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AGENDA
• CodeWarrior Development Suite Overview

• Open source

• Configuration & validation Tools

− Board bring-up QCVS

− Flash programming

• Debug

− Bare metal debug 

− U-boot debug

− Linux app debug

− Linux Kernel & module debug

• Analyze

CodeWarrior for ARMv8

Configure Build Debug
Trace 
and 

Analysis
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Overview
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CodeWarrior Family

QorIQ Tools

CodeWarrior for ARMv8

Configure Build Debug
Trace 
and 

Analysis

CW for 
APP

CW for 
ARMv7

CW for 
PA

CW for 
StarCore
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CodeWarrior Development Studio  
A Complete Development Environment Under Eclipse
• Eclipse IDE

− Configuration Wizards

− Plug-In Architecture

− 3rd party community

• Build Tools
− C/C++ Compiler

• Configuration  & Initialization 
Tools
− SoC platform initialization and 

configuration

• Run Control 
− CW-TAP

• Debugger

− Multicore aware

− Cross-triggering

 Run/Stop of targets 
simultaneously

− Access to all on-chip resources

− OS / Linux awareness

• Software Analysis - Trace 
& Profile

− Leverages chip capabilities

 Profiling Unit

 In system trace buffering

− Trace / Code / Performance 
Viewer

− Offline trace visibility
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CodeWarrior Usage Scenarios

• CodeWarrior Development Suite targets NXP’s network devices.

• SoC and board bring-up

− Device and Linux configuration tools

− Device configuration validation and optimization tools

− Single core and multi-core bare-metal debugger

− Eclipse GUI and command-line interfaces

− SoC register details from the reference manual

− Bare-metal utilities: Flash Programmer, Connection Diagnostics

− Bundled with ARM EABI toolchain (Linaro) for bare-metal application development
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CodeWarrior Usage Scenarios

• Linux development

− GNU debugger compatible + extensions for Linux application debug

− SMP aware kernel debugging

− Linux kernel module development and debug

− Aligned with NXP SDK: Linaro GNU toolchain, integrated target debug agent

• Non-intrusive debug through trace

− Core and SoC trace sources: configuration, extraction, visibility

− Post-mortem debugging: offline trace

− Debug-print over STM

− Linux aware trace

• Performance Analysis

− Platform counter configuration and display

− Predefined measurement scenarios
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Open source
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Components of CW Tool Suite

• GDB: is used in debugger

• Debug Interface: Connection from the host to the target for debug

− Linux: UART or socket

− QorIQ-LS products bare-metal: CW-TAP

• Eclipse for C/C++: the IDE and framework to edit, build and debug projects.

• GNU ARM Eclipse plugins: integration of the GNU gcc for ARM into Eclipse, provides 
panels and build tool integration including a wizard to create new projects.

• GCC ARM Embedded: compiler, linker, build tools and gdb, needed to compile and debug 
source code.

• Cross Build Tools: some tools like ‘echo’ or ‘rm’ are not present by default on Windows, 
this package closes that gap.

• CodeWarrior integrates with Yocto.
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GDB – Gnu Debugger

• GDB is one of the most popular and used debuggers. 

• GDB is free software provided by Free Software Foundation
• http://www.gnu.org/software/gdb/

• GDB can be used to find what is going on `inside' another program while it executes – or 
what another program was doing at the moment it crashed

− Current execution point context

− Program’s source code

− Registers

− Stack frames

− Program memory

− Variables 

− Change program execution
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QCvs
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QCVS: Dissecting the Acronym

• Configuration of QorIQ processors is increasing in complexity

 QorIQ - All QorIQ SoCs products are supported

 Configuration - Tools for manually defining a configuration for key SoC HW and SW features

 Validation - Tools for verifying and/or optimizing a configuration

 Suite - All these tools under one app, in one framework (Eclipse + Processor Expert)

− One release; one distribution; one installation. 

− Version 4.9 is the latest QCVS release. 

− QCVS is available with CodeWarrior
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QorIQ Configuration and Validation Tools

Eclipse-based tools for configuring, validating and fine-tuning QorIQ processors 

during board bring-up

LS

Pre-boot 

Loader

Configuration

Pin Muxing

Configuration

SerDes Config

and Validation

DDR Configuration

and Validation

SerDes 
Validation
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QorIQ Configuration and Validation Suite

The configuration tools help you configure key HW and SW features in QorIQ designs

Pre-boot loader / RCW configuration
Configures RCW and PBI

DDR Configuration & validation tool
Configures the DDR controllers, Shmoo controller properties to find optimal values and 
determine margins

SerDes configuration & validation tool
Configures lane protocols and speed. Run BIST and built-in Jitter Scope to evaluate 
and optimize SerDes configuration

Pin muxing configuration tool
Configures available and used pins in SoC
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Why QorIQ Configuration Suite?

