
Company External – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of

NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

Senior Software Engineer

Yannick Vignon

i.MX 8 Fast Packet Routing Software

October 2018 | AMF-AUT-T3369

PUBLIC 11PUBLIC

• Overview of Fast Packet Processing

Solutions

• Implementation Details

• Experimental Results

• Roadmap

Agenda

PUBLIC 2

Fast Path Routing Solutions on

i.MX

PUBLIC 3

Fast Path Routing

Definition
• A Fast Path (FP) to route/bridge data between 2 network interfaces.

− Internal FP: same OS as the host networking stack (Slow Path - SP), same or separate
core.

− External FP: separate OS and Core.

Purpose
• Maximize data routing performance with minimum CPU load requirements to the

main processor:
− Reason: the native data routing performance of the host OS is not optimized:

▪ Generic, feature-rich networking stack

▪ Does not use the SoC HW efficiently (incomplete utilization of multi-core architecture, local
memories…)

PUBLIC 4

i.MX Linux Fast Path Routing Components

i.MX platform

Linux Networking Stack

Ethernet

driver

Ethernet

PCIe driver

Eth ControllerPCIe Controller

TCP/IP stack

Cloud

In

Vehicle

Network

Control Plane

The Conntrack

Monitor Module

(CMM) controls

the Fast Path

activity

Data Plane

The Fast Path (FP) engine performs fast

forwarding of network traffic

Ethernet

USB driver

USB Controller

Conntrack Monitor Module

Fast Path Engine

PUBLIC 5

Control Plane: CMM

i.MX platform

Linux Networking Stack

Ethernet

driver

Ethernet

PCIe driver

Eth ControllerPCIe Controller

TCP/IP stack

1) CMM Monitors

the linux

networking stack

activity

L2: Ethernet, VLAN

L3: IPv4, IPv6 forwarding & routing

L4: UDP, TCP termination

2) CMM programs selected

connections into FP, upon

traffic activity

Ethernet

USB driver

USB Controller

Conntrack Monitor Module

Fast Path Engine

PUBLIC 6

Data Plane: Slow Path

i.MX platform

Linux Networking Stack

Ethernet

driver

Ethernet

PCIe driver

Eth ControllerPCIe Controller

TCP/IP stack

Cloud

In

Vehicle

Network

All network traffic uses slow

path (linux) by default

Ethernet

USB driver

USB Controller

Conntrack Monitor Module

Fast Path Engine

PUBLIC 7

Data Plane: Fast Path (FP)

i.MX platform

Linux Networking Stack

Ethernet

driver

Ethernet

PCIe driver

Eth ControllerPCIe Controller

TCP/IP stack

Cloud

In

Vehicle

Network

Ethernet

USB driver

USB Controller

Optimized processing of data routing

operations: VLAN, IPv4, NAT, IPv6

Conntrack Monitor Module

Fast Path Engine

Once a connection to be fast forwarded

is identified by CMM (first packet in

slow path), it is programmed into FP

PUBLIC 8

Linux Networking Stack

Ethernet

driver
Ethernet

PCIe driver

TCP/IP stack

Internal Fast Path (L-FP) on i.MX8

i.MX platform

Linux Networking Stack

Ethernet

driver
Ethernet

PCIe driver

Eth ControllerPCIe Controller

TCP/IP stack

Cortex-A
Cortex-A

Cortex-A
Cortex-A

Other ARM core(s) available

to applications

FP as a module on

ARM core(s)

Conntrack Monitor Module

Fast Path Engine

PUBLIC 9

External Fast Path (H-FP) on i.MX 8

i.MX platform

Linux Networking Stack

Ethernet

driver

Ethernet

USB driver

Eth Controller

USB Controller

TCP/IP stack

HiFi 4

Cortex-A
Cortex-A

Cortex-A
Cortex-A

Externalize FP on a

separate coprocessor

ARM cluster fully available

to applications

Conntrack Monitor Module

Fast Path Engine

Ethernet

PCIe driver

PCIe Controller

PUBLIC 10

i.MX Fast Path Routing Highlights
Fast Path Routing

• Fast path processing is performed between 2 network interfaces (WAN/LAN both directions).
More than 2 interfaces may be involved in the fast path.

