# i.MX 7 HETEROGENEOUS MULTICORE PROCESSING

#### FTF-DES-N1932

AUG 4, 2016





SECURE CONNECTIONS FOR A SMARTER WORLD

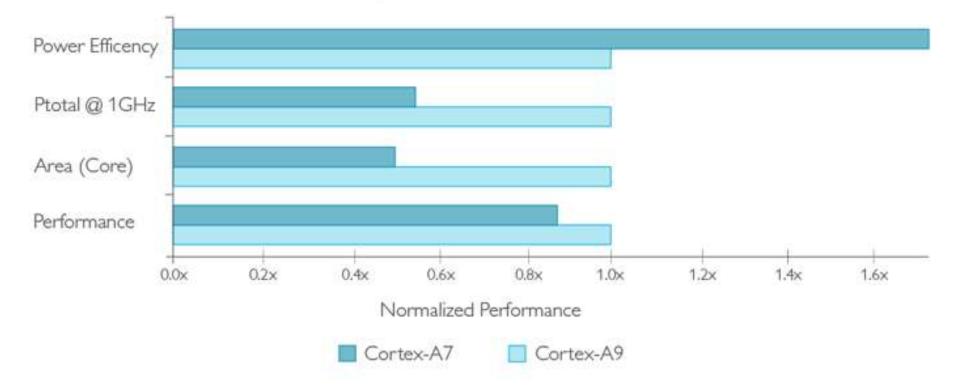
# AGENDA

- Introduction/Overview
- Heterogeneous Multicore Processing
- Software



# **Learning Goals**

- Basic knowledge about i.MX 7Dual
  - Summary of the chip and capabilities
- What is HMP and why it's important
- Review the i.MX 7 SABRE board and its capabilities
- Basic information about FreeRTOS & HMP
- RPMsg and how inter-processor communication works between the Cortex-M4 and Cortex-A7 cores




# i.MX 7 INTRODUCTION



# **Comparison Cortex-A7 vs Cortex-A9**







# i.MX 7Dual/Solo Family Target Applications

#### MOBILE DEVICES

LPDDR2/3 Small Package





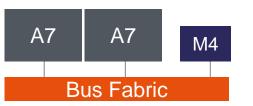


- Healthcare / Patient Monitoring
- Wearables
- IoT
- Point of Sale
- eReaders
- HMI Control / Security
- Printing
- Home Control
- General Embedded Control

#### CONNECTED DEVICES

#### Low Cost DDR3 Larger Pitch Package










### Advanced Heterogeneous Architecture

- Up to Dual Cortex-A7 @ 1GHz
- Cortex-M4 @ 200MHz
  - Offload Tasks
  - Optimize Power
  - Increase Security



### **Unmatched Power Efficiency**

- 3x improvement in Power Efficiency vs i.MX 6
- 100 uW/MHz for Cortex-A7
- 70 uW/MHz for Cortex-M4
- One third the power consumed in the Low Power suspend mode (250uW) vs i.MX 6





## Enabling Flexible High Speed Connectivity

- PCI-e v2.1
- Dual Gbit Ethernet with AVB
- DDR QuadSPI support
- eMMC 5.0



## **Complete Security Infrastructure**

- Secure Boot
- Crypto H/W Acceleration
- Secure JTAG
- Internal and External Tamper Detection
- DPA attack Resistance
- Secure Storage





## i.MX 7Solo

- Single ARM<sup>®</sup> Cortex<sup>®</sup>-A7 up to 800 MHz
- Cortex-M4 up to 200 MHz
- 512KB L2 cache
- 16/32-bit DDR3/DDR3L and LPDDR2/3 at 533 MHz
- Single Gigabit Ethernet (AVB)
- Full security with tamper resist



#### i.MX 7Dual

- Dual ARM® Cortex®-A7 up to 1.0 GHz
- Cortex-M4 up to 200 MHz
- 512 KB L2 cache
- 16/32-bit DDR3/DDR3L and LPDDR2/3 at 533 MHz
- Dual Gigabit Ethernet (AVB)
- Full security with tamper resist
- EPD controller
- PCIe (x1 lane)