• Configuration of QorIQ processors is increasing in complexity

− Even more complexity is around the corner

− We support many configuration settings

• Reference manuals are huge and intimidating to new customers

• Configuration problems during board bring-up are HARD and COSTLY

• Learning command line tools requires more training, etc.

• Solution/Strategy to solve these problems:

− Extensible suite of tools with a common user interface

− Support NPI and new processor revisions, aligned with DN roadmap
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Pre-boot Loader
Configure RCW and PBI commands
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Pre-boot Loader (RCW) Configuration
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PBL Tool Key Features

• User friendly GUI for setting each RCW field and for entering PBI commands

• You can’t accidentally set field to a non-supported value

• Constraint checking

• Errata enforcement (no need to read to docs: RM and errata)

• Handles all packaging details (preamble, CRC, etc.)

• load PBL image from a working board and examine/tweak it.

• Numerous import and export formats supported (binary, SREC, XXD, and many 

more)

• No need to worry about endiannes
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DDR Configuration



PUBLIC 19

DDR Wizard simplifies configuration

• From memory data sheet:

− Maximum speed rating

− Capacity

− Can read from SPD (validation, 

i.e., licensed feature)
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View and edit DDR configuration
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Review DDR registers values
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QCVS: DDR Validation Tool

• Run validation scenarios to automatically determine best value for key controller 
properties, given a specific DIMM or the board’s discrete memory

 write leveling start

 clock adjust

 read and write ODT

 driver strength

• Run margins scenarios to determine confidence level

 Given the ideal configuration, how much of a “working range” (margin) does each byte lane have? 

• Wide margins mean you can be confident DDR will work well under varying conditions—temperature and 
voltage.

• Thin margins means low confidence. Board design may need fine-tuning

• Load setting from a working board then run validation and determine how much margin is 
available
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DDR Validation Tool

Shmoos

properties to 

determine and 

create ideal 

configuration
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SerDes Configuration and 

Validation
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SerDes Configuration and Validation

• Heavily muxed SerDes lanes make choosing protocols and speeds painful

− PBL tool lets you graphically make these selections, but decision-making process is still very 
complex and difficult

− Sophisticated new SerDes configuration UI will make this much, much easier

− Load the existing SerDes setting from a board and then run validation test on it.

• With 10G and up, signal integrity becomes a serious concern. NXP SerDes (Lynx) have 
BIST and Jitter Scope features. 

− New SerDes Validation tool will give users a sophisticated GUI front end to the validation features 
built into the SerDes modules

− Graphically see how clean the signal eye is

− Manually fine tune electrical properties to get a cleaner eye

− Many test patterns supported
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SerDes Configuration and Validation (1H 2015)

SerDes Validation
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Bare-metal debug & flash 

programing
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Bare-Metal Debug

• Target interface to real hardware / 

simulator

• Lightweight debugger engine accessible 

from both GUI and command line

• Compatible with the GNU debugger front-

end

• Standard set of memory/register access 

commands + monitor extensions

• Simultaneous connectivity with multiple 

clients

• Single- and Multicore support
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Awareness

Flash 

programmer 

Target Access 

Proxy

(gdb) break 

main.c:10

(gdb) continue

Continuing.

(gdb) monitor 

flash AM29F002B

(gdb) erase 

done
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Flashing u-boot image to the Target (1)

There are possible 3 ways to flash something in flash

1. Flash Programmer GUI

2. GDB CLI

3. GDB Eclipse

To use Flash Programmer GUI:

A. connect to target 

B. Click Flash Programmer icon
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Flashing U-Boot Image to the Target (2)

Drop-down list with all 

supported flashes

Hover-information about 

current flash

Browse for U-Boot image 

from 

/home/class/SDK/LS2085A-

SDK-20160304-

yocto/build_ls2085ardb_relea

se\tmp\deploy\images\ls2085

ardb\u-boot-nor.bin

Check Erase and Unprotect

Add action 

Execute it

Results in FP log
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Using Flash from Command Line

