Next-Generation Functional Safety Architecture

Dev Pradhan

AMP Engineering Director

October 2018 | AMF-AUT-T3378

Ĥ

Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

Agenda

- Recap on Functional Safety
- Recap on ISO 26262
- Next Generation Safety Concept
 - Process
 - Hardware
 - Software
 - -Tools

Getting Safety Support

What is Functional Safety?

ISO 26262 Definition:

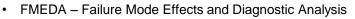
Absence of <u>unacceptable risk</u> due to hazards caused by mal-functional behavior of electrical and/or electronic systems

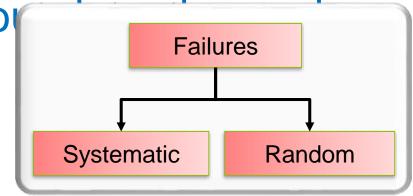
IEC 61508 Definition:

- Safety is the freedom from unacceptable risk of physical injury or of damage to the health of people, either directly, or indirectly as a result of damage to property or to the environment.
- Functional Safety is part of the overall safety that depends on a system or equipment operating correctly in response to its inputs.

Implementing Functional Safety is abore managing failures

How products are developed:


Addresses the aspect of <u>Systematic</u> Failures


- Result from a failure in design or manufacturing
- Relevant to Hardware and Software
- Occurrence of failures can be reduced through continual and rigorous process improvement

Products that detect and handle faults:

Addresses the aspect of Random Failures

- Inclusion of mechanisms to detect and handle random defects inherent to process or usage condition
- · Relevant to Hardware only
- Supported by FMEDA*, Dependency and Fault Tree Analysis and communicated as FIT*

6

ISO 26262 – Functional Safety of Road Vehicles

• Vertical standard, performance based.

• First edition published in 2011.

First edition 2011-15

Reference number

©150 2011

EO 36262,1:2011/E

Part 1: Vocabulary Whitues routers - Securité functionnelle --

INTERNATIONAL

STANDARD

Partie 1: Vocebulaire

ISO

- Follows similar structure to IEC 61508, but totally replaces instead of augmenting.
- Separates system design from hardware component design. As a result, most <u>components</u> used require compliance.
- 2nd edition to be released this year: ISO 26262:2018

Determining ISO 26262 ASIL Level

High probability

F4

- To determine the ASIL level of a system a Risk Assessment must be performed for all Hazards identified.
- Risk is comprised of three components: Severity, Exposure & Controllability

S =	Severity		C = Controllability		
Class	Description		Class	Description	
S0	No injuries		C0	Controllable in general	
S1	Light and moderate injuries		C1	Simply controllable	
S2	Severe and life-threatening in	njuries (survival probable)	C2	Normally controllable	
S3	Life-threatening injuries (survival uncertain), fatal injuries		C3	Difficult to control or uncontrollable	
E =	Exposure	Causal Factor ₁		Accident	
Class	Description				
E0	Incredible				
E1	Very low probability	Т	azard	Risk = S x (E * C)	
E2	Low probability				
E3	Medium probability				

Causal Factor,

Safety Goal₁

Safety Goal

Automotive Application Safety levels (e.g.)

