
NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property 

of their respective owners. © 2017 NXP B.V.

PUBLIC

BOOST YOUR PRODUCTIVITY 

WITH CODEWARRIOR®

DEVELOPMENT TOOLS FOR 

ARM®V8 ARCHITECTURE

AMF-DES-T2676  |  AUGUST 2017

QORIQ SW & SERVICES

MARLAN WINTER



PUBLIC 1

AGENDA
• CodeWarrior Development Suite Overview

• Open source

• Configuration & validation Tools

− Board bring-up QCVS

− Flash programming

• Debug

− Bare metal debug 

− U-boot debug

− Linux app debug

− Linux Kernel & module debug

• Analyze

CodeWarrior for ARMv8

Configure Build Debug
Trace 
and 

Analysis



PUBLIC 2

Overview



PUBLIC 3

CodeWarrior Family

QorIQ Tools

CodeWarrior for ARMv8

Configure Build Debug
Trace 
and 

Analysis

CW for 
APP

CW for 
ARMv7

CW for 
PA

CW for 
StarCore



PUBLIC 4

CodeWarrior Development Studio  
A Complete Development Environment Under Eclipse
• Eclipse IDE

− Configuration Wizards

− Plug-In Architecture

− 3rd party community

• Build Tools
− C/C++ Compiler

• Configuration  & Initialization 
Tools
− SoC platform initialization and 

configuration

• Run Control 
− CW-TAP

• Debugger

− Multicore aware

− Cross-triggering

 Run/Stop of targets 
simultaneously

− Access to all on-chip resources

− OS / Linux awareness

• Software Analysis - Trace 
& Profile

− Leverages chip capabilities

 Profiling Unit

 In system trace buffering

− Trace / Code / Performance 
Viewer

− Offline trace visibility



PUBLIC 5

CodeWarrior Usage Scenarios

• CodeWarrior Development Suite targets NXP’s network devices.

• SoC and board bring-up

− Device and Linux configuration tools

− Device configuration validation and optimization tools

− Single core and multi-core bare-metal debugger

− Eclipse GUI and command-line interfaces

− SoC register details from the reference manual

− Bare-metal utilities: Flash Programmer, Connection Diagnostics

− Bundled with ARM EABI toolchain (Linaro) for bare-metal application development



PUBLIC 6

CodeWarrior Usage Scenarios

• Linux development

− GNU debugger compatible + extensions for Linux application debug

− SMP aware kernel debugging

− Linux kernel module development and debug

− Aligned with NXP SDK: Linaro GNU toolchain, integrated target debug agent

• Non-intrusive debug through trace

− Core and SoC trace sources: configuration, extraction, visibility

− Post-mortem debugging: offline trace

− Debug-print over STM

− Linux aware trace

• Performance Analysis

− Platform counter configuration and display

− Predefined measurement scenarios



PUBLIC 7

Open source



PUBLIC 8

Components of CW Tool Suite

• GDB: is used in debugger

• Debug Interface: Connection from the host to the target for debug

− Linux: UART or socket

− QorIQ-LS products bare-metal: CW-TAP

• Eclipse for C/C++: the IDE and framework to edit, build and debug projects.

• GNU ARM Eclipse plugins: integration of the GNU gcc for ARM into Eclipse, provides 
panels and build tool integration including a wizard to create new projects.

• GCC ARM Embedded: compiler, linker, build tools and gdb, needed to compile and debug 
source code.

• Cross Build Tools: some tools like ‘echo’ or ‘rm’ are not present by default on Windows, 
this package closes that gap.

• CodeWarrior integrates with Yocto.



PUBLIC 9

GDB – Gnu Debugger

• GDB is one of the most popular and used debuggers. 

• GDB is free software provided by Free Software Foundation
• http://www.gnu.org/software/gdb/

• GDB can be used to find what is going on `inside' another program while it executes – or 
what another program was doing at the moment it crashed

− Current execution point context

− Program’s source code

− Registers

− Stack frames

− Program memory

− Variables 

− Change program execution



PUBLIC 10

QCvs



PUBLIC 11

QCVS: Dissecting the Acronym

• Configuration of QorIQ processors is increasing in complexity

 QorIQ - All QorIQ SoCs products are supported

 Configuration - Tools for manually defining a configuration for key SoC HW and SW features

 Validation - Tools for verifying and/or optimizing a configuration

 Suite - All these tools under one app, in one framework (Eclipse + Processor Expert)

− One release; one distribution; one installation. 

− Version 4.9 is the latest QCVS release. 