1. Edit CW_ARMv8/ARMv8/gdb_extensions/flash/cwflash.py with your board and 
connection settings

2. Start GDB console from CW_ARMv8/ARMv8/gdb/bin/aarch64-fsl-gdb.bat

• cd ../../gdb_extensions

• source flash/cwflash.py

3. Issue following command:

• fl_write --erase 0x100000 {u-boot_image_path}

• Wait a few seconds for the confirmation message

• You are ready to debug U-Boot
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Uboot debug



PUBLIC 33

CodeWarrior: U-Boot Debug
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U-Boot debug - features

• U-Boot bring-up and debugging

− Import U-Boot ELF with symbol information

− Debug from first U-Boot instruction (in flash)

− Debug after U-Boot relocation in RAM / relocate symbols

− Debug to console prompt

− Debug to kernel hand-off

• Registers View: GPR + SoC registers

• Debugging features: 

− Run control run/suspend/step

− Breakpoints, in any ARMv8 EL mode

− Disassembly, Memory view, Variable View, Expressions
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U-Boot Debug – Debug Overview

• U-Boot Awareness 

− A single U-Boot debug session while the user is not aware about any stages or 
relocation offsets. 

− The debugger automatically detects each U-Boot stage and performs the corresponding 
action. 

− The user can visualize meaningful U-Boot information about: U-Boot version, build time 
or memory information

− Target image vs. ELF image version check

• Demonstrate a full U-Boot debug session

− Debug from the first instruction after reset, to U-Boot entry point, running from Flash, after 
relocation to DDRAM and until U-Boot prompt is available

− All is done in a single debug session with no other changes
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U-Boot Debug – All stages

• U-Boot 

Awareness allows 

setting SW 

breakpoints to 

DDRAM before 

DDRAM 

initialization and 

before U-Boot 

relocation to 

DDRAM
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Linux kernel debug
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Linux Kernel Awareness

• Linux Kernel Awareness features kernel 

threads information

− Kernel modules list

− Kernel threads list

− MMU awareness

− Kernel module debug, module insert/remove 

detection

• Available from Eclipse GUI and command 

line in debugger console

(gdb) break 

start_kernel

(gdb) continue

Continuing.

Eclipse 

CW Linux KA 

scripts

CW TAP

Hardware 

Proxy

Host PC (local/remote)

Simulator Proxy
FSL Target

Simulated Model
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Linux kernel debug - features

• Linux kernel awareness

• Debug from Linux kernel entry point

• MMU enablement detection

• SMP debugging

• OS resources

• Registers View: GPR + SoC registers

• Debugging features: 

− Run control run/suspend/step

− Breakpoints, in any ARMv8 EL mode

− Disassembly, Memory view, Variable View, Expressions
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Linux Kernel Debug – MMU Awareness Capabilities

• CodeWarrior automatically

− Detects the point where MMU initialization is 
done

− Computes and applies the relocation offset

• The user is not aware of two debug 
configuration settings: before or after 
MMU initialization. 

− No difference between debugging before 
and after MMU initialization 

− No special action is required when moving 
before and after MMU initialization 

− No need for the user to know the current 
MMU initialization state and to manually 
apply the relocation offset 
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Linux app debug
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Linux Application Debug
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CodeWarrior– Debugging ARM Target
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Two ways to run GDB

Target (self-hosted)

• GDB runs on the target (DUT)

− E.g. Target OS: Linux

• Debugs an application running on the 

same system

• Interface with the target system using 

other applications

− telnet into the target system to run GDB 

from the Linux command prompt

Native (Host)

• GDB runs on the development host

− Host OS and Target OS are not 

necessarily the same

• Remotely debugs an application 

running on the target

− Socket connection or UART connection 

over the OS’s drivers and interface 

carries GDB commands and responses

− Host GDB communicates with target 

GDB server
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GDB Self-Hosted Target Debugging ARM Target

Embedded Target

GDB

Host

Telnet, 

Terminal, etc

Host Target GDB

telnet 192.168.1.101
Target $ gdb myProgram

/home> gdb

Remote terminal connection
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GDB Host Remote Debugging ARM Target

Embedded Target

gdbserver

Host

GDB 

(+ ddd, Eclipse) GDB remote protocol
- Requests

- Notifications

- Data Exchange

Host cross 

GDB
Target GDB

(gdb)target remote 192.168.0.1:1234
Target $ gdbserver :1234 myProgram
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Linux application debug – features

