
Company External – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of

NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

Field Applications Engineer

Bryan Thomas

Yocto Project Tools

October 2018 | AMF-AUT-T3399

PUBLIC 11PUBLIC

• BitBake

• Layers & BSP Layers

• Kernel Development Workflow

• Autotools Recipes

• Finding Help

Agenda

PUBLIC 2

BitBake

PUBLIC 3

Yocto Project: BitBake

BitBake is a build engine that follows recipes in a specific format in

order to perform sets of tasks. BitBake is a core component of the

Yocto Project.

PUBLIC 4

Yocto Project: BitBake Operation

• bitbake must always be executed from within the <project> directory

• When bitbake runs
−Parses recipes and tasks

−Determines task queue dependencies

−Prepares and executes a run queue of tasks, which perform the steps needed to obtain the desired
result, e.g. image generation

• Any required earlier tasks will be run first (e.g. source will be installed
before compilation)

• To speed up subsequent builds, generated <pkg>.rpm's are saved to
the binary cache folders in : <project>/tmp/deploy/rpm

For more info:

• http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-
manual-execution

http://www.yoctoproject.org/docs/1.6/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual-execution

PUBLIC 5

Yocto Project: BitBake Syntax
$ bitbake -h

Usage: bitbake [options] [recipename/target ...]

Executes the specified task (default is 'build') for a given set of target recipes (.bb files).

It is assumed there is a conf/bblayers.conf available in cwd or in BBPATH which

will provide the layer, BBFILES and other configuration information.

Options:

--version show program's version number and exit

-h, --help show this help message and exit

-k, --continue Continue as much as possible after an error. While the

target that failed and anything depending on it cannot

be built, as much as possible will be built before

stopping.

-f, --force Force the specified targets/task to run (invalidating

any existing stamp file).

-c CMD, --cmd=CMD Specify the task to execute. The exact options

available depend on the metadata. Some examples might

be 'compile' or 'populate_sysroot' or 'listtasks' may

give a list of the tasks available.

-D, --debug Increase the debug level. You can specify this more

than once.

PUBLIC 6

Yocto Project: BitBake Common Tasks

• Listing Bitbake tasks for a recipe or image

• $bitbake <package> -c listtasks

• Useful tasks that you can run manually for most packages:

• Task sequence run for generic bitbake <package> bitbake <package> :

• fetch > unpack >patch > configure > compile > install > package >

package_write

build clean cleansstate compile

configure install listtasks patch

populate_sysroot rm_work

PUBLIC 7

Yocto Project: BitBaking an Image

Example

b35938@b35938-13:~/projects/fsl/yocto/build-imx6qsabreauto$ bitbake fsl-image-fb

Loading cache: 100%
|###
###
##| ETA: 00:00:00

Loaded 2005 entries from dependency cache.

Build Configuration: <removed for clarity>

NOTE: Preparing runqueue

NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

Currently 1 running tasks (3851 of 4000):

PUBLIC 8

Yocto Project : BitBake to Configure the Kernel

Examples

• Bitbake linux-imx –c menuconfig

PUBLIC 9

Yocto Project : BitBake to Compile
Examples

b35938@b35938-13:~/projects/fsl/yocto/build-imx6qsabreauto$ bitbake linux-imx -c compile

Loading cache: 100%
|##
##
####################################| ETA: 00:00:00

Loaded 2005 entries from dependency cache.

NOTE: Resolving any missing task queue dependencies

Build Configuration: <removed for clarity>

NOTE: Preparing runqueue

NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

Currently 1 running tasks (249 of 249):

0: linux-imx-3.10.17-r0 do_compile (pid 17655)

PUBLIC 10

Yocto Project : BitBake to Start Fresh
Examples

b35938@b35938-13:~/projects/fsl/yocto/build-imx6qsabreauto$ bitbake linux-imx -c cleansstate

Loading cache: 100%
|##
##
####################################| ETA: 00:00:00

Loaded 2005 entries from dependency cache.

