETAILS



PTN5150: USB Type-C CC logic device

Description

- Complies with USB Type-C specifications
- Support different Type-C port roles: DFP, UFP, DRP
- Supports Cable/plug insertion / removal detection; orientation detection, role and charging current detection
- PTN5150A: Pin 11 = EXT_SEL output to control USB data switch, e.g. PTN36043
- PTN5150: Pin 11 = ENB (Enable input pin, active low)
- <u>Available in</u>: X2QFN12 1.6 x 1.6 x 0.35 mm, 0.4 mm pitch

PTN5100: USB Type-C PD PHY and Protocol IC

In Production

Description

- Complies with USB PD and USB Type-C specifications
- Support implementations of the different USB PD roles: P, P/C, C, C/P
- Support different Type-C port roles: DFP, UFP, DRP
- Cable/plug insertion / removal detection; orientation detection and indication through CC_ORIENT pin: if low → CC communication on CC1 and VCOMM on CC2
- Communicate with the USB PD policy MCU via I2C or SPI

Available in: HVQFN20 4 x 4 mm, 0.5 mm pitch

Paired with NXP LPC11xx MCU series.

Features

- VDD, VIO = 3.3 V typ.
- VCONN: 2.7V to 5.5V
- VCONN Ron = 150 mΩ (max)
- I(VCONN) = 1 A (max)
- VBUS up to 25V (30V tolerant)
- CC1, CC2 up to 5.5V
- Enable pins for the USB PD switches up to 28V
- Temp.: -40 to 105°C



NX20P5090 – 5A/20V USB PD power switch

Description

- 5.0A capable power switch with programmable over-voltage protection (OVP) via external resistor divider.
- Includes under-voltage protection (UVP), reverse-current protection (RCP), and over-temperature protection (OTP). During a fault condition, device opens to protect the load. Slew rate control with 15ms de-bounce time before the switch turns on is also included.
- Enable input integrates logic translation making the device compatible with lower voltage processors
- Operates from 2.5V to 20 V, to support USB PD Type C and power domain isolation applications with high supply currents.

Available in: WLCSP15 1.6 x 2.6 mm, 0.5 mm pitch

VINT

VBUS

GND

VBUS

GND

Features

- Operates from 2.5 to 20 V.
- Low ON resistance: Ron typ. 30mΩ
- 29 V tolerant VINT/VBUS pins
- Reverse current protection
- Programmable over-voltage protection (4V to 23V via external resistor divider)
- Under voltage protection (2.5V)
- Over-temperature protection @140C
- 1.8V control Logic to enable/disable
- Slew rate control with 15ms de-bounce

1

2

3

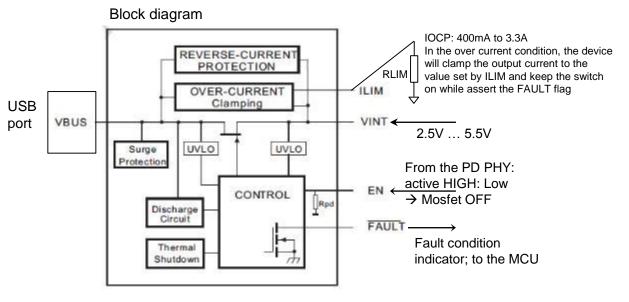
ACK

/EN

VBUS

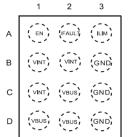
OVLO

VBUS


GND

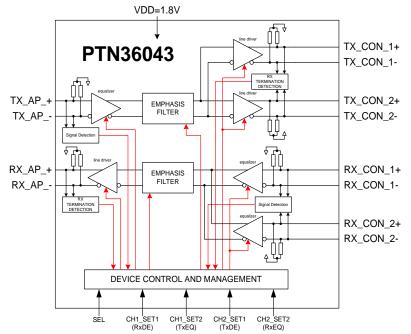
NX5P3090 – 3A/5V USB PD power switch

Description

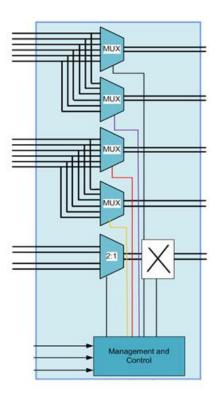

- Power switch with programmable current limit from 400mA to 3.3A for USB PD applications. During over-current situations, device clamps the current to a value set by external resistor.
- Device also includes reverse current protection (RCP), under voltage lockout, over-temperature, surge protection, & soft start.
- Enable input integrates logic translation making the device compatible with lower voltage processors.
- Input and output terminals are 30V tolerant to support USB PD rails.

Available in: WLCSP12 1.35 x 1.65, 0.4 mm pitch

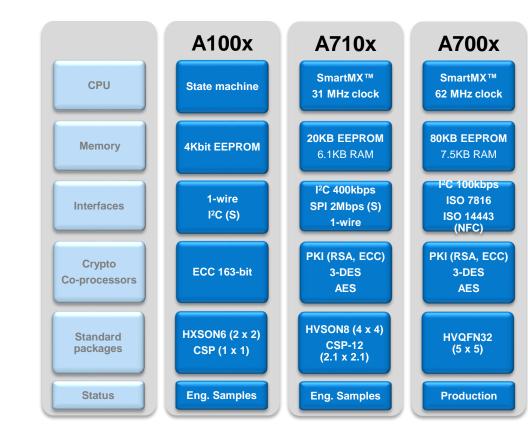
Features


- Operates from 2.5 to 5.5V
- Low ON resistance: Ron typ. 30mΩ
- 29 V tolerant VINT & VBUS pins
- UVLO protection
- Reverse current protection
- Adjustable current limit 0.4 to 3.3A
- 100V surge protection
- Active discharge circuit
- Over-temperature protection @140C
- 1.8V control Logic to enable/disable
- Soft start turn-on, slew rate controlled

PTN36043: USB Type C SuperSpeed Redriver Switch


- 5Gbps USB3.0 one port redriver switch
- Compliant to SuperSpeed USB standard
- Optimized data flow for Type-C connector
- Adjustable Receive equalization, Transmit de-emphasis
 , and output swing functions
- Low crosstalk and excellent differential and common return loss performance
- Low power management scheme
 - 189 mW (105mA) active power
 - 2.16 mW (1.2mA) in U2/U3 state
 - 0.9 mW (0.5mA) with no connection
- Power supply: VDD=1.8V±5%
- ESD 8kV HBM; 1kV CDM
- Operating Temperature Range: -40°C to 85°C
- Very small thin DHXQFN18 package:
 2.4 mm x 2.0 mm x 0.35mm, 0.4 mm pitch

CBTL08GP053 – USB Type-C Combo Switch


- Applications in platforms supporting Alternate Modes to transport multiple high speed signals over USB Type-C connector
- Supports data rates up to 5.4 Gbps
- Supports several use cases
 - USB3
 - USB3, DP 1/2/4-lanes
 - USB3, PCIe (1-lane)
- High Speed Mux target specs
 - Bi-directional usage support (mux or switch)
 - -3dB BW: >5 GHz
 - Insertion loss: 1.3 dB@ 2.7 GHz
 - Isolation: 25 dB @ 2.7 GHz
 - Return loss: 18 dB @ 2.7 GHz
 - Cross talk: 35dB @ 2.7 GHz
- High speed and Side band Mux support (controlled via I2C
- Back current protection on control pins
- Side band muxes can handle up to 5V (rail to rail signaling
- Single 3.3V supply
- Active Current consumption ~500 uA
- ESD 2kV HBM, 500V CDM
- 36-ball BGA, 0.4 mm pitch

USB Type C Authentication

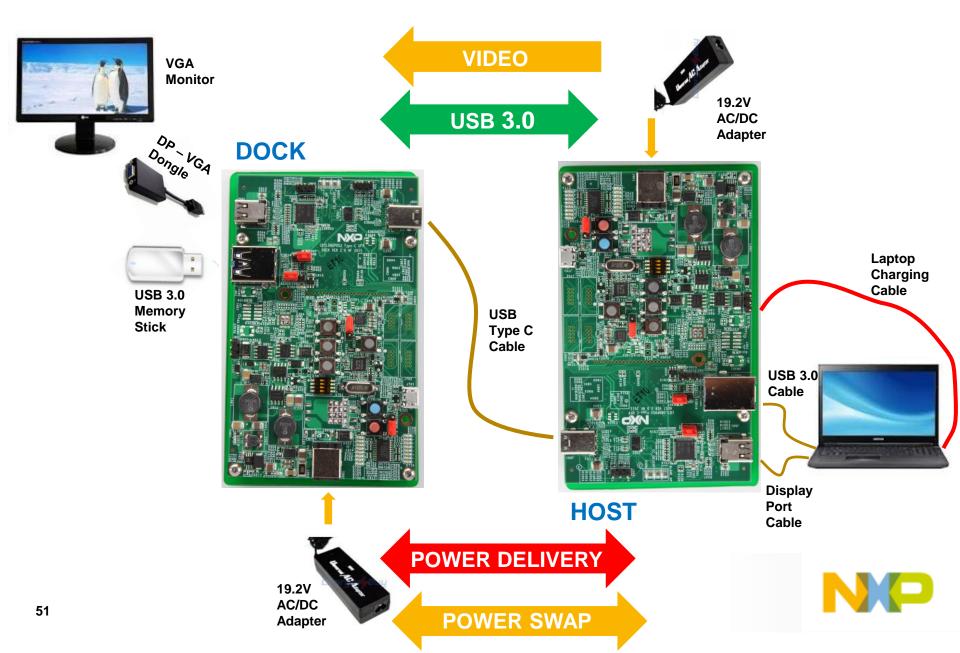
- Enable or disable capabilities based on trust level established between a host and device
 - For example, a system might authenticate a charger or cable before enabling high powered fast charging, preventing safety issues that can be caused by counterfeit products.
- NXP offers a range of secure authentication solutions to meet different security, form factor, and power consumption design goals.
 - CPU: from simple state machine to secure micros with range of supported clock rates
 - Memory: EEPROM and/or RAM in various sizes
 - Interfaces: I2C slave only, I2C/SPI master and slave
 - Crypto-Coprocessor: ECC only; PKI (RSA, ECC), 3-DES, AES
 - Packages: HVSON, HVQFN, CSP

A1006 Secure Authenticator

- A1006 is a small footprint, low power, fully secure state machine based authentication solution
- Asymmetric crypto protocol based on ECC B-163 curve
 - □ No security IC needed on the host side because of public key authentication
 - Private key securely stored, never leaving the secure element
 - Certificates digitally signed using ECDSA based on NIST B-233 curve
- Very fast authentication < 50ms</p>
- Industry leading advanced tamper resistant features integrated
- 4 Kbit EEPROM
 - □ 1 Kbit NXP certificate + 1 Kbit Optional User certificate + 1 Kbit User memory & ID + 1 Kbit system memory
- Industry smallest footprint:
 - □ WLCSP-4: 1 x 1 x 0.5 mm
 - □ HXSON-6: 2 x 2 x 0.5 mm
- Industry lowest power:
 - \Box 500 µA active / 50 µA idle
 - □ Deep sleep mode with power consumption of < 1 μ A at 1.8V
- Flexible interface:
 - □ 400 Kbps I2C Fast-mode Interface
 - One Wired Interface (OWI) 100 Kbps , bus powered, with no external components. Only One pin required to connect to Host.

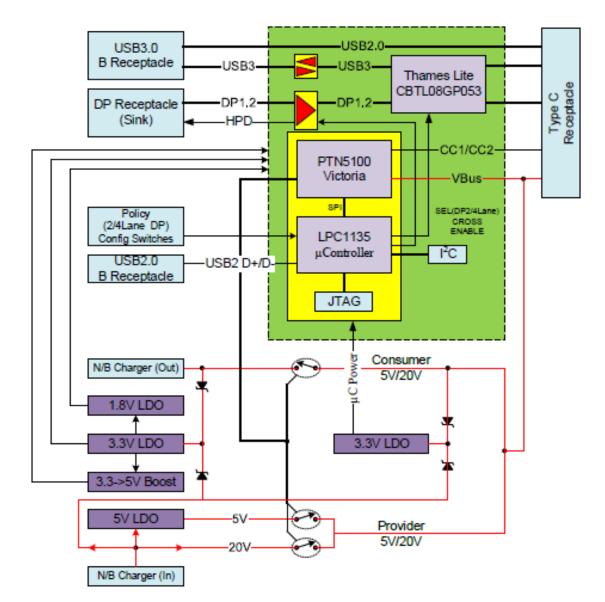
A1006 tamper resistant features

- 140nm CMOS technology providing enhanced protection against reverse engineering and probing attacks
- Security routing on all metal layers
- Shielding: Active and Passive Shielding above digital logic area, analog, EEPROM with independent, randomized content
- NXP-patented GlueLogic[™], the most advanced protection against reverse-engineering attacks in the market:
 - □ Function blocks are chopped up and randomly mixed
- Memory encryption and memory scrambling for unique placement of data for each IC
- Security sensors:
 - Low and high clock frequency sensor
 - Low and high temperature sensor
 - Low and high supply voltage sensor
- Secured state-machine
 - Protection against fault injection attacks
- Secured ECC core:
 - Protection against Timing Analysis
 - Protection against Single Power Analysis (SPA), Differential Power Analysis (DPA), Electromagnetic Analysis (EMA)
 - Protection against Differential fault Analysis (DFA)

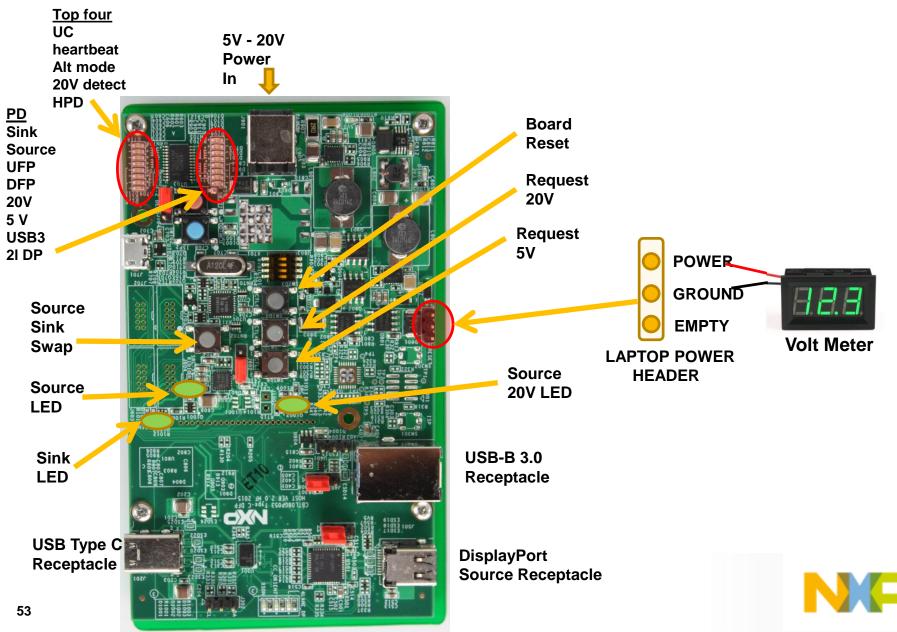

USB Type C protection

- NXP offers ESD protection and Common Mode Filters with integrated ESD protection for the new USB Type-C connector.
- Products

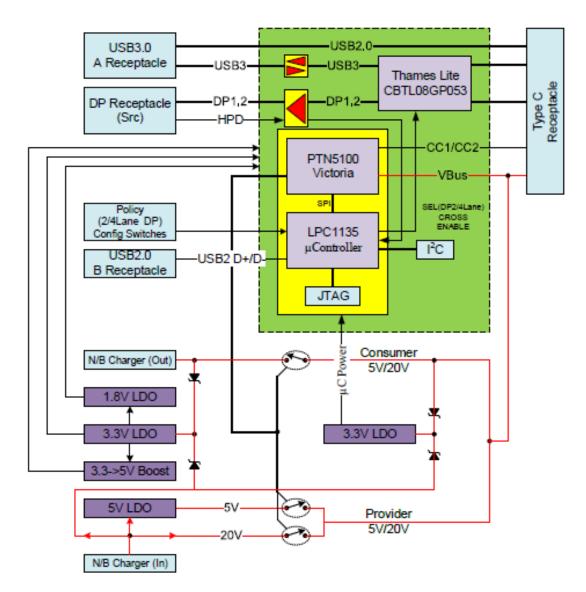
Type number	Description	Status	Quick access
DSN0603-2 ESD protection diode series	Standard and ultra low capacitance ESD devices in ultra small packages	Production	
IP3319CX6	Single-channel common-mode filter with integrated ESD protection network	Production	
	ESD protection for ultra high- speed interfaces	Production	凸 Download datasheet
	ESD protection for ultra high- speed interfaces	Production	凸 Download datasheet
	ESD protection for ultra high- speed interfaces	Production	凸 Download datasheet
PESD5V0V2BM	Very low capacitance bidirectional ESD protection diodes	Production	. Download datasheet . Order sample
PESD5V0V2BMB	Very low capacitance bidirectional ESD protection diodes	Production	. Download datasheet . Order sample
PESD5V0X1BCAL	Extremely low capacitance bidirectional ESD protection diode	Production	
PESD5V0X2UAM	Ultra low capacitance unidirectional double ESD protection diode	Production	
PUSB3AB6	ESD protection for ultra high- speed interfaces	Production	
PUSB3FR4	ESD protection for ultra high- speed interfaces	Production	 ⊕ Order sample ☺ Buy online
PUSB3FR6	ESD protection for ultra high- speed interfaces	Production	



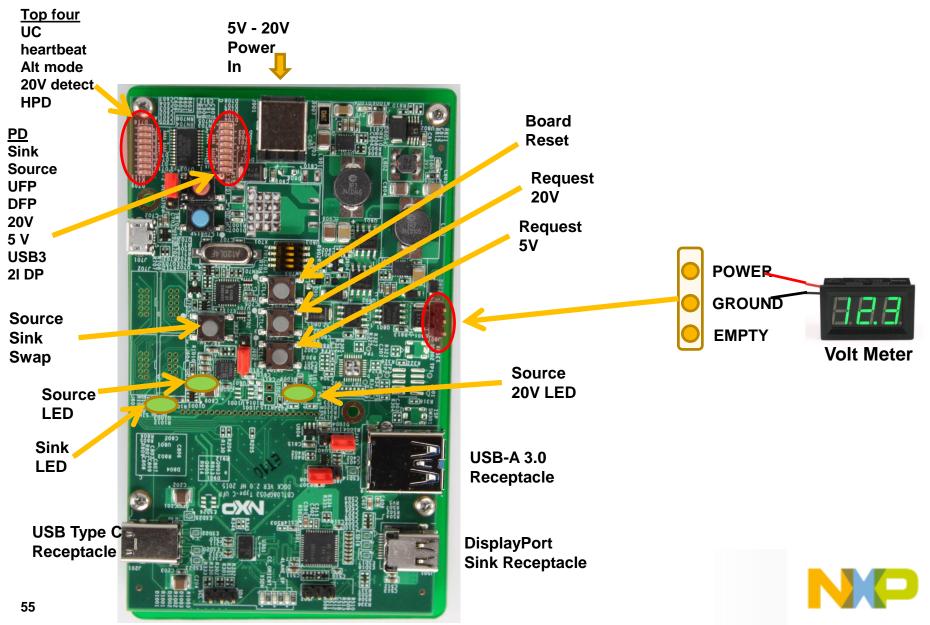
USB Type C demo kit - OM13580


Host Board Control and LED indication

Host Board Block Diagram



Host Board Control and LED indication


Dock Board Control and LED indication

Dock Board

Dock Board Control and LED indication

USB PD DP Alternate Mode Hardware Setup Procedure

1. Host Board-

- plug all the cables to the laptop USB 3.0 cable, DisplayPort cable, laptop 19.2V power cable or the digital voltmeter.
- power the board with the 19.2V AC/DC adapter.

2. Dock Board-

- plug the USB drive, DP-VGA dongle, VGA monitor to DP-VGA dongle, digital voltmeter.
- Power the board with the 19.2V AC/DC adapter.
- 3. Connect the host and the dock board with a type C cable.

USB PD DP Alternate Mode Hardware Setup Procedure

- 4. Once the power contract is established, check whether the host board is a power source (if source 5V LED is on) or power sink (if sink LED is on). If the host board is a power source then use the swap button to swap the host board to power sink role.
- 5. Push request 20 button to request 20V from the dock board.
- 6. Check the battery monitoring indicator on the laptop. It should indicate that the laptop is being charged.
- 7. From the laptop you should be able to access the flash drive on the dock board
- 8. From the laptop you should also be able to play any movie trailer on the flash drive by double click on the icon.

SECURE CONNECTIONS FOR A SMARTER WORLD