
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP

B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

Senior Field Application Engineer

Steve Mihalik

Low-Power Modes for MPC5xxx and
Beyond

October 2018 | AMF-AUT-T3381

COMPANY PUBLIC 1COMPANY PUBLIC 1

• Mode Entry Module Introduction

− Use Case

− Low Power Modes

• HW Implications:

− Terminations

− Pad Keeping

• SW Implications:

− Configuration

− Entering low power

− Exiting low power

− MCAL

• Debugging and When Things Go Wrong

Agenda

COMPANY PUBLIC 2

Abstract

Achieving the lowest MCU power during sleep presents challenges to

HW and SW designers from switching off clocks and power to

modules.

Low power use cases and concepts for NXP’s Mode Entry module are

presented along with implications to hardware design, software design

and debugging.

COMPANY PUBLIC 3

Mode Entry Module Introduction

COMPANY PUBLIC 4

Use Case: Conserving Power While Software Runs (1 of 2)

• Software runs one of the three following tasks:
− Analog Monitor

▪ Uses ADC to look for particular voltages on inputs

▪ Only requires 16 MHz FIRC, which is also sysclk

▪ If analog input measurements meet a criteria, software transitions to the communication task

− Communication

▪ Uses FlexCAN_0, FlexCAN_1 to transmit analog data and receive response

▪ Only requires FXOSC, which is also sysclk

▪ If response is positive, software transitions to the whole chip task

− Whole Chip

▪ Requires all peripherals active

▪ Sysclk = maximum frequency FMPLL, which also requires FXOSC

COMPANY PUBLIC 5

Use Case: Conserving Power While Software Runs (2 of 2)

Mode sysclk Clock Sources Req’d Peripherals Requiring

Enabled ClockFIRC XOSC FMPLL

 Mode Configuration Peripheral Configuration

RUN0: AnalogMon FIRC X ADC, SIU

RUN1: Comm XOSC X FlexCAN_0, FlexCAN_1, SIU

RUN2: WholeChip FMPLL X X All

Peripherals Modes with Enabled Clock Peripheral

Configuration

for RUN

modes

Peripheral’s

Control Register

(Specifies Peri.

Config. to be used)

RUN0 RUN1 RUN2 RUN3

ADC X X Run PC0 PCTL[32]

FlexCAN_0, 1 X X Run PC1 PCTL[16], PCTL[17]

SIU X X X Run PC2 PCTL[68]

All others X Run PC3 Other PCTL’s

COMPANY PUBLIC 6

MPC5748G Modes

RESET

RUN0

DRUN

RUN1

RUN2

RUN3

LPU_RUN

LPU_SLEEP

LPU_STOP

LPU_STANDBY

STANDBY

STOP

Idd typical@25C

~20mA -> ~220mA

~10mA

~5 mA

~50 uA -> 800uA

Power Gating:

Full MCU

Full MCU with clock gating

LPU domain

STANDBY domain

SAFE

FAULT

COMPANY PUBLIC 7

Low Power Modes Summary (MPC5748G)

• STOP (11mA)
− In STOP mode the MCU remains completely powered

− Exit STOP mode on interrupt or wake-up

− Exiting STOP mode the MCU context is retained so no need to reconfigure core or peripherals

• STANDBY & LPU_STANDBY (71uA)
− In STANDBY mode 99% of the MCU is powered-down

− Upon wake-up the MCU context is lost (except STANDBY peripherals)

• Wake-up source options for STOP and STANDBY modes
− 30x input pins

− Analog comparator

− Timers

− Non-Maskable Interrupt

− Interrupts (STOP mode only!)

COMPANY PUBLIC 8

Power block diagram

Always on

LPU domain

High

performance

blocks

COMPANY PUBLIC 9

MPC574XG 6MB and 3MB STANDBY Current

MPC5748G Data Sheet, Rev 4, 02/2017

MPC5746C Data Sheet,
Rev 5.1, 05/2017

COMPANY PUBLIC 10

Hardware Implications

COMPANY PUBLIC 11

Interrupt / wakeup – Signal identification

• See IO Signal Table in
spreadsheet attached to
MPC5748G Reference
Manual

• WKPU[x] corresponds to
wakeup / interrupt source
(also called channel) in
WKPU registers:
− Status (WISR)

− Interrupt Req. Enable (IRER)

− Wakeup Req. Enable (WRER)

− Rising Edge Enable (WIREER)

− Falling Edge Enable (WIFEER)

− Filter Enable (WIFER)

− Pull Enable (WIPER)