NOTE: Resolving any missing task queue dependencies

Build Configuration: <removed for clarity>

NOTE: Preparing runqueue

NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

Currently 1 running tasks (249 of 249):

0: linux-imx-3.10.17-r0 do_cleansstate (pid 18465)

PUBLIC 11

Layers & BSP Layers

PUBLIC 12

Yocto Project: Layers

• Layers are a collection of metadata
like recipes, classes, and machine
configurations

• Layers allow you to partition your
development for better reuse

• A Layer that contains machine support
is referred to as a BSP Layer

• The SOURCE directory already
contains examples of both types of
Layers

• Layers are the best way to customize
the build system to meet project needs

PUBLIC 13

Yocto Project : Layers in NXP Yocto Release

These layers are present after you setup the NXP Yocto Release on

your host machine:

Layer Name Layer Function

meta-fsl-arm Provides support for NXP Reference Boards

meta-fsl-arm-extra Provides support for 3rd party development boards

meta-fsl-demos QT Graphics and other user interface examples

meta-fsl-bsp-release Provides updates to the meta-fsl-arm and meta-fsl-demos layers

PUBLIC 14

Yocto Project : Layer Management

• The BitBake layer management tool provides a view into the structure of recipes
across a multi-layer project

$ bitbake-layers <command> [arguments]

The following list describes the available commands:
• help: Displays general help or help on a specified command.
• show-layers: Shows the current configured layers.
• show-recipes: Lists available recipes and the layers that provide them.
• show-overlayed: Lists overlayed recipes
• show-appends: Lists .bbappend files and the recipe files to which they apply.
• show-cross-depends: Lists dependency relationships between recipes that cross

layer boundaries.

PUBLIC 15

Yocto Project: BitBake Layer Management

• Example of bitbake-layers show-layers

• Higher priority numbers take precedence over lower numbers

PUBLIC 16

Yocto Project: Layer Creation

• The Yocto Project provides a script that can be used to create a new layer
called yocto-layer

• Layers can also be created manually

• The script will walk you through setting up the new layer
− The layer priority

− Whether or not to create a sample recipe.

− Whether or not to create a sample append file.

Use the yocto-layer create sub-command to create a new general layer. In
its simplest form, you can create a layer as follows:

$ yocto-layer create mylayer

PUBLIC 17

Yocto Project: Layer Creation Example

• b35938@b35938-13:~/projects/fsl/yocto/sources$ yocto-layer create dwf-layer

• Please enter the layer priority you'd like to use for the layer: [default: 6]

• Would you like to have an example recipe created? (y/n) [default: n] y

• Please enter the name you'd like to use for your example recipe: [default: example]

• Would you like to have an example bbappend file created? (y/n) [default: n] y

• Please enter the name you'd like to use for your bbappend file: [default: example]

• Please enter the version number you'd like to use for your bbappend file (this should
match the recipe you're appending to): [default: 0.1]

• New layer created in meta-dwf-layer.

• Don't forget to add it to your BBLAYERS (for details see meta-dwf-layer\README).

PUBLIC 18

Yocto Project : Layer Layout After Creation

Here is the tree of the new layer that we have created:

b35938@b35938-13:~/projects/fsl/yocto/sources$ tree meta-dwf-layer/

meta-dwf-layer/

├── conf

│ └── layer.conf

├── COPYING.MIT

├── README

├── recipes-example

│ └── example

│ ├── example-0.1

│ │ ├── example.patch

│ │ └── helloworld.c

│ └── example_0.1.bb

└── recipes-example-bbappend

└── example-bbappend

├── example-0.1

│ └── example.patch

└── example_0.1.bbappend

PUBLIC 19

Yocto Project : Layer Configuration File

Here is the configuration of the new layer that we have created:
b35938@b35938-13:~/projects/fsl/yocto/sources$ cat meta-dwf-
layer/conf/layer.conf
We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "dwf-layer"
BBFILE_PATTERN_dwf-layer = "^${LAYERDIR}/"
BBFILE_PRIORITY_dwf-layer = "6"