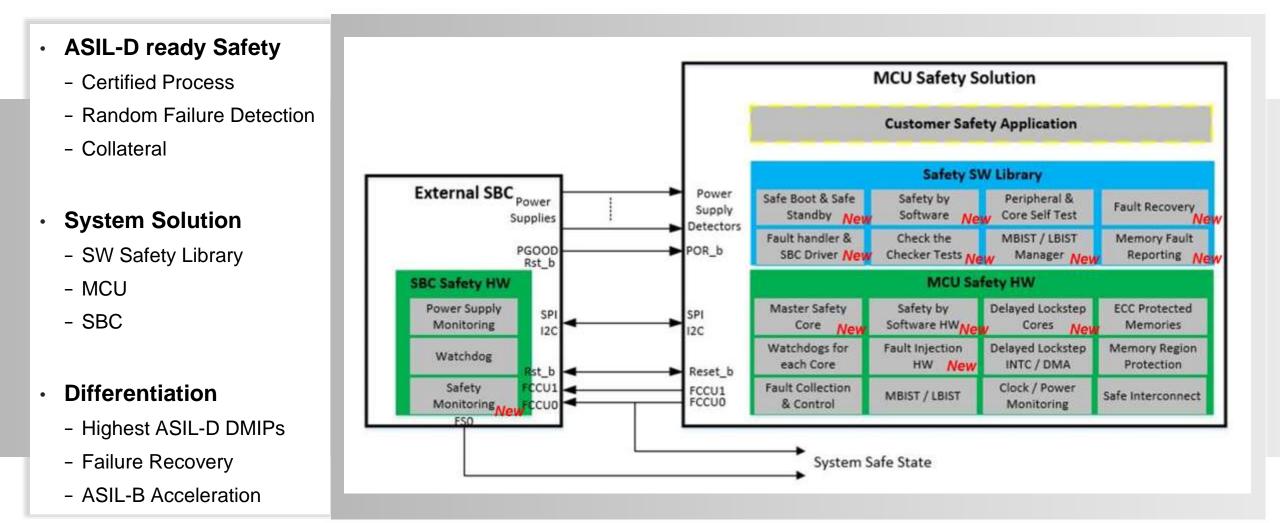
Subsystem	ASIL Safety Level		
ADAS – Vision/Radar	B-D		
Airbags	D		
Alternator	C-D		
Body Control Module	A-B		
Brake System (ABS, ESC, Boost)	A-D		
Collision Warning -	A-B		
Cruise Control	A-D		
Drowsiness Monitor	A-B		
E-Call / Telematics	A-B		
Fuel Pump	В		
Engine Oil Pump	В		
Electric Mirrors	A-B		
Electrochromatic Mirrors	A-B		
Engine Control	B-D		
Lighting	A-B		
Night Vision	A-B		
Power Door, Liftgate, Roof, Trunk	A-B		
Rain Sense Wipers	A-B		
Steering (EPS)	D		
Throttle Control	A-D		
Tire Pressure Warning	A-B		
Transmission	B-D		
Transmission Oil Pump	B-C		
Window Lift	A-B		

- Many applications that don't have strict safety requirements today may have them in the future.
- For example, SAE is providing guidelines for determining ASILs. Applying these guidelines will mean that auto apps that haven't been "safety" to-date could be held subject to ISO26262.
- Over time the expectations on sub-systems will change depending on how much the safety of the vehicle depends on them.

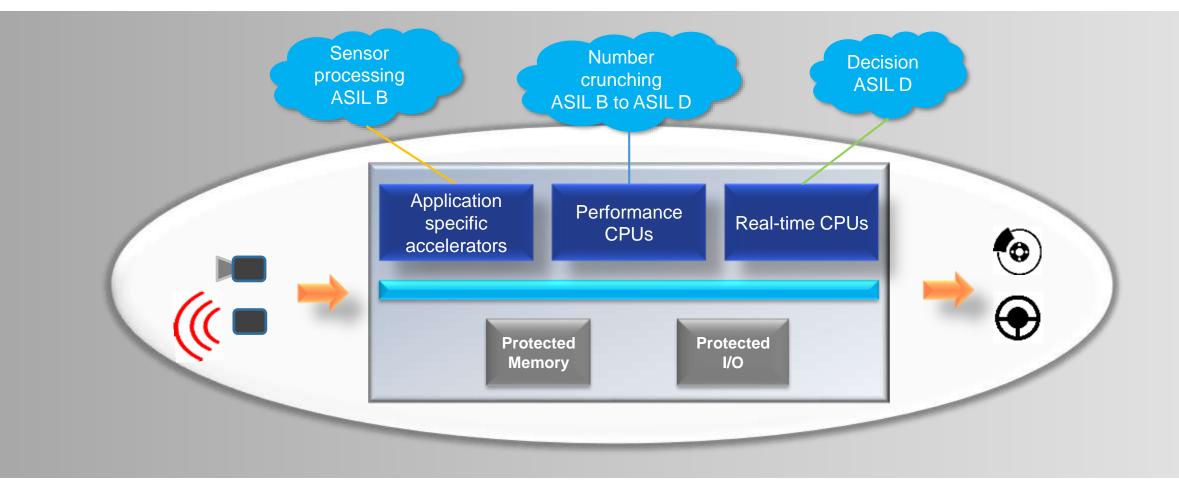
Note: that in the context of Autonomous there is the concept of SOTIF (Safety of the Intended Function) that is not covered by ISO 26262 and any ASIL