COMPANY PUBLIC 12

Interrupt / wakeup - pads list

• List is filtered

from

MPC5748G IO

Signals

spreadsheet

attached to

reference

manual

Port Function Module

PA[0] WKPU[19] WKPU

PA[1] WKPU[2] WKPU

PA[2] WKPU[3] WKPU

PA[4] WKPU[9] WKPU

PA[15] WKPU[10] WKPU

PB[1] WKPU[4] WKPU

PB[3] WKPU[11] WKPU

PB[8] WKPU[25] WKPU

PB[9] WKPU[26] WKPU

PB[10] WKPU[8] WKPU

PC[7] WKPU[12] WKPU

PC[9] WKPU[13] WKPU

PC[11] WKPU[5] WKPU

PD[0] WKPU[27] WKPU

PD[1] WKPU[28] WKPU

PE[0] WKPU[6] WKPU

PE[3] WKPU[29] WKPU

PE[5] WKPU[30] WKPU

PE[9] WKPU[7] WKPU

PE[11] WKPU[14] WKPU

PF[9] WKPU[22] WKPU

PF[11] WKPU[15] WKPU

PF[13] WKPU[16] WKPU

PG[3] WKPU[17] WKPU

PG[5] WKPU[18] WKPU

PG[7] WKPU[20] WKPU

PG[9] WKPU[21] WKPU

PI[1] WKPU[24] WKPU

PI[3] WKPU[23] WKPU

PJ[13] WKPU[31] WKPU

COMPANY PUBLIC 13

Wakeup Pin Terminations

• All wakeup pins, whether used in the application or not, must be

terminated for STANDBY mode

• Terminations can be either

− internal, configured by software

− External, with hardware

• Do not have BOTH internal and external terminations with opposite

directions.

COMPANY PUBLIC 14

MPC574xG Internal Pullups/Pulldowns (per MPC574xG Ref. Man. Rev6)

Has priority

Over WKPU

Determines STANDBY

pull up or down state

COMPANY PUBLIC 15

Pad keeping feature in LPU/STANDBY mode

(Reference: MPC5748G Ref. Manual section 4.2)

• The device is capable to retain the output value of some selected pads
when device is power gated i.e. in LPU or STANDBY mode.
− These pads reside in always alive power domain(PD0).

− Table 4-1 in the reference manual lists which pads support PAD Keeping feature.

• To enable this feature, set PMCDIG_RDCR[PAD_KEEP_EN] to '1'.
− NOTE: Upon LPU or STANDBY mode exit, you must clear this bit or else the pads output

values will be retained!

• Debugger notes
− By default, debugger connection will break after STANDBY exit if Pad Keeper functionality is

enabled in STANDBY modes. (per reference manual)

− For a debugger to maintain connection through STANDBY, PASS_LCSTAT[CNS] must be
cleared by programming the Censorship DCF client. For example, DCF record 0x000055AA,
0x001000B0

COMPANY PUBLIC 16

Interrupt / wakeup - routing (ref: MPC574xG Ref. Man. Fig. 24-2)

COMPANY PUBLIC 17

Interrupt / wakeup – sources other than pads

• MPC5748G

channels 0, 1 and 2

have multiple

options

Channel Source MCAL 4.2 STOP/STANDBY Support

0 Software Watchdog Timeout 0 (SWT_0)

RTC Autonomous Periodic Interrupt (API)

Y

Y

1 RTC Real Time Counter interrupt (RTC)

System Timer Module 0 (STM_0)

N (RTC not supported by GPT driver)

Y

2 Pad 0

ADC comparators 0, 1, 2 (CMP 0,1,2)

Y

N (CMP not supported by ADC driver)

COMPANY PUBLIC 18

MCAL Wakeup Unit Channel Selection

• Channels are in the Input

capture unit (Icu) module

COMPANY PUBLIC 19

Software Implications

COMPANY PUBLIC 20

Startup Code

• Determine why micro is starting:
− Reset event - If a reset status flag is set (in Functional or Destructive Event Status

Registers):

▪ Normal initializations including wakeup logic such as wakeup unit, wakeup timers like RTC.

▪ Normally clear all SRAM

▪ Clear reset flags

− Wakeup event (STANDBY mode low power exit) - If a wakeup unit status flag is set (in
WISR register):

▪ Normal initializations excluding wakeup logic such as wakeup unit, wakeup timers like RTC

• Wakeup logic’s power was maintained during STANDBY

▪ Only clear SRAM sections not powered during STANDBY

▪ Clear wakeup flags

COMPANY PUBLIC 21

Wakeup logic initialization

• Mode Entry module:

− Configure STANDBY mode

− Enable STANDBY mode

• Wakeup Module

− Enable desired pads for wakeup

− Configure whether pads wakeup on rising and/or falling edges

− Configure desired timers

− Configure desired ADC comparators

COMPANY PUBLIC 22

Entering STANDBY

• Ensure there are no pending interrupts or wakeup events

• Write to Mode Control register for entering STANDBY mode
MC_ME.MCTL.R = 0xD0005AF0; /* Attempt STANDBY Mode (0xD) & Key */

MC_ME.MCTL.R = 0xD000A50F; /* Attempt STANDBY Mode (0xD) & Inverted Key*/

• Wait for mode transition. (Suggest adding timeout logic)
while (MC_ME.GS.B.S_MTRANS) {} /* Wait for mode transition to complete */

COMPANY PUBLIC 23

Wakeup to Flash or SRAM?