− QCVS is available with CodeWarrior



PUBLIC 12

QorIQ Configuration and Validation Tools

Eclipse-based tools for configuring, validating and fine-tuning QorIQ processors 

during board bring-up

LS

Pre-boot 

Loader

Configuration

Pin Muxing

Configuration

SerDes Config

and Validation

DDR Configuration

and Validation

SerDes 
Validation



PUBLIC 13

QorIQ Configuration and Validation Suite

The configuration tools help you configure key HW and SW features in QorIQ designs

Pre-boot loader / RCW configuration
Configures RCW and PBI

DDR Configuration & validation tool
Configures the DDR controllers, Shmoo controller properties to find optimal values and 
determine margins

SerDes configuration & validation tool
Configures lane protocols and speed. Run BIST and built-in Jitter Scope to evaluate 
and optimize SerDes configuration

Pin muxing configuration tool
Configures available and used pins in SoC



PUBLIC 14

Why QorIQ Configuration Suite?

• Configuration of QorIQ processors is increasing in complexity

− Even more complexity is around the corner

− We support many configuration settings

• Reference manuals are huge and intimidating to new customers

• Configuration problems during board bring-up are HARD and COSTLY

• Learning command line tools requires more training, etc.

• Solution/Strategy to solve these problems:

− Extensible suite of tools with a common user interface

− Support NPI and new processor revisions, aligned with DN roadmap



PUBLIC 15

Pre-boot Loader
Configure RCW and PBI commands



PUBLIC 16

Pre-boot Loader (RCW) Configuration



PUBLIC 17

PBL Tool Key Features

• User friendly GUI for setting each RCW field and for entering PBI commands

• You can’t accidentally set field to a non-supported value

• Constraint checking

• Errata enforcement (no need to read to docs: RM and errata)

• Handles all packaging details (preamble, CRC, etc.)

• load PBL image from a working board and examine/tweak it.

• Numerous import and export formats supported (binary, SREC, XXD, and many 

more)

• No need to worry about endiannes



PUBLIC 18

DDR Configuration



PUBLIC 19

DDR Wizard simplifies configuration

• From memory data sheet:

− Maximum speed rating

− Capacity

− Can read from SPD (validation, 

i.e., licensed feature)



PUBLIC 20

View and edit DDR configuration



PUBLIC 21

Review DDR registers values



PUBLIC 22

QCVS: DDR Validation Tool

• Run validation scenarios to automatically determine best value for key controller 
properties, given a specific DIMM or the board’s discrete memory

 write leveling start

 clock adjust

 read and write ODT

 driver strength

• Run margins scenarios to determine confidence level

 Given the ideal configuration, how much of a “working range” (margin) does each byte lane have? 

• Wide margins mean you can be confident DDR will work well under varying conditions—temperature and 
voltage.

• Thin margins means low confidence. Board design may need fine-tuning

• Load setting from a working board then run validation and determine how much margin is 
available



PUBLIC 23

DDR Validation Tool

Shmoos

properties to 

determine and 

create ideal 

configuration



PUBLIC 24

SerDes Configuration and 

Validation



PUBLIC 25

SerDes Configuration and Validation

• Heavily muxed SerDes lanes make choosing protocols and speeds painful

− PBL tool lets you graphically make these selections, but decision-making process is still very 
complex and difficult

− Sophisticated new SerDes configuration UI will make this much, much easier

− Load the existing SerDes setting from a board and then run validation test on it.

• With 10G and up, signal integrity becomes a serious concern. NXP SerDes (Lynx) have 
BIST and Jitter Scope features. 

− New SerDes Validation tool will give users a sophisticated GUI front end to the validation features 
built into the SerDes modules

− Graphically see how clean the signal eye is

− Manually fine tune electrical properties to get a cleaner eye

− Many test patterns supported



PUBLIC 26

SerDes Configuration and Validation (1H 2015)

SerDes Validation



PUBLIC 27

Bare-metal debug & flash 

programing



PUBLIC 28

Bare-Metal Debug

• Target interface to real hardware / 

simulator

• Lightweight debugger engine accessible 

from both GUI and command line

• Compatible with the GNU debugger front-

end

• Standard set of memory/register access 

commands + monitor extensions

• Simultaneous connectivity with multiple 

clients

• Single- and Multicore support

L
o
w

 L
e
v
e

l 
a

c
c
e
s
s

D
e

b
u

g
 C

o
m

m
a

n
d

 

S
e

rv
e

r

OS 

Awareness

Flash 

programmer 

Target Access 

Proxy

(gdb) break 

main.c:10

(gdb) continue

Continuing.