Next Generation Safety Concept

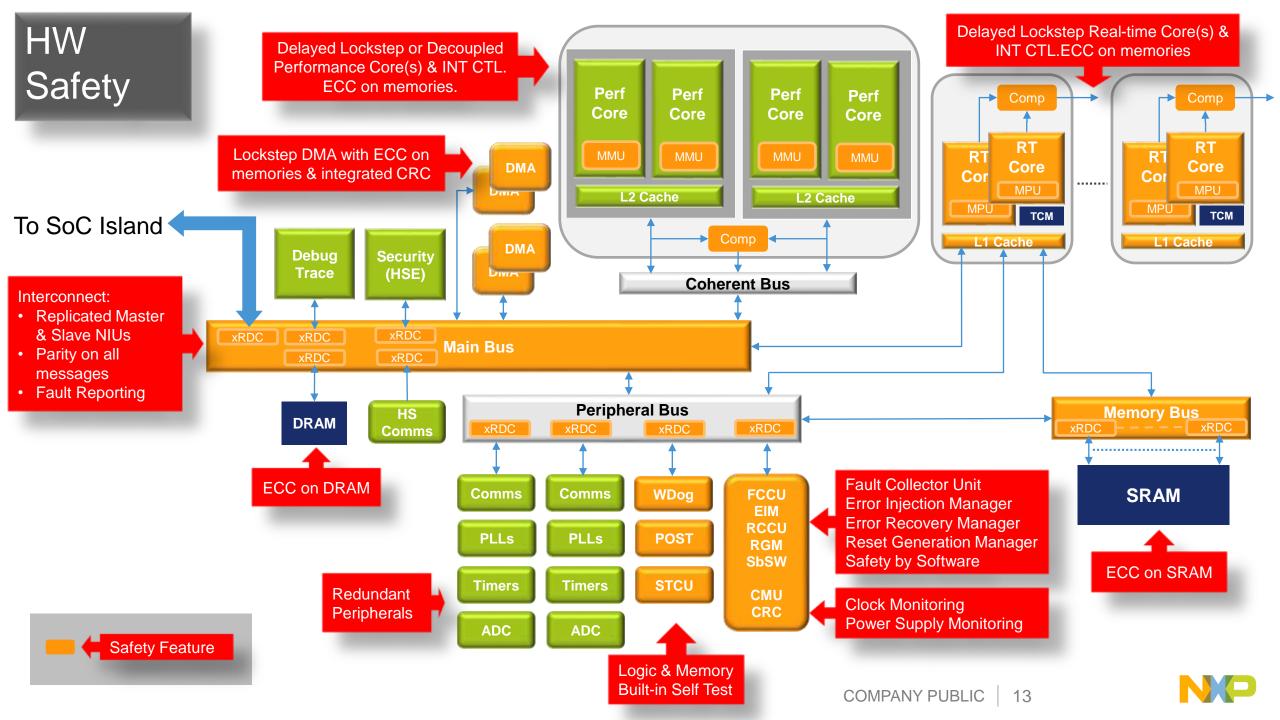
Process, Hardware, Software



Functional Safety Process – assessed to meet ISO 26262

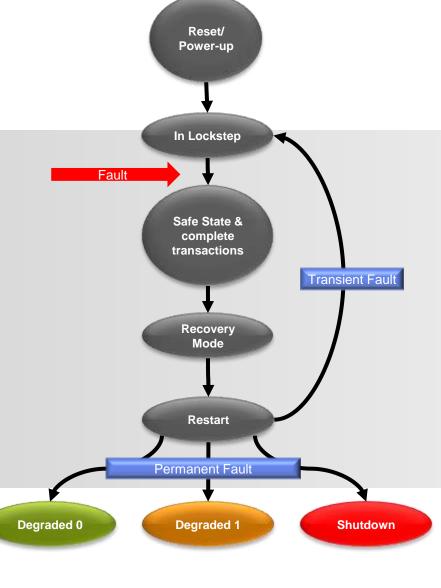


Safety Chipset = SoC (Hardware/Software) + Power Supply



Safety targets for Next-Generation Platform

Developed as a Safety Element out of Context (SEooC) Following an ISO 26262 ASIL-D Safety Development Process Supported with complementary safety collateral



Fault Management and availability

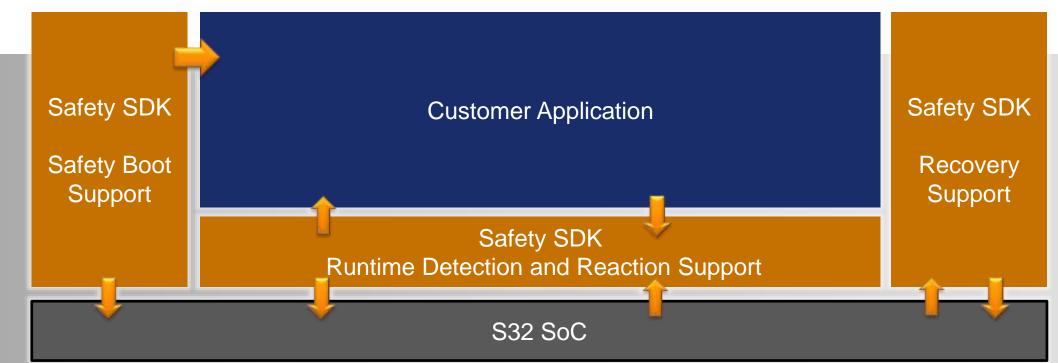
Lockstep mismatch → MCU reset Lockstep mismatch → begin availability flow No localization of fault beyond lockstep core pair Localization of fault possible to individual core No continued operation possible with safety coverage Continued operation possible with loss of core, or loss of cluster Not possible to distinguish between permanent and transient faults in core complex All transient faults recoverable without BIST – reset only	Previous Generation - State of the art functional safety 2012	S32x - Introducing availability 2018+		
core paircoreNo continued operation possible with safety coverageContinued operation possible with loss of core, or loss of clusterNot possible to distinguish between permanent and transient faults in coreAll transient faults recoverable 	Lockstep mismatch \rightarrow MCU reset	Lockstep mismatch \rightarrow begin availability flow		
No continued operation possible with safety coveragecore, or loss of cluster Remaining core/cluster functionalNot possible to distinguish between permanent and transient faults in coreAll transient faults recoverable Cache faults recoverable without BIST – reset		·		
permanent and transient faults in core Cache faults recoverable without BIST – reset	· · ·	core, or loss of cluster		
	permanent and transient faults in core	Cache faults recoverable without BIST – reset		