• gdbserver Debug agent

− User-space application

• Debug scenarios supported

− Download, start & debug application from main

− Attach to a running process

• Features

− Read/write memory, registers, variables

− Threads creation/death detection

− Shared libraries awareness

− Configurable signal policies

− I/O redirection

• OS Resources 

• CodeWarrior – GDB server interaction

− Ethernet connection

− Serial connection\
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Linux application debug – Prerequisites

• QorIQ LS board

• Linux running on the target

• Network connectivity inside Linux

• GDB server debug agent on the target

• Ways of putting GDB server on the target

− GDB server is included by default in the SDK image – no change required

− Compile GDB Agent separately

 bitbake –c cleansstate gdb

 bitbake gdb

 Use SCP to put GDBAgent on the target (we’ll find the ELF in <YoctoInstallationPath>/fsl-qoriq-

sdk/build_ls2085ardb_release/tmp/work/aarch64-fsl-linux/gdb/7.7.1+fsl-

r0/build/gdb/gdbserver/gdbserver)
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Trace and profile
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Linux Trace

• Static probe points strategically located inside the kernel code 

• Register/unregister with tracepoints via callback mechanism 

• Can be used to profile, debug and understand kernel behavior 

• Trace synchronization

− Time correction

− Multi-core

− Dependency analysis, delay analyzer

− Dependencies among processes
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Linux Probe-less Trace

• Based on a software probe

− Linux cross-compiled application

− CW and SDK component

• Advantages

− Speed

 contains only what is needed

− Speed

 all services are hosted on target machine

− Nonintrusive

 no need to instrument the target application

− Simple API

 can be effortlessly integrated into any testing framework

− Data-driven

 the configurator and probe can be easily tuned up using xml files
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Hardware Probe using JTAG 

(E.g. CodeWarrior USB TAP)

Ethernet cable + linux.armv8.satrace

Linux standalone application 

included in CodeWarrior and 

QorIQ SDK

QorIQ LS board

Linux Probe-less Trace – Hardware setup
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Debug Print – Fundamentals

• Debug Print consists in:

− Server side: running on target Linux OS for collecting Kernel Ring Buffer logs and 
application messages to standard output;

− Client side: running under CW for getting data out of the server, display and various 
configurations

Client for ls.target.server

TCP/IP over Eth

No Debug Probe

Linux OS running on 

QorIQ LS board

ls.target.server – reads logs 

and sends log data over TCP/IP

libls.linux.debugprint.lib.so –

redirect user space application 

messages to ls.target.server

Server side

CW ARMv8 running 

on Host PC

Debug Print Viewer
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Debug Print Considerations

• Debug Print Client can show up messages from Kernel, Modules and User 

Applications in a easy straightforward fashion allowing filtering based on 

source/timestamps/keywords

• Attaching like use cases to a running application is not supported since the Debug 

Print redirect library must be loaded before application is getting started
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CW-ARM: Performance Analysis / Scenarios Tool

Optimized workflow for efficiently narrowing down performance issues anywhere on the system

Customer Benefits

• System Optimization for 

Cores and SoC

• Complexity Abstraction

• Delivers FSL expertise to 

users .

• Ease of Use

• Probe-less, field based 

usage.

• Streamlined to solve 

several performance 

issues

Key Features

• Stand alone or bundled 

with CW

• Performance Analysis

including visualization

• Connection auto 

discovery

• “Canned” measurement 

scenarios

• 100+ scenarios covering 

Core and SoC blocks

• User defined 

measurement scenarios

• Compare pairs of runs

• Graphically visualize all 

measurements

• “Live” view of events and 

metrics

• Supports “bare metal” or 

Linux applications

• Python scripting support

Devices supported

• P2040, P3041, P5020x P5040, 

P4080 (Revs 1,2)

• T1040,T2080 

• T4240 (Rev1, 2)

• B4860  (Rev 2, 2.1)

• LS1020A, LS1021A,

LS1022A

• LS1043A

• LS2080/40A

• LS2085/45A
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Summary
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Summary

System 

Build

Development

Debug

Optimization

CodeWarrior

IDEs

Eclipse

GCC

GDB

CW QCVSYocto

CW Scenarios
Perf

bitbake

CodeWarrior Debug

CW HW Trace

CW Profiling

SDK
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