(gdb) monitor 

flash AM29F002B

(gdb) erase 

done



PUBLIC 29

Flashing u-boot image to the Target (1)

There are possible 3 ways to flash something in flash

1. Flash Programmer GUI

2. GDB CLI

3. GDB Eclipse

To use Flash Programmer GUI:

A. connect to target 

B. Click Flash Programmer icon



PUBLIC 30

Flashing U-Boot Image to the Target (2)

Drop-down list with all 

supported flashes

Hover-information about 

current flash

Browse for U-Boot image 

from 

/home/class/SDK/LS2085A-

SDK-20160304-

yocto/build_ls2085ardb_relea

se\tmp\deploy\images\ls2085

ardb\u-boot-nor.bin

Check Erase and Unprotect

Add action 

Execute it

Results in FP log



PUBLIC 31

Using Flash from Command Line

1. Edit CW_ARMv8/ARMv8/gdb_extensions/flash/cwflash.py with your board and 
connection settings

2. Start GDB console from CW_ARMv8/ARMv8/gdb/bin/aarch64-fsl-gdb.bat

• cd ../../gdb_extensions

• source flash/cwflash.py

3. Issue following command:

• fl_write --erase 0x100000 {u-boot_image_path}

• Wait a few seconds for the confirmation message

• You are ready to debug U-Boot



PUBLIC 32

Uboot debug



PUBLIC 33

CodeWarrior: U-Boot Debug



PUBLIC 34

U-Boot debug - features

• U-Boot bring-up and debugging

− Import U-Boot ELF with symbol information

− Debug from first U-Boot instruction (in flash)

− Debug after U-Boot relocation in RAM / relocate symbols

− Debug to console prompt

− Debug to kernel hand-off

• Registers View: GPR + SoC registers

• Debugging features: 

− Run control run/suspend/step

− Breakpoints, in any ARMv8 EL mode

− Disassembly, Memory view, Variable View, Expressions



PUBLIC 35

U-Boot Debug – Debug Overview

• U-Boot Awareness 

− A single U-Boot debug session while the user is not aware about any stages or 
relocation offsets. 

− The debugger automatically detects each U-Boot stage and performs the corresponding 
action. 

− The user can visualize meaningful U-Boot information about: U-Boot version, build time 
or memory information

− Target image vs. ELF image version check

• Demonstrate a full U-Boot debug session

− Debug from the first instruction after reset, to U-Boot entry point, running from Flash, after 
relocation to DDRAM and until U-Boot prompt is available

− All is done in a single debug session with no other changes



PUBLIC 36

U-Boot Debug – All stages

• U-Boot 

Awareness allows 

setting SW 

breakpoints to 

DDRAM before 

DDRAM 

initialization and 

before U-Boot 

relocation to 

DDRAM



PUBLIC 37

Linux kernel debug



PUBLIC 38

Linux Kernel Awareness

• Linux Kernel Awareness features kernel 

threads information

− Kernel modules list

− Kernel threads list

− MMU awareness

− Kernel module debug, module insert/remove 

detection

• Available from Eclipse GUI and command 

line in debugger console

(gdb) break 

start_kernel

(gdb) continue

Continuing.

Eclipse 

CW Linux KA 

scripts

CW TAP

Hardware 

Proxy

Host PC (local/remote)

Simulator Proxy
FSL Target

Simulated Model



PUBLIC 39

Linux kernel debug - features

• Linux kernel awareness

• Debug from Linux kernel entry point

• MMU enablement detection

• SMP debugging

• OS resources

• Registers View: GPR + SoC registers

• Debugging features: 

− Run control run/suspend/step

− Breakpoints, in any ARMv8 EL mode

− Disassembly, Memory view, Variable View, Expressions



PUBLIC 40

Linux Kernel Debug – MMU Awareness Capabilities

• CodeWarrior automatically

− Detects the point where MMU initialization is 
done

− Computes and applies the relocation offset

• The user is not aware of two debug 
configuration settings: before or after 
MMU initialization. 

− No difference between debugging before 
and after MMU initialization 

− No special action is required when moving 
before and after MMU initialization 

− No need for the user to know the current 
MMU initialization state and to manually 
apply the relocation offset 



PUBLIC 41

Linux app debug



PUBLIC 42

Linux Application Debug



PUBLIC 43

CodeWarrior– Debugging ARM Target



PUBLIC 44

Two ways to run GDB

Target (self-hosted)

• GDB runs on the target (DUT)

− E.g. Target OS: Linux

• Debugs an application running on the 

same system

• Interface with the target system using 

other applications

− telnet into the target system to run GDB 

from the Linux command prompt

Native (Host)