Fault Tolerant Strategy

Fail Safe Strategy

Top level safety requirements

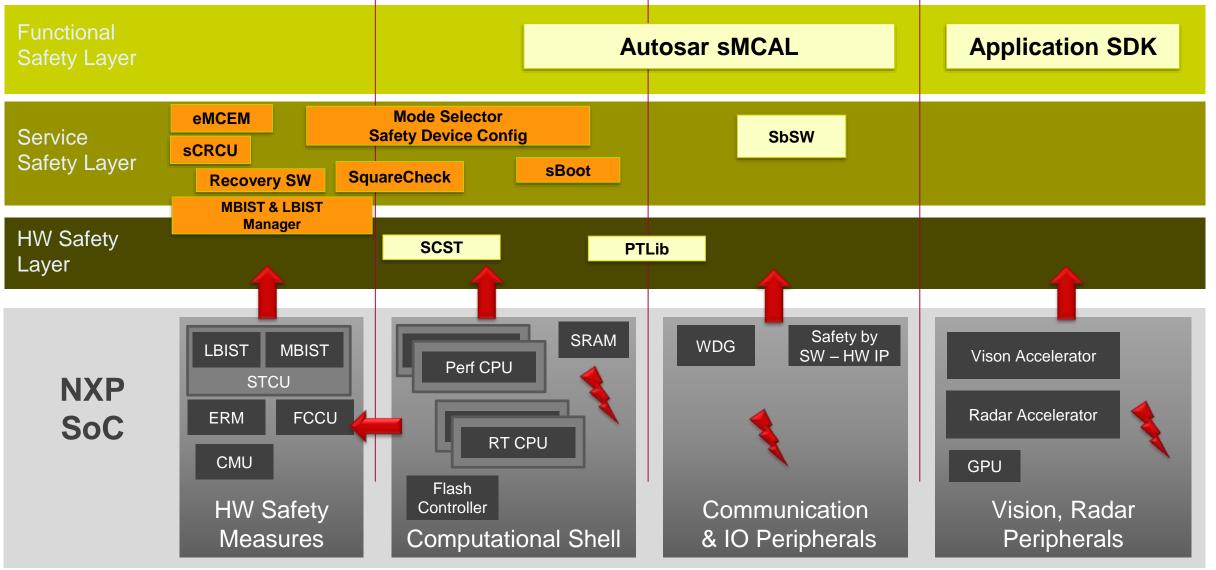
- The MCU itself is developed as a SEooC to provide the MCU functionalities with appropriate assumed safety integrity – ASIL D
 - SPFM (Single Point Failure Metric): 99% for transient & permanent faults
 - LFM (Latent Failure Metric): 90% for permanent faults
 - PMHF (Probabilistic Metric Hardware Failure): 10⁻⁹ h⁻¹ (10% of system target for ASIL-D (<10⁻⁸ h⁻¹))
- Fault Tolerant Time Interval (time a Fault occurrence and the system transitions to a Safe state)
 FTTI_{MCU}= 10ms
- Multiple Point Fault Detection Interval (multi-point faults are latent faults)
 - MPFDI_{MCU}= 12hrs
- To detect multiple-point faults in the most critical MCU safety mechanisms, software initiated fault injection tests can be periodically triggered within the FTTI.



Top level availability requirements

- The contribution of the SoC to the Fault Recovery Time of the application is targeted to be FRT <= 50 ms.
- This time is split between fault recovery (FRT_{MCU}) and reset/boot (BootTime_{MCU})
 - Note: This includes the time to perform SoC fault diagnostics, reset and boot the SoC to the point to handover to load full application code. It does not include the application reinitialization time.
- Fault Tolerance (Availability) of the SoC is targeted to be:
 - < 100 FIT (10⁻⁷ h⁻¹) of failures should lead to application Shutdown

Safety Software Support (Safety SDK)



- Successful boot of safety-related components is required to start a safety application.
- Runtime fault detection is mediated by Safety SDK faults are detected by both HW and SW mechanisms
- Runtime error recovery is managed via Safety SDK
- Safety SDK manages a global, destructive SoC recovery.