• Wakeup to flash advantages

− Less complexity

• Wakeup to SRAM advantages

− Less power

− Less time

• Wakeup address is in
MC_ME_CADDR1[ADDR]

− To wakeup to SRAM, program
desired SRAM start address into
MC_ME_CADDR1

− To wakeup to flash, leave original
flash start address in register that
was loaded at power on reset by
BAF.

COMPANY PUBLIC 24

Low Power Wake up with Multicore Guidelines

• Before entering STANDBY mode, make sure the other cores will not

automatically start on STANDBY exit.

− Reason: software on other cores may depend on startup code completing by main

core on STANDBY exit

− Prevent other cores automatically starting on exit by disbling DRUN in ME_CCTL2,

ME_CCTL3.

• After STANDBY wakeup make sure the prior wakeup to DRUN

completed

− Wait for ME_GS[S_MTRANS]

− Reason: if you exit STANDBY to, for example, turn on the external oscillator and use it

to start the PLL, then the clocks may not be stable for code that needs them.

COMPANY PUBLIC 25

Debugging and when things go

wrong

COMPANY PUBLIC 26

DCF Record Required for MPC574xG Low Power Debug

• PASS_LCSTAT [CNS] must be cleared for low power debug mode

to work across low power mode STANDBY transitions.

− Only a DCF record in UTEST can clear CNS.

− If CNS =1 (default per factory shipped) then no DCF record has been written to affect

its value.

COMPANY PUBLIC 27

Mode Interrupts

• Mode transition issues can be
enabled to generate an interrupt.

− Example: MPC5748G Ref Manual v6,
Mode Entry’s Interrupt Status Register:

COMPANY PUBLIC 28

Invalid Mode Possible

Causes
• Mode transitions are

aborted when they are

invalid.

• Example: Attempt to

enter STANDBY mode but

a wakeup event exists.

IMTS[S_MRIG] is set

COMPANY PUBLIC 29

Bare code debugging for incomplete mode transitions

• Incorporate a timer for mode transitions.

− Timer expiration can be used to call error recovery function or simply trap for debug

• Examine Mode Entry status registers:
− ME_GS

− ME_IS

− ME_IMTS

− ME_DMTS

COMPANY PUBLIC 30

MCAL debugging for incomplete mode transitions

• C:\NXP\AUTOSAR\MPC574XG_MCAL4_2_RTM_1_0_0\eclipse\plugins\Mcu_TS_T2D3
5M10I0R0\src\Mcu_MC_ME.c file has the function Mcu_MC_ME_ApplyMode:

FUNC(void, MCU_CODE) Mcu_MC_ME_ApplyMode(VAR(Mcu_PowerModeType, AUTOMATIC) ePowerMode)

• In this function there is a timeout to wait for the mode transition to complete.

while (((uint32)MC_ME_GS_S_MTRANS_MASK32 == (REG_READ32(MC_ME_GS_ADDR32) &

(uint32)MC_ME_GS_S_MTRANS_MASK32)) && (u32Timeout > (uint32)0x0U))

{

/* (ME_GS[S_MTRANS]=1) <=> (Transition ongoing). */

u32Timeout--;

}

• Modify code so before timeout expires you branch somewhere and have a
breakpoint there.

COMPANY PUBLIC 31

MCAL behavior on standby entry failure

• MCAL McuSetMode function implements a timeout on attempting

mode entry

− If a timeout occurs, a diagnostic error is reported to the diagnostic manager with

dem_seteventstatus function.

• When dem_eventstatus function is called, the first parameter is

“timeout from Mcu driver”.

• After that, the McuSetMode function returns and execution continues.

• Customers must implement handling this error with their own code.

COMPANY PUBLIC 32

MCAL LPU support

• NXP MCAL

− Supports transition to LPU_RUN mode

▪ User must write LPU application code and place in RAM

▪ MCAL will not run in LPU_RUN mode. (e200z4 cores do not have power in LPU_RUN.)

− Does not support LPU_STOP, LPU_SLEEP, LPU_STANDBY

• Rational: LPU_RUN mode is intended for small tasks to be

performed while executing from RAM (when the AUTOSAR stack is

not needed).

− So the LPU_STOP, LPU_SLEEP and LPU-STANDBY are intentionally not supported.

NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

www.nxp.com

http://www.nxp.com/