Red indicates change from column to the left

Pin-to-pin and power compatible

Software compatible





# i.MX non-GPU/VPU Product Lineup

|                                                                  |                                               |                                                                | <b>_</b>                                                                                                  |                                                                                                       |                                                                                                       |  |
|------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Feature                                                          | i.MX25x                                       | i.MX28x                                                        | i.MX 6UL                                                                                                  | i.MX 7Solo                                                                                            | i.MX 7Dual                                                                                            |  |
| Core                                                             | ARM9                                          | ARM9                                                           | Cortex-A7 @ 528 MHz                                                                                       | Cortex-A7 @800 MHz                                                                                    | Dual Cortex-A7 @1GHz                                                                                  |  |
| _2 Cache                                                         | -                                             | -                                                              | 128KB                                                                                                     | 512KB                                                                                                 | 512KB                                                                                                 |  |
| RAM                                                              | 128KB                                         | 128KB                                                          | 128KB                                                                                                     | 256KB                                                                                                 | 256KB                                                                                                 |  |
| 2 <sup>nd</sup> Core                                             | -                                             | -                                                              | -                                                                                                         | Cortex-M4                                                                                             | Cortex-M4                                                                                             |  |
| Flash Interface                                                  | MLC/SLC NAND Flash w/ 8-<br>bit RS, NOR Flash | SLC/MLC/Managed NAND Flash w/ 20-bit BCH                       | SLC/MLC/Managed NAND Flash w/<br>40-bit BCH                                                               | SLC/MLC/Managed NAND Flash<br>60-bit BCH, 8-bit RS                                                    | SLC/MLC/Managed NAND Flash 60-<br>bit BCH, 8-bit RS                                                   |  |
| DRAM<br>nterface                                                 | 150 MHz 16-bit DDR2,<br>mDDR, SDRAM           | 200 MHz 16-bit DDR2, LV-DDR2, mDDR                             | 400 MHz 16-bit DDR3/L, LPDDR2                                                                             | 533 MHz 32-bit DDR3/L, LPDDR2,<br>LPDDR3                                                              | 533 MHz 32-bit DDR3/L, LPDDR2,<br>LPDDR3                                                              |  |
| Display                                                          | 24-bit Parallel-640x480                       | 24-bit Parallel RGB-640x480                                    | 24-bit Parallel RGB-1366x768                                                                              | 24-bit Parallel RGB- <b>1920x1080</b><br>MIPI-DSI (2 Iane) 1.5Gbps                                    | 24-bit Parallel RGB-1920x1080<br>MIPI-DSI (2 lane) 1.5Gbps<br><b>EPDC</b>                             |  |
| maging                                                           | 1 overlay, alpha blending, panning            | <b>8 overlays</b> , alpha blending, scaling, rotation, CSC     | PXP – Scaling, Alpha Blending,<br>CSC, Dithering                                                          | PXP – Scaling, Alpha Blending,<br>CSC, Dithering.                                                     | PXP – Scaling, Alpha Blending,<br>CSC, Dithering                                                      |  |
| Camera<br>nterface                                               | Parallel Camera I/F -                         |                                                                | Parallel Camera I/F                                                                                       | Parallel Camera I/F,<br>MIPI-CSI                                                                      | Parallel Camera I/F,<br>MIPI-CSI                                                                      |  |
| CAN                                                              | x2                                            | x2                                                             | x2                                                                                                        | x2                                                                                                    | x2                                                                                                    |  |
| Ethernet                                                         | Single 10/100                                 | Dual 10/100 and L2 Switch                                      | Dual 10/100                                                                                               | Single 1Gb (AVB)                                                                                      | Dual 1Gb (AVB)                                                                                        |  |
| Audio                                                            | I2S                                           | I2S, S/PDIF                                                    | I2S, S/PDIF                                                                                               | MQS, 12S                                                                                              | MQS, I2S                                                                                              |  |
| USB HS port (Host/Device) HS<br>PHY x1,HS Host with FS<br>PHY x1 |                                               | HS port (Host/Device) with PHY x1,<br>HS port Host with PHY x1 | OTG with PHY x2                                                                                           | OTG with PHY x1<br>HOST with HSIC                                                                     | OTG with PHY <b>x2</b><br>Host with HSIC                                                              |  |
| SIM                                                              | x2                                            | -                                                              | x2                                                                                                        | x2                                                                                                    | x2                                                                                                    |  |
| PCIe                                                             | -                                             | -                                                              | -                                                                                                         | -                                                                                                     | Yes                                                                                                   |  |
| Security                                                         | y Tamper Detection, RNG HAB4, PRNG            |                                                                | Secure Boot/HAB, PRNG,<br>AES/3DES/Ellipitical Curve/RSA,<br>DPA protection, Up to 10 Tamper<br>Pins, OTF | Secure Boot/HAB, PRNG,<br>AES/3DES/Ellipitical Curve/RSA,<br>DPA protection, Up to 10 Tamper<br>Pins, | Secure Boot/HAB, PRNG,<br>AES/3DES/Ellipitical Curve/RSA,<br>DPA protection, Up to 10 Tamper<br>Pins, |  |
| Power                                                            | External                                      | Integrated PMIC w/ Charger                                     | Analog LDOs                                                                                               | Analog LDOs                                                                                           | Analog LDOs                                                                                           |  |