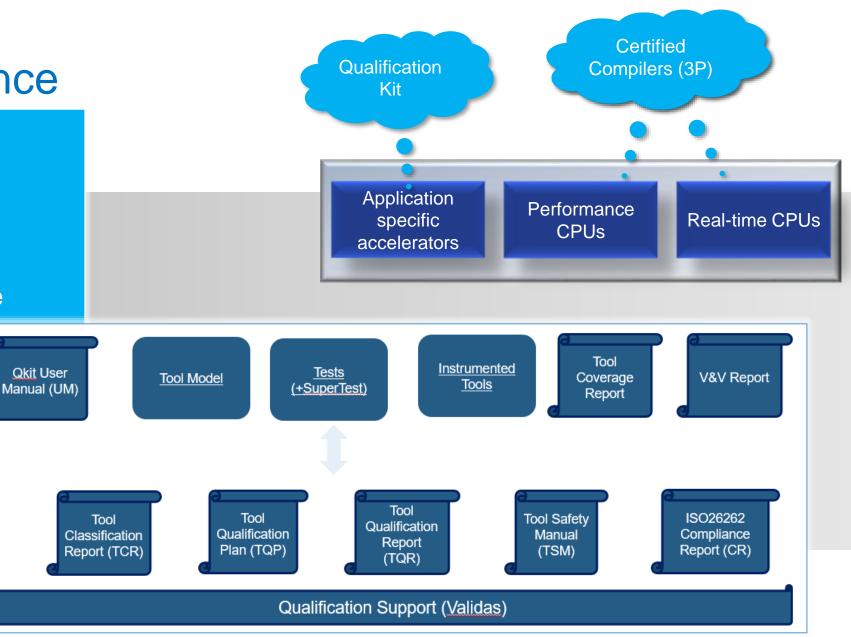
Safety Software Portfolio

Safety SDK

Safety SDK components

Detection components

- SquareCheck detects latent faults in HW safety mechanism
- BIST Manager configures, initiates, and provides access to MBIST and LBIST
- sBoot detects violations of HW safety configuration
- sCRCU detects faults in CRC; also, it computes CRC


Reaction Components

- eMCEM configures FCCU and provides handlers to faults signaled to FCCU.
- SW Recovery initiates the global recovery process
- Mode Selector depending on the MCU fault status selects the appropriate operating mode. Device configuration is part of the selection and invocation of the respective mode.

Tool Compliance

- Classification Report
- Qualification Plan
- Qualification Report
- Safety Manual
- ISO26262 compliance
 report

Getting Safety Support

6

NXP SafeAssure[™] Products

To support the customer to build his safety system, the following deliverables are provided **as standard** for **all** ISO 26262 developed products.

- Public Information available via NXP Website
 - Quality Certificates
 - Reference Manual
 - Data Sheet
- Confidential Information available under NDA
 - Safety Plan
 - Safety Manual
 - Permanent Failure Rate data (Die & Package) IEC/TR 62380 or SN29500
 - Transient Failure Rate data (Die) JEDEC Standard JESD89
 - Safety Analysis (FMEDA, FTA, DFA) & Report
 - PPAP
 - Confirmation Measures Report (summary of all applicable confirmation measures)

NXP ISO 26262 Confirmation Measures

NXP performs ISO 26262 Confirmation Reviews (CR), Audit and Assessment as required by ISO 26262 for SEooC development

Confirmation Measures	ASIL A	ASIL B	ASIL C	ASIL D
CR Safety Analysis	Yes	Yes	Yes	Yes
CR Safety Plan		Yes	Yes	Yes
CR Safety Case		Yes	Yes	Yes
CR Software Tools			Yes	Yes
Audit			Yes	Yes
Assessment			Yes	Yes

Note: The following confirmation reviews are not applicable: hazard analysis and risk assessment, item integration and testing, validation plan & proven in use argument

Confirmation Measures (CM) performed depending on ASIL

- All checks executed with **independence level 13** by NXP Quality organization
- NXP Assessors **certified** by SGS-TÜV Saar as Automotive Functional Safety Professional (AFSP)
- NXP CM process **certified** by SGS-TÜV Saar as ISO 26262 ASIL D

SafeAssure Community Customer support for Functional Safety

SafeAssure Community

Public Space for knowledge distribution and industry-wide news <u>here</u>

SafeAssure NDA

Private NDA space for customer to access safety documentation here

Support

Safety Expert Group composed of Safety Managers and Architects, Field and Application Engineers

Self Sufficient

Community users find answers to their questions and safety documentation requests

SECURE CONNECTIONS FOR A SMARTER WORLD

www.nxp.com

NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.