• GDB runs on the development host

− Host OS and Target OS are not 

necessarily the same

• Remotely debugs an application 

running on the target

− Socket connection or UART connection 

over the OS’s drivers and interface 

carries GDB commands and responses

− Host GDB communicates with target 

GDB server



PUBLIC 45

GDB Self-Hosted Target Debugging ARM Target

Embedded Target

GDB

Host

Telnet, 

Terminal, etc

Host Target GDB

telnet 192.168.1.101
Target $ gdb myProgram

/home> gdb

Remote terminal connection



PUBLIC 46

GDB Host Remote Debugging ARM Target

Embedded Target

gdbserver

Host

GDB 

(+ ddd, Eclipse) GDB remote protocol
- Requests

- Notifications

- Data Exchange

Host cross 

GDB
Target GDB

(gdb)target remote 192.168.0.1:1234
Target $ gdbserver :1234 myProgram



PUBLIC 47

Linux application debug – features

• gdbserver Debug agent

− User-space application

• Debug scenarios supported

− Download, start & debug application from main

− Attach to a running process

• Features

− Read/write memory, registers, variables

− Threads creation/death detection

− Shared libraries awareness

− Configurable signal policies

− I/O redirection

• OS Resources 

• CodeWarrior – GDB server interaction

− Ethernet connection

− Serial connection\



PUBLIC 48

Linux application debug – Prerequisites

• QorIQ LS board

• Linux running on the target

• Network connectivity inside Linux

• GDB server debug agent on the target

• Ways of putting GDB server on the target

− GDB server is included by default in the SDK image – no change required

− Compile GDB Agent separately

 bitbake –c cleansstate gdb

 bitbake gdb

 Use SCP to put GDBAgent on the target (we’ll find the ELF in <YoctoInstallationPath>/fsl-qoriq-

sdk/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/gdb/7.7.1+fsl-

r0/build/gdb/gdbserver/gdbserver)



PUBLIC 49

Trace and profile



PUBLIC 50

Linux Trace

• Static probe points strategically located inside the kernel code 

• Register/unregister with tracepoints via callback mechanism 

• Can be used to profile, debug and understand kernel behavior 

• Trace synchronization

− Time correction

− Multi-core

− Dependency analysis, delay analyzer

− Dependencies among processes



PUBLIC 51

Linux Probe-less Trace

• Based on a software probe

− Linux cross-compiled application

− CW and SDK component

• Advantages

− Speed

 contains only what is needed

− Speed

 all services are hosted on target machine

− Nonintrusive

 no need to instrument the target application

− Simple API

 can be effortlessly integrated into any testing framework

− Data-driven

 the configurator and probe can be easily tuned up using xml files



PUBLIC 52

Hardware Probe using JTAG 

(E.g. CodeWarrior USB TAP)

Ethernet cable + linux.armv8.satrace

Linux standalone application 

included in CodeWarrior and 

QorIQ SDK

QorIQ LS board

Linux Probe-less Trace – Hardware setup



PUBLIC 53

Debug Print – Fundamentals

• Debug Print consists in:

− Server side: running on target Linux OS for collecting Kernel Ring Buffer logs and 
application messages to standard output;

− Client side: running under CW for getting data out of the server, display and various 
configurations

Client for ls.target.server

TCP/IP over Eth

No Debug Probe

Linux OS running on 

QorIQ LS board

ls.target.server – reads logs 

and sends log data over TCP/IP

libls.linux.debugprint.lib.so –

redirect user space application 

messages to ls.target.server

Server side

CW ARMv8 running 

on Host PC

Debug Print Viewer



PUBLIC 54

Debug Print Considerations

• Debug Print Client can show up messages from Kernel, Modules and User 

Applications in a easy straightforward fashion allowing filtering based on 

source/timestamps/keywords

• Attaching like use cases to a running application is not supported since the Debug 

Print redirect library must be loaded before application is getting started



PUBLIC 55

CW-ARM: Performance Analysis / Scenarios Tool

Optimized workflow for efficiently narrowing down performance issues anywhere on the system

Customer Benefits

• System Optimization for 

Cores and SoC

• Complexity Abstraction

• Delivers FSL expertise to 

users .

• Ease of Use

• Probe-less, field based 

usage.

• Streamlined to solve 

several performance 

issues

Key Features

• Stand alone or bundled 

with CW

• Performance Analysis

including visualization

• Connection auto 

discovery

• “Canned” measurement 

scenarios

• 100+ scenarios covering 

Core and SoC blocks

• User defined 

measurement scenarios

• Compare pairs of runs

• Graphically visualize all 

measurements

• “Live” view of events and 

metrics

• Supports “bare metal” or 

Linux applications

• Python scripting support

Devices supported

• P2040, P3041, P5020x P5040, 

P4080 (Revs 1,2)

• T1040,T2080 

• T4240 (Rev1, 2)

• B4860  (Rev 2, 2.1)

• LS1020A, LS1021A,

LS1022A

• LS1043A

• LS2080/40A

• LS2085/45A



PUBLIC 56

Summary



PUBLIC 57

Summary

System 

Build

Development

Debug

Optimization

CodeWarrior

IDEs

Eclipse

GCC

GDB

CW QCVSYocto

CW Scenarios
Perf

bitbake

CodeWarrior Debug

CW HW Trace

CW Profiling

SDK



NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.