# i.MX 7Solo

#### Specifications:

•

- Package: 19x19@0.75mm BGA 12x12@0.4mm BGA\*
- Qualification: Consumer
  - Extended Consumer (-20C to 105C Tj)

(0C to 95C Tj)

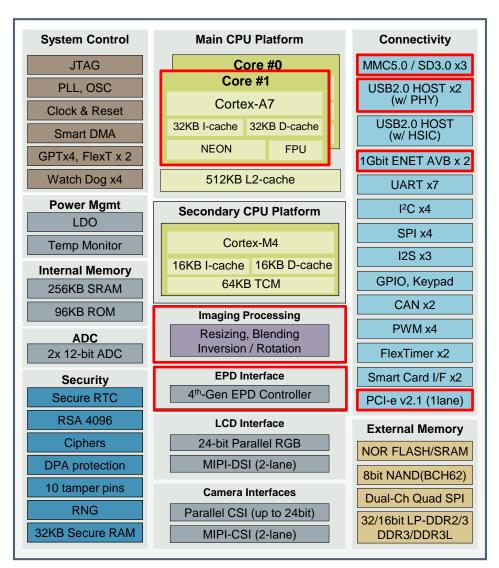
- 10yr lifetime at 100% duty cycle

#### Key Features and Advantages

- 800MHz, Cortex-A7, 32KB I/D, 512KB L2 Cache
- 200MHz Cortex M4, 16KB I/D, 64KB TCM
- Memory Support
- 16/32bit LP-DDR2/3, DDR3/L @ 533MHz
- Total of 256KB OCRAM
- 2x SDIO3.0/eMMC5.0, 8-bit NAND (BCH62)
- Display / Camera
- 24-bit Parallel LCD and MIPI DSI (2-lane)
- Parallel (up to 24-bit) and MIPI CSI (2-lane)
- I/O
- 1x USB 2.0 OTG w/ PHY + 1xUSB 2.0 HOST/HSIC
- 1x GigE Ethernet Ports-AVB;
- Security module enabling PCI 4.0 compliance
- \* Feature limited (1 ADC, 4 tamper pins)

| System Control Main CPU Platform Connectivity |                        |                   |                          |  |  |  |  |  |  |
|-----------------------------------------------|------------------------|-------------------|--------------------------|--|--|--|--|--|--|
| JTAG                                          | Co                     | MMC5.0 / SD3.0 x2 |                          |  |  |  |  |  |  |
| PLL, OSC                                      | Corte                  | ex-A7             | USB2.0 OTG               |  |  |  |  |  |  |
| Clock & Reset                                 | 32KB I-cache           | 32KB D-cache      | (w/ PHY)                 |  |  |  |  |  |  |
| Smart DMA                                     | NEON                   | FPU               | USB2.0 HOST<br>(w/ HSIC) |  |  |  |  |  |  |
| GPTx4, FlexT x 2                              |                        |                   | 1Gbit ENET AVB           |  |  |  |  |  |  |
| Watch Dog x4                                  | 512KB L                | 2-cache           | UART x7                  |  |  |  |  |  |  |
| Power Mgmt                                    | Secondary C            | l²C x4            |                          |  |  |  |  |  |  |
|                                               | Corte                  | ov-M∕             | SPI x4                   |  |  |  |  |  |  |
| Temp Monitor                                  |                        | 16KB D-cache      | I2S x3                   |  |  |  |  |  |  |
| Internal Memory<br>256KB SRAM                 |                        | TCM               | GPIO, Keypad             |  |  |  |  |  |  |
| 96KB ROM                                      | Imaging P              | rocossing         | CAN x2                   |  |  |  |  |  |  |
| ADC                                           | Resizing,              | 0                 | PWM x4                   |  |  |  |  |  |  |
| 2x 12-bit ADC                                 | Inversion              | FlexTimer x2      |                          |  |  |  |  |  |  |
| Security                                      |                        |                   | Smart Card I/F x2        |  |  |  |  |  |  |
| Secure RTC                                    |                        |                   |                          |  |  |  |  |  |  |
| RSA 4096                                      | RSA 4096 LCD Interface |                   |                          |  |  |  |  |  |  |
| Ciphers                                       | 24-bit Par             | External Memory   |                          |  |  |  |  |  |  |
| DPA protection                                | MIPI-DSI               | 8bit NAND(BCH62)  |                          |  |  |  |  |  |  |
| 10 tamper pins                                | Camera I               | Dual-Ch Quad SPI  |                          |  |  |  |  |  |  |
| RNG                                           | Parallel CSI           | (up to 24bit)     | 32/16bit LP-DDR2/3       |  |  |  |  |  |  |
| 32KB Secure RAM                               | MIPI-CSI               | (2-lane)          | DDR3/DDR3L               |  |  |  |  |  |  |




# i.MX 7Dual

#### Specifications:

- Package: 19x19@0.75mm BGA 12x12@0.4mm BGA\*
- Qualification: Consumer (0C to 95C Tj)
  - Extended Consumer (-20C to 105C Tj)
  - 10yr lifetime at 100% duty cycle

#### Key Features and Advantages

- 1 GHz, Cortex-A7, 32KB I/D, 512KB L2 Cache
- 200MHz Cortex M4, 16KB I/D, 64KB TCM
- Memory Support
- 16/32bit LP-DDR2/3, DDR3/L @ 533MHz
- Total of 256KB OCRAM
- 3x SDIO3.0/eMMC5.0, 8-bit NAND (BCH62)
- Display / Camera
- 24-bit Parallel LCD and MIPI DSI (2-lane)
- Parallel (up to 24-bit) and MIPI CSI (2-lane)
- EPDC
- I/O
- 2x USB 2.0 OTG w/ PHY + 1xUSB 2.0 HOST/HSIC
- 2x GigE Ethernet Ports-AVB;
- PCle 2.1
- Security module enabling PCI 4.0 compliance





<sup>\*</sup> Feature limited (1 ADC, 4 tamper pins)

Growing number of embedded use cases require concurrent execution of isolated and secure software environments





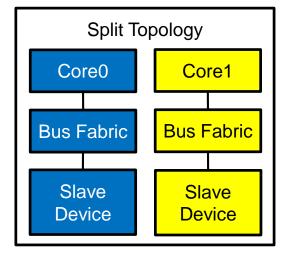


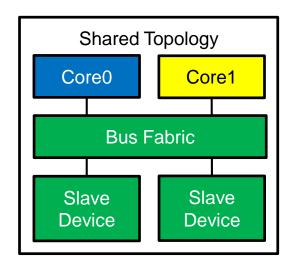


# **HMP Challenges – Synchronization and Communication**

- Interprocessor Synchronization
  - Access to shared memory and peripherals must be synchronized
  - Development of cooperative software is more challenging than SMP systems due to separate development environments
  - Hardware support needed to enforce the development of cooperative software
- Interprocessor Communication
  - Robust and efficient interprocessor communication is needed

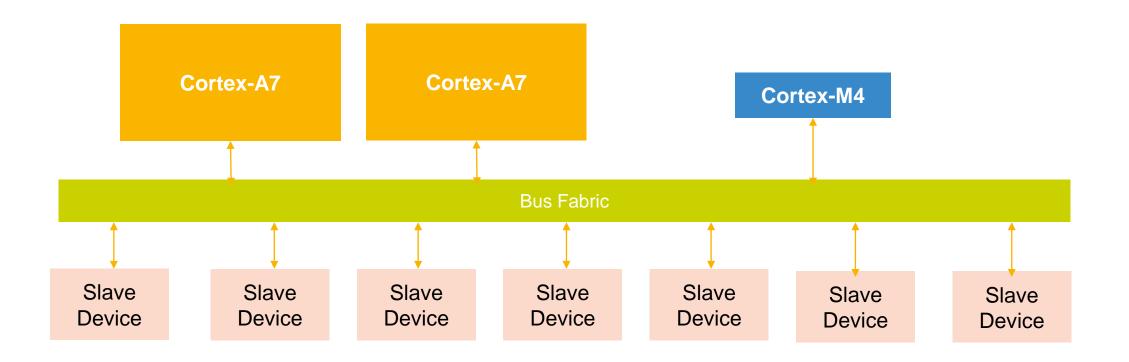



# **HMP Challenges – Resource Partitioning and Protection**


### Split bus topology

- Provides immutable isolation of resources
- Lacks flexibility to repartition the resources to adapt to new use cases
- Resources such as memory may need to be duplicated

### Shared bus topology


- Provides flexibility to repartition the resources for new use cases
- Memory partitioning necessary to specify shared and isolated regions
- Potential issues with isolation and protection of resources



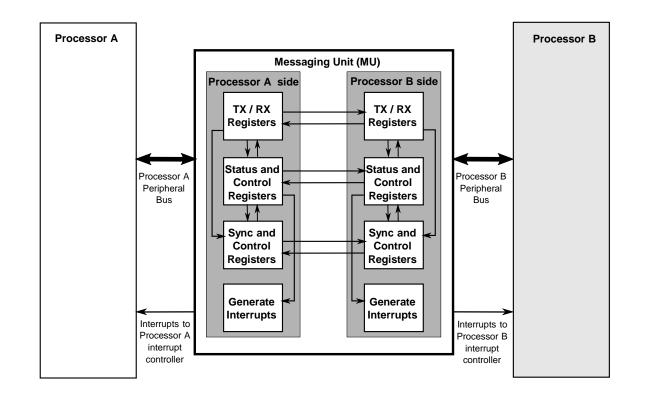




## Heterogeneous Multicore Processing (HMP) Shared Topology



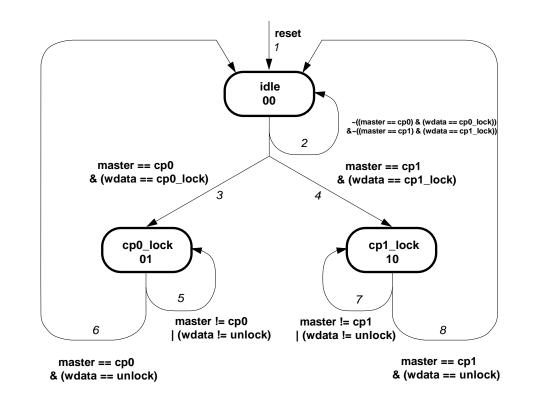



# **IPC Hardware Summary**

| Hardware            | Features                                                                                 |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Messaging Unit (MU) | Mailbox registers to send/receive messages<br>Provided interprocessor interrupts         |  |  |  |  |  |  |
| SEMA4               | Hardware-based general-purpose semaphore module                                          |  |  |  |  |  |  |
| Shared Memory       | Bus topology allows shared memory<br>RDC and CSU can provide memory protection/isolation |  |  |  |  |  |  |
| Exclusive Access    | ARMv7-A and ARMv7-M defines exclusive access instructions (LDREX/STREX)                  |  |  |  |  |  |  |



# Messaging Unit (MU)


- Proven IP from cellular baseband SoCs
- Messaging control by interrupts or polling
- 4 RX/TX registers on each side
- 12 interrupt requests (IRQs) per side
  - 4 RX register full IRQs
  - 4 TX register empty IRQs
  - 4 general-purpose IRQs
- 3 general-purpose flags per side



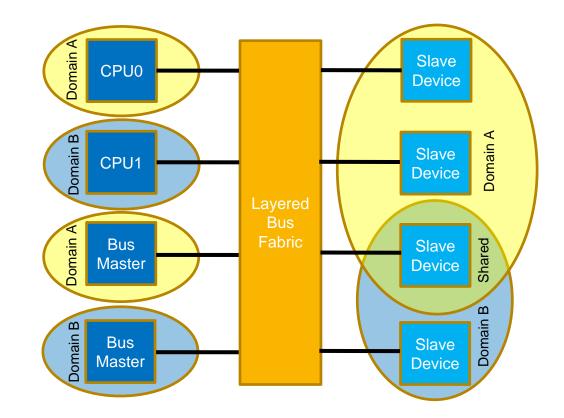


# Semaphore (SEMA4)

- Provides a hardware mechanism for cooperative software to safely share resources in HMP systems
- Separate module from RDC semaphore
- Supports 16 general-purpose hardware semaphores
- Semaphore can only be unlocked by locking processor
- Optional interrupt notification after failed lock attempt to indicate when semaphore is unlocked
- Software conventions still required to ensure only processor with semaphore lock can access shared resources






# **Exclusive Access**

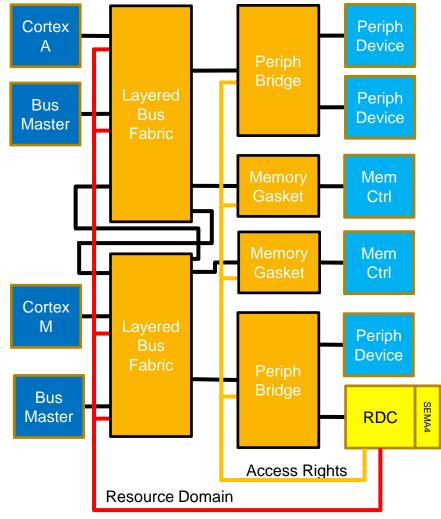
- Cortex-A (ARMv7-A) and Cortex-M (ARMv7-M) support exclusive access instructions (LDREX/STREX).
- Exclusive access bus signals generated by the CPUs are connected to monitors in the memory gaskets to support load/store exclusive instructions.
- Exclusive access is widely used for synchronization in SMP systems, but is applicable to HMP systems that have architectural support.
- For HMP systems, the memory referenced during exclusive accesses must be configured such that the access will occur at the point of coherency for the CPUs.



# **Resource Domains**

- Use resource domains to partition the system
  - Masters are assigned to a resource domain
  - Slave access permissions are defined per resource domain
  - Memory region access permissions are defined per resource domain
- Sideband signals of bus fabrics carry resource domain ID

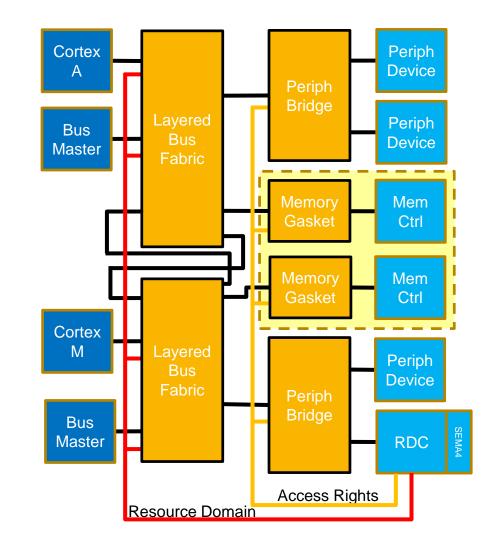





# **Resource Domain Controller (RDC)**

- Resource Domain Controller (RDC) is a new module integrated into next-gen i.MX devices
- RDC provides a centralized programming model to configure isolation and sharing of system resources

#### • Key RDC features:


- Assignment of master resources (CPUs and bus mastering peripherals) to a **resource domain**
- Configuration of read/write access for slave peripherals based on resource domain
- Partitioning of memory into regions that can have separate domain access controls
- Configuration of read/write access for memory regions based on resource domain
- Integral semaphore hardware enables cooperative software to safely access peripherals with access by multiple domains
- Optional enforcement of semaphore usage to reject accesses by master resources that have not obtained the semaphore lock





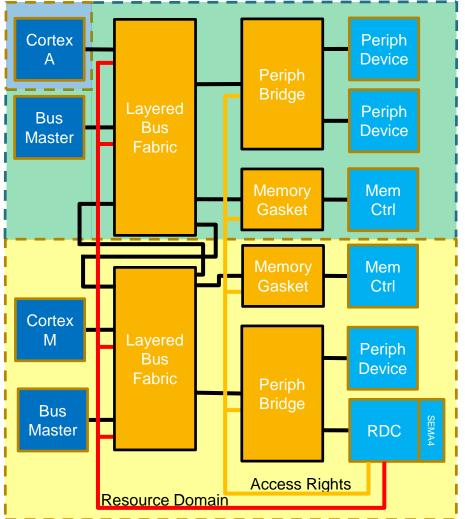
# **Shared Memory**

- Shared bus topology allows sharing of internal/external memories
- RDC hardware can be used to partition each memory individually and restrict access based on resource domain





# **RDC** Initialization


- RDC should be isolated to ensure that only a trustworthy master resource can configure the registers
- Recommended options for initialization of RDC:
  - Configure RDC during secure boot and lock configuration registers from further modification
  - Configure the RDC to accessible only from CA9 and use CSU to further restrict access to secure supervisor software (TrustZone)
  - Configure the RDC to be accessible only from trustworthy domain and use CSU to further restrict access to supervisor software



# **Power Domain Partitioning**

- System resources are partitioned into multiple power domains
- Power domains with unused resources can be powered down under software control to save leakage
- Cortex-M and low-power peripherals are located in a separate low-leakage domain to enable low-power processing







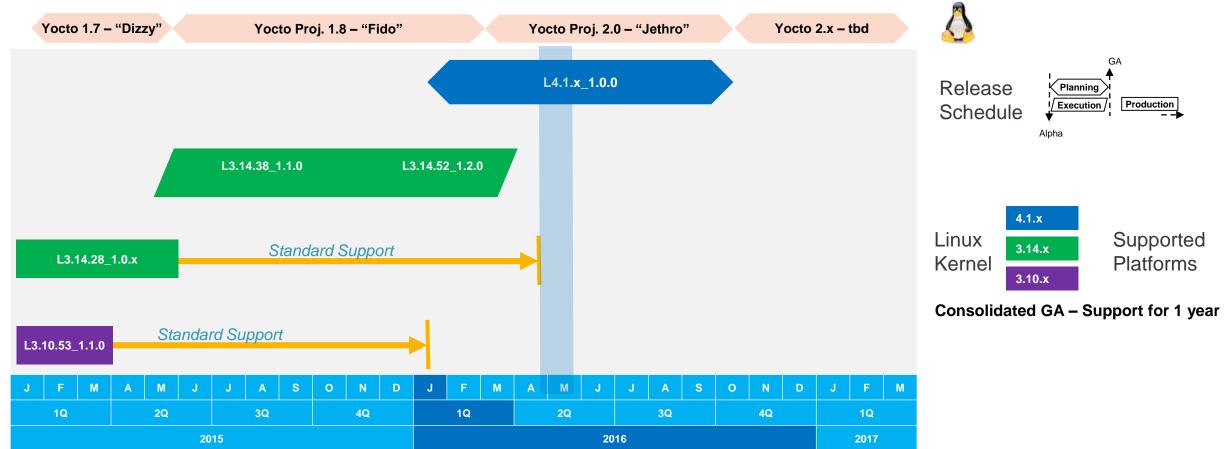
# Summary of i.MX HMP Features

| Feature                                         | HMP Benefits                                                                                                                                                                                                                                            |  |  |  |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Integration of Cortex-A and Cortex-M processors | <ul> <li>Execute rich OS on Cortex-A and real-time software on Cortex-M</li> <li>Cortex-M enhances low-power capability</li> <li>Use Cortex-M to increase system integrity and security</li> <li>Leverage proven Cortex-M software solutions</li> </ul> |  |  |  |  |  |
| Shared Bus Topology                             | <ul><li>Efficient use of system resources</li><li>Flexibility to adapt to new use cases</li></ul>                                                                                                                                                       |  |  |  |  |  |
| Resource Domain Controller                      | <ul> <li>Allows software to partition peripherals and memories into resource<br/>domains with assignable access permissions</li> <li>Integrated hardware semaphore facilitates safe sharing of peripherals</li> </ul>                                   |  |  |  |  |  |
| Messaging Unit (MU)                             | Flexible interprocessor communication                                                                                                                                                                                                                   |  |  |  |  |  |
| Hardware Semaphore<br>(SEMA4)                   | HMP synchronization to shared resources                                                                                                                                                                                                                 |  |  |  |  |  |
| Shared Memory                                   | Efficient interprocessor communication                                                                                                                                                                                                                  |  |  |  |  |  |
| Power Domain Partitioning                       | Flexibility to enable low-power processing                                                                                                                                                                                                              |  |  |  |  |  |



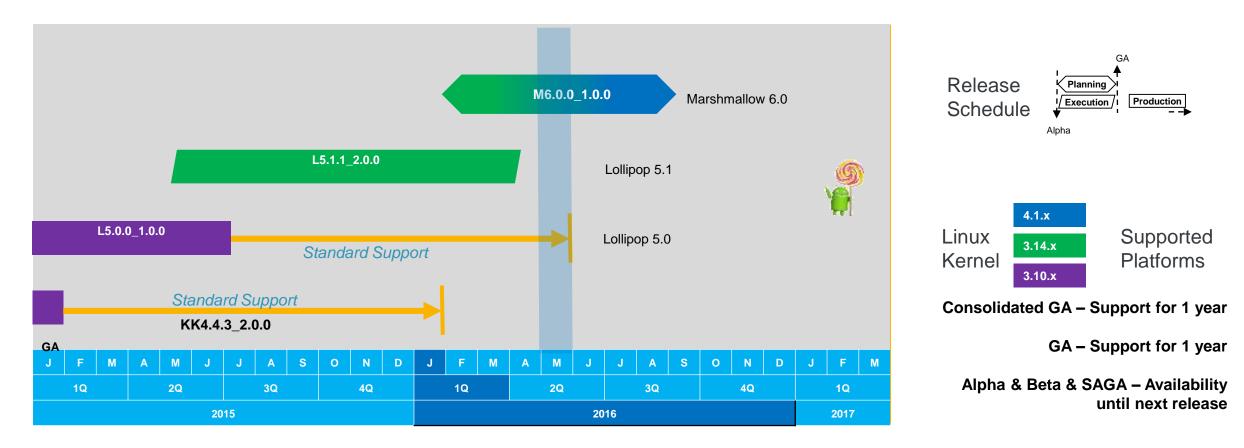
# SOFTWARE




## i.MX 7: Software





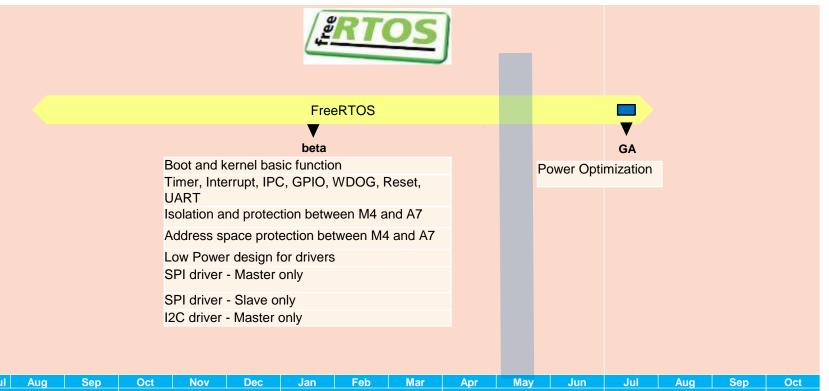



# Linux Roadmap





# **Android Roadmap**






# i.MX 7 FreeRTOS Roadmap

## Supported Peripherals

- ADC
- CCM
- GPIO
- I2C
- MU
- UART
- WDOG
- ECSPI
- FlexCAN
- GPT
- Resource Domain Control (RDC)
- SEMA4



| Jul  | Aug   | Sep | Oct | Nov | Dec  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct |
|------|-------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|      | 3Q 4Q |     |     |     | 1Q   | 2Q  |     |     | 3Q  |     |     | 4Q  |     |     |     |
| 2015 |       |     |     |     | 2016 |     |     |     |     |     |     |     |     |     |     |
|      |       |     |     |     |      |     |     |     |     |     |     |     |     |     |     |

i.MX 7 SABRE SDB

GA – Support for 1 year Alpha & Beta – Support until next release



# **FreeRTOS Key Features**

- From their website
- "The Market Leading, De-facto Standard and Cross Platform Real Time Operating System RTOS)."
- Multiple tasks with priority support
- Priority-based pre-emptive scheduler
- Semaphores/Mutexes (w/ priority inheritance)
- Message Queues and Message Passing
- Power Saving in Idle Modes



# **FreeRTOS – Usability Features**

- Full Source Code
- Small (<10KB) code size (configurable based on options)</li>
- Kernel Aware Debugging in IDE
- Example FreeRTOS projects for RTOS features available
- Most configuration occurs via header file (FreeRTOSConfig.h in the FreeRTOS case)



# **FreeRTOS Unique Features**

- Task notifications: An RTOS task notification is an event sent directly
  - to a task that can unblock the receiving task, and optionally update the receiving task's notification value.
- Recursive mutex: A mutex used recursively can be 'taken' repeatedly by the owner
- Stack overflow hook/notification: There are two optional mechanisms that can be used to assist in the detection and correction of stack overflow events.
- Deferred interrupt handling: A mechanism is provided that allows the interrupt to return directly to the task that will subsequently execute the pended function.
- Blocking on multiple objects: <u>Queue sets</u> are a FreeRTOS feature that enables an RTOS task to block (pend) when receiving from multiple queues and/or semaphores at the same time.



# **FreeRTOS Licensing**

- Open Source (LGPL), Free of charge, no royalties
- Uses a modified GPL to allow you to distribute a combined work that includes FreeRTOS without being obliged to provide the source code for proprietary components
- <u>OpenRTOS</u> available if want to modify kernel without releasing changes

Details at <a href="http://www.freertos.org/a00114.html">http://www.freertos.org/a00114.html</a>



# ENABLEMENT



# **NXP Full Solutions**

┿

## i.MX 7

- 1 GHz ARM<sup>®</sup> Cortex<sup>™</sup>-A7
  - NEON™ coprocessor
- ARM<sup>®</sup> Cortex<sup>™</sup>-M4,
- Electronic Paper Display (EPD) in addition to LCD.
- Targeting a broad range of applications including many low power, portable consumer devices

# PMIC

- Integration of NXP'sPMIC chip set with i.MX processor for optimization of power efficiency and software/hardware integration
- One-stop customer service and support during development phase to enable the design process

## Sensors

- MEMS gyroscopes for reliable sensing and measuring
- Magnetometers: measuring the magnitude and direction of magnetic fields
- Pressure Sensing Devices, composed of single silicon, piezoresistive devices

#### i.MX 7 SABRE Board

Development platform:

- Single-board evaluation kit
- Linux<sup>®</sup> and Android<sup>™</sup> Board Support Packages are available out of box and updates through NXP.com

### A Single Solution for Streamlined Performance

╋



# i.MX Software and Support

#### Professional Premium and Commercial Support **Professional Services** Managing