• Smooth integration into the host OS (Linux) networking subsystem: programmed routing rules are
propagated by CMM to FP.

Firewall

• By default all incoming traffic is going to slow path (host OS). At that stage firewall rules
programmed in the host OS (Linux) are applied to all incoming traffic. CMM considers fast path
for a connection which successfully passes filtering rules. Connections rejected by the firewall
never reach fast path.

QoS

• L-FP: relies on existing host OS (linux) capability: FP interfaces on egress before the Linux
transmit scheduler. Hence it inherits the TC (Traffic Control) and qdisc scheduler features
available in Linux.

• H-FP: QoS and scheduler features implemented in FP.

PUBLIC 11

Implementation Details

PUBLIC 12

Linux Fast Path Engine (L-FP)

• Use of ingress Netfilter hook for Rx
and device transmit queue for Tx:

→ Support for any Linux network
interface

• Implements routing operations for
TCP/UDP connections:
− IPv4 with and without NAT

− IPv6

− VLAN tag insertion and removal

• Fixed/pre-configured flow and route
entries (no CMM)

• Driver optimizations
− Memory buffers address < 32bit (avoid

remap/memory copy)

− Reduce data cache maintenance range (CPU
only touches 1 to 2 cache lines)

− Recycle transmitted buffers for receive

− Burst read of non-cacheable descriptors

• Target platform: i.MX8QuadXPlus
(quad core Cortex-A35 @1.2GHz)

• Planned: automated maintenance of
flow and route tables through CMM

PUBLIC 13

i.MX 8 HiFi 4 Feature Summary

• Optimized for audio processing, but turns out to be a good fit as a co-
processor for a fast-path engine as well

• Relevant features for a fast-path implementation:
− >600MHz core, capable of running generic software

− 128 local AXI bus, running at the core frequency

− Has access to most/all SoC blocks (including ENET)

− 32kB L1 Instruction cache, 48 kB L1 Data cache

− Fast local memories:

▪ 64kB internal memory (same latency as cache)

▪ 448kB On Chip RAM (through AXI bus)

− Designed for efficient data transfers (prefetch instructions, large cache lines)

PUBLIC 14

HiFi 4 Fast Path Engine (Current)

• Proof-of-concept only

• Bare-metal implementation, supporting only the ENET (i.MX8 internal Ethernet
MAC controller)

• Co-exists with Linux using the ENET Frame Parser and multiple queues:
− On Rx, packets with VLAN 255 are sent to the HiFi 4 queue, other packets go to Linux

− On Tx, round-robin is used between the queues, with one queue for the HiFi 4 and one for Linux

• A tight loop:
− Polls each interface

− Takes any incoming packets one by one, and copies data from Rx to Tx buffers, without any
processing (no flow matching, no NAT/VLAN modifications)

→ Approximate model of performance when using average packet sizes

PUBLIC 15

HiFi 4 Fast Path Engine (Planned)

• Direct control of both ENET interfaces,
possible support of other interface
types (PCIe, USB) through
professional support services

• Routing operations for TCP/UDP
connections:
− IPv4 with and without NAT

− IPv6

− VLAN tag insertion and removal

• Automated maintenance of flow and
route tables through CMM

• Bare metal environment for full control

over the CPU

• High efficiency firmware:
− Packet batching to improve I-cache usage

− Maximize D-cache usage and internal memory
usage

− Zero copy

− Interrupt mitigation

PUBLIC 16

Experimental Results

PUBLIC 17

i.MX 8 Performance Measurements

• 2 test “campaigns” performed:
− Initial one based on iperf, to showcase performance difference between Linux standard

stack and Linux Fast-path

− Recent one based on T-Rex traffic generator: better automation potential and flexibility
(varying packet sizes, etc), higher packet generation performance. Useful to evaluate
HiFi 4 Fast Path performance

• Test results of the 2 campaigns are consistent: iperf setup likely to be
phased out

• All measurements were made on an i.MX8QuadXPlus MEK board,
using 1000BaseT connections

PUBLIC 18

Iperf Test Results

PUBLIC 19

i.MX8 Performance Measurements With iperf

• Captured metrics:

− CPU load, Network bandwidth

• IP routing between Ethernet and PCIe Ethernet (Intel Pro1000):

− With and without VLAN tag insertion/removal

− With and without NAT

− For IPv4/IPv6, TCP/UDP protocols

• Note: iperf only reports the layer 4 bandwidth (see next slides), and

uses large packets (typically 1500 bytes for IPv4)

PUBLIC 20

Iperf Test Setup for Performance Analysis

• “Idle” tool used for CPU load measurements
▪ CPU load determined from variation in time taken to execute fixed count busy loop

▪ CPU load given in percentage of one core

i.MX8QXP/A35/Linux

Eth

LAN Linux PC

iperf3

WAN Linux PC

iperf3Eth PCIe/Eth Eth

Uplink

Downlink

Slow Path

Linux Fast Path

PUBLIC 21

Theoretical Bandwidth

• Ethernet frame
−IFG = 12, SFD = 8

−ETH = 14, VLAN = 4

−MTU = 1500

−FCS = 4

• Protocol headers:
−IPv4 (no options) = 20

−IPv6 (no ext. headers) = 40

−UDP = 8

−TCP (no options) = 20

Encapsulation
Total Bytes

per Frame

Max Packet

Rate (pps)

Max L4

Payload

(bytes)

L4 Bandwidth

(Mbps)

IPv4/UDP 1538 81274.4 1472 957.1

IPv4/TCP 1538 81274.4 1460 949.3

IPv6/UDP 1538 81274.4 1452 944.1

IPV6/TCP 1538 81274.4 1440 936.3

VLAN/IPv4/UDP 1542 81063.6 1472 954.6

VLAN/IPv4/TCP 1542 81063.6 1460 946.8

VLAN/IPv6/UDP 1542 81063.6 1452 941.6

VLAN/IPV6/TCP 1542 81063.6 1440 933.9

PUBLIC 22

IP Routing Measurements (i.MX 8QXP Beta Linux BSP)

• No Fast Path /

optimizations

• VLAN on LAN interface

• NAT on WAN interface

Receive Transmit
L4 Bandwidth

(Mbps)

CPU Load

A35 (%)

VLAN/IPv4/UDP PCIe/IPv4/UDP 439 100

VLAN/IPv4/TCP PCIe/IPv4/TCP 295 100

VLAN/IPv6/UDP PCIe/IPv6/UDP 565 100

VLAN/IPv6/TCP PCIe/IPv6/TCP 374 100

PCIe/IPv4/UDP VLAN/IPv4/UDP 475 100

PCIe/IPv4/TCP VLAN/IPv4/TCP 399 100

PCIe/IPv6/UDP VLAN/IPv6/UDP 587 100

PCIe/IPv6/TCP VLAN/IPv6/TCP 486 100

PUBLIC 23

Fast Path Enabled IP Routing Measurements

• Fast Path / optimizations

• No VLAN / No NAT

• CPU load variations as

expected

• Line rate attained for all

cases

Receive Transmit
L4 Bandwidth

(Mbps)

CPU Load

A35 (%)

IPv4/UDP PCIe/IPv4/UDP 949 48.8

IPv4/TCP PCIe/IPv4/TCP 948 52.7

IPv6/UDP PCIe/IPv6/UDP 936 49.7

IPv6/TCP PCIe/IPv6/TCP 935 55.3

PCIe/IPv4/UDP IPv4/UDP 952 48.9

PCIe/IPv4/TCP IPv4/TCP 947 50.6

PCIe/IPv6/UDP IPv6/UDP 939 49.7

PCIe/IPv6/TCP IPv6/TCP 934 52.7

PUBLIC 24

Fast Path Enabled IP Routing Measurements

• Fast Path / optimizations

• VLAN on LAN interface

• NAT on WAN interface

• CPU load variations as

expected

• Line rate attained for all

cases

Receive Transmit
L4 Bandwidth

(Mbps)

CPU Load

A35 (%)

VLAN/IPv4/UDP PCIe/IPv4/UDP 949 50.5

VLAN/IPv4/TCP PCIe/IPv4/TCP 945 56.6

VLAN/IPv6/UDP PCIe/IPv6/UDP 936 51.2

VLAN/IPv6/TCP PCIe/IPv6/TCP 932 58.1

PCIe/IPv4/UDP VLAN/IPv4/UDP 951 46.5

PCIe/IPv4/TCP VLAN/IPv4/TCP 946 50.2

PCIe/IPv6/UDP VLAN/IPv6/UDP 938 48.6

PCIe/IPv6/TCP VLAN/IPv6/TCP 933 51.8

PUBLIC 25

Fast Path Enabled Measurements (Full Duplex Traffic)

• Fast Path/optimizations

• Vlan on LAN interface

• NAT on WAN interface

• Uplink 1Gbps (Eth -> PCIe)

• Downlink 1Gbps (PCIe -> Eth)

• CPU load variations as expected

• Line rate for UDP traffic

Traffic type

Uplink L4

Bandwidth

(Mbps)

Downlink L4

Bandwidth

(Mbps)

CPU Load

A35 (%)

IPv4/UDP 951 954 100

IPv4/TCP 939 820 100

IPv6/UDP 938 936 100

IPv6/TCP 843 804 100

PUBLIC 26

T-Rex Test Results

PUBLIC 27

i.MX8 Performance Measurements With T-Rex

• Captured metrics:

− CPU load, Network bandwidth (at Layer 2)

− Varying packet sizes

• Measure packet forwarding performance between 2 ENET interfaces

(no PCIe)

• Note: Linux slow-path performance benefits from Linux fast-path

generic driver optimizations

PUBLIC 28

T-Rex Test Setup for Performance Measurements

• Linux slow-path flow:

− IPv4/UDP routing with NAT,

VLAN tag addition

• Linux fast-path flow:

− IPv4/UDP routing with NAT,

VLAN tag addition

• HiFi 4 fast-path flow:

− Straight buffer copy
Linux PC

i.MX8 MEK board

T-Rex traffic generator

ENET0

EthA

Linux Slow Path

Linux Fast Path Engine

HiFi 4 Fast Path Engine

ENET1

EthB

PUBLIC 29

Performance Results

288-byte 384-byte 512-byte 768-byte 1024-byte 1500-byte

HiFi 4 Fast path 98.05% 98.71% 98.94% 99.41% 99.42% 99.69%

Linux Fast path 40.68% 52.97% 69.80% 99.11% 99.15% 99.72%

Slow path 18.67% 24.51% 32.09% 47.61% 62.80% 90.97%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

c
e

n
ta

g
e

o
f
lin

e
ra

te
Throughput for varying packet sizes

Maximum packet rates

HiFi 4

Fast path
393kpps

Linux

Fast path
166kpps

Linux

Slow path
78kpps

PUBLIC 30

Live Demo Screenshot

PUBLIC 31

Roadmap

PUBLIC 32

Fast Path Routing Roadmap

FPR

• High Performance Data Routing for UDP/TCP, IPv4/NAT, IPv6, VLAN traffic

• Telematics Box applications
• Linux FPR on i.MX families

▪ Network interfaces Eth MAC, PCIe Wifi/5G, Eth USB

• HiFi4 FPR on i.MX8, i.MX8X families

RoadmapCommittedReleased

2019

Today

Jan Apr Jul Oct 2019 Apr Jul

2017 1/1/2018

2/1/2018 - 9/30/2018FPR Prototype (Linux, HiFi4)

9/3/2018 - 12/21/2018FPR Linux Evaluation Package

10/1/2018 - 1/31/2019FPR Linux Alpha Release

FPR Linux Beta Release 2/1/2019 - 3/22/2019

FPR Linux 1.0 GA Release 3/25/2019 - 5/17/2019

4/29/2019 - 9/1/2019FPR HiFi4 Evaluation Package

PUBLIC 33

Session Summary

• A Fast path engine can yield significant performance improvements

for network packet processing on i.MX8:

− Linux Fast Path: 2x or more, using any Linux network interface.

− HiFi 4 Fast Path: 5x expected, while keeping the Cortex-A cluster completely free.

(increase will be less if the HiFi 4 does not control both interfaces)

• Maximum packet rate is a (very) good indicator of a system’s packet

forwarding performance: packet size/bandwidth has very little impact

on packet rate.

NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

www.nxp.com

http://www.nxp.com/