PUBLIC 20

Yocto Project: Adding the Layer to bblayers.conf

Add the new layer to <build>/conf/bblayers.conf to let bitbake find the layer:

b35938@b35938-13:~/projects/fsl/yocto/build$ cat conf/bblayers.conf

LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE', True)) + '/../..')}"

BBFILES ?= ""

BBLAYERS = " \

${BSPDIR}/sources/poky/meta \

${BSPDIR}/sources/poky/meta-yocto \

\

${BSPDIR}/sources/meta-openembedded/meta-oe \

\

${BSPDIR}/sources/meta-fsl-arm \

${BSPDIR}/sources/meta-fsl-arm-extra \

${BSPDIR}/sources/meta-fsl-demos \

${BSPDIR}/sources/meta-dwf-layer \

“

PUBLIC 21

Yocto Project: Adding the Layer to bblayers.conf

Run bitbake-layers show-layers:

Higher numbers are higher priority

PUBLIC 22

Yocto Project: Change a Layer into a BSP Layer

• For a layer to be considered a BSP layer you have to add a machine
folder in the layer’s conf directory

• An example of the meta-fsl-arm directory is below:

• More files and directories are recommended in the Yocto
documentation to maintain consistency between layers

PUBLIC 23

Yocto Project: BSP Layer Directories

• A complete listing of the top directory of the meta-fsl-arm directory

• This directory contains a README file that explains how to use the

Layer

• A stub README is placed when using bitbake-layer create <layer>

PUBLIC 24

Yocto Project: Working with an Empty Layer

• Use this custom layer to create a custom BSP

• Examples of items that can be done in a layer

− Create a MACHINE for custom hardware

− Create an image specific to project requirements

− Add a Linux kernel append recipe for custom hardware support

− Add a u-boot append recipe for custom hardware support

− Add a custom application recipe and include them in the image

PUBLIC 25

Yocto Project: Adding a Machine
Use a machine from another layer that is similar to your board. Many designs are derivatives of the
reference designs

b35938@b35938-13:~/projects/fsl/yocto/sources/meta-dwf-layer/conf/machine$ tree

.

├── imx6q-custom-dwf.conf

└── include

├── fsl-default-providers.inc

├── fsl-default-settings.inc

├── fsl-default-versions.inc

├── imx6sabresd-common.inc

└── imx-base.inc

1 directory, 6 files

PUBLIC 26

Yocto Project : Adding a new Image

• Create a custom image for the custom board by adding a directory
called images in a recipes folder typically named after the layer

b35938@b35938-13:~/projects/fsl/yocto/sources/meta-dwf-
layer/recipes-dwf$ tree

.

└── images

└── custom-dwf-image-fb.bb

1 directory, 1 file

PUBLIC 27

Yocto Project : Image Recipe Example
This image recipe can be borrowed from another layer and modified to meet the project needs

• DESCRIPTION = “DwF Custom Image Frame Buffer Image"

• IMAGE_FEATURES += "splash"

• LICENSE = "MIT"

• inherit core-image

• inherit distro_features_check

• CONFLICT_DISTRO_FEATURES = "x11 wayland directfb"

• DISTRO_FEATURES += "pulseaudio "

• WEB = "web-webkit"

• # Add extra image features

• EXTRA_IMAGE_FEATURES += " \

• nfs-server \

• tools-debug \

• tools-profile \

• ssh-server-dropbear \

• "

• SOC_IMAGE_INSTALL = ""

• SOC_IMAGE_INSTALL_mx6 = "gpu-viv-bin-mx6q gpu-viv-g2d fsl-gpu-sdk"

• IMAGE_INSTALL += " \

• ${SOC_IMAGE_INSTALL} \

• cpufrequtils \

• nano \

• packagegroup-fsl-tools-testapps \

• packagegroup-fsl-tools-benchmark \

• "

• export IMAGE_BASENAME = "custom-dwf-image-fb"

PUBLIC 28

Yocto Project : Sourcing the custom MACHINE
Now that we have added our custom MACHINE and image recipe we can use them to create a new build directory for our custom platform:

b35938@b35938-13:~/projects/fsl/yocto$ MACHINE=imx6q-custom-dwf . fsl-setup-release.sh build-custom-dwf

Configuring for imx6q-custom-dwf

The Yocto Project has extensive documentation about OE including a

reference manual which can be found at:

http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:

http://www.openembedded.org/

You can now run 'bitbake <target>'

Common targets are:

core-image-minimal

meta-toolchain

meta-toolchain-sdk

adt-installer

meta-ide-support

Your build environemnt has been configured with:

MACHINE=imx6q-custom-dwf

SDKMACHINE=i686

DISTRO=poky

EULA=1

PUBLIC 29

Yocto Project : Building the Custom Image
We can now build the custom image with bitbake. Note that we need to add the moon-buggy recipe or a layer that contains the recipe before we can
successful build the new image:

b35938@b35938-13:~/projects/fsl/yocto/build-custom-dwf$ bitbake custom-dwf-image-fb

Parsing recipes: 100% |##| Time: 00:01:04

Parsing of 1608 .bb files complete (0 cached, 1608 parsed). 2007 targets, 159 skipped, 0 masked, 0 errors.

Build Configuration:

BB_VERSION = "1.20.0"

BUILD_SYS = "x86_64-linux"

NATIVELSBSTRING = "Ubuntu-14.04"

TARGET_SYS = "arm-poky-linux-gnueabi"

MACHINE = "imx6q-custom-dwf"

DISTRO = "poky"

DISTRO_VERSION = "1.5.3"

TUNE_FEATURES = "armv7a vfp neon callconvention-hard cortexa9"

TARGET_FPU = "vfp-neon"

meta

meta-dwf-layer

NOTE: Preparing runqueue

NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

PUBLIC 30

Kernel Development Workflow

PUBLIC 31

Yocto Project : Adding a Custom Kernel

• Add a custom Kernel to your layer by adding a bbappend recipe that
appends the 3.10.17 recipe in the NXP release layer

$ cd ../sources/meta-dwf-custom
$ mkdir –p recipes-kernel/linux/linux-imx

• This will make the folder for our recipe file and for our patches that we use
for our custom board

$ cd recipes-kernel/linux
$ touch linux-imx_3.10.17.bbappend
$ vim linux-imx_3.10.17.bbappend

PUBLIC 32

Yocto Project : Adding a Custom Kernel Recipe
File: linux-imx_3.10.17.bbappend

Linux Kernel bbappend example

Bryan Thomas 2014 - NXP

This points to where our extra files are like patches and kernel config files

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

add our custom patches for our kernel build

SRC_URI += "file://0001-patch-file.patch"

SRC_URI += "file://0002-patch-file.patch"

use our custom config for this kernel build

SRC_URI += "file://defconfig"

SRC_URI += "file://feature.conf"

PUBLIC 33

Yocto Project: Kernel Patching Workflow with GIT

• Multiple ways to work and create patches (GIT, quilt, manual diff)

• Can work inside the context of Yocto or generate tool chain to work in external directory

$ bitbake linux-imx –c patch

• This extracts the kernel sources to your work directory under your machine name

Example Path:

<build>/tmp/work/imx6-dwf-custom-poky-linux-gnueabi/linux-imx/3.10.17-r0/git/

• From here we can edit files and use GIT to generate patches using a iterative workflow

PUBLIC 34

Modify Source

git add

git commit

git format-patch

Copy Patch to
linux-imx
directory

Add patch to
bbappend file

Yocto Project: Kernel Patching Workflow with GIT

PUBLIC 35

Yocto Project: Adding the Patches to Recipe

File: linux-imx_3.10.17.bbappend

Linux Kernel bbappend example

Bryan Thomas 2014 - NXP

This points to where our extra files are like patches and kernel config files

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

add our custom patches for our kernel build

SRC_URI += "file://0001-added-extra-version-information-to-makefile.patch"

use our custom config for this kernel build

SRC_URI += "file://defconfig"

PUBLIC 36

Autotools Recipes

PUBLIC 37

Yocto Project: Adding an Autotools Recipe

• The GNU build system, also known as the Autotools, is a suite
of programming tools designed to assist in making source
code packages portable to many Unix-like systems.

• Many programs for Unix-like systems are configured and compiled with
Autotools

• These programs commonly have a read me file that contains the
following sequence as instructions to compile and install the program.

$./configure

$ make

$ make install

PUBLIC 38

Yocto Project: Adding an Autotools Recipe

• Yocto can handle recipes

that use the autotools

suite

• Inherit autotools in the

recipe

• For our example we will

add the game moon

buggy using an autotools

style recipe

PUBLIC 39

Yocto Project: Adding an Autotools Recipe

Add recipes-games folder to our meta-dwf-custom layer

b35938@b35938-13:~/projects/fsl/yocto/sources/meta-dwf-layer/recipes-
games/moon-buggy$ tree
.
├── moon-buggy
│ ├── 0001-removed-creating-highscore-on-install.patch
│ └── 0002-remove-c-from-am-file-to-stop-from-running-at-instal.patch
└── moon-buggy_1.0.bb

* We added another folder called moon-buggy for our patches needed to
complete compilation on ARM.

PUBLIC 40

Yocto Project: Autotools Recipe
b35938@b35938-13:~/projects/fsl/yocto/sources/meta-dwf-layer/recipes-games/moon-buggy$ cat moon-
buggy_1.0.bb

DESCRIPTION = "Moon Buggy command line game"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PV}:"

LICENSE = "GPLv2"

LIC_FILES_CHKSUM = "file://COPYING;md5=94d55d512a9ba36caa9b7df079bae19f "

PR = "r0"

SRC_URI = "http://m.seehuhn.de/programs/moon-buggy-${PV}.tar.gz"

SRC_URI[md5sum] = "4da97ea40eca686f6f8b164d8b927e38"

SRC_URI[sha256sum] = "f8296f3fabd93aa0f83c247fbad7759effc49eba6ab5fdd7992f603d2d78e51a"

SRC_URI += "file://0001-removed-creating-highscore-on-install.patch"

SRC_URI += "file://0002-remove-c-from-am-file-to-stop-from-running-at-instal.patch"

inherit autotools gettext

b35938@b35938-13:~/projects/fsl/yocto/sources/meta-dwf-layer/recipes-games/moon-buggy$

PUBLIC 41

Yocto Project: Adding our Recipe Output
Once we create our recipe for moon-buggy we need to include into our custom image

DESCRIPTION = “DwF Custom Image Frame Buffer Image"

IMAGE_FEATURES += "splash"

LICENSE = "MIT"

inherit core-image

inherit distro_features_check

CONFLICT_DISTRO_FEATURES = "x11 wayland directfb"

DISTRO_FEATURES += "pulseaudio "

WEB = "web-webkit"

Add extra image features

EXTRA_IMAGE_FEATURES += " \

nfs-server \

tools-debug \

tools-profile \

ssh-server-dropbear \

"

SOC_IMAGE_INSTALL = ""

SOC_IMAGE_INSTALL_mx6 = "gpu-viv-bin-mx6q gpu-viv-g2d fsl-gpu-sdk"

IMAGE_INSTALL += " \

${SOC_IMAGE_INSTALL} \

cpufrequtils \

nano \

moon-buggy \

packagegroup-fsl-tools-testapps \

packagegroup-fsl-tools-benchmark \

"

export IMAGE_BASENAME = "custom-DwF-image-fb"

PUBLIC 42

Finding Help

PUBLIC 43

Yocto Project: Finding Help

• community.NXP.com

• meta-NXP mailing list

• Yocto Project Documentation

• Presenters contact: Bryan Thomas - bryan.thomas@nxp.com

mailto:bryan.thomas@nxp.com

NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

www.nxp.com

http://www.nxp.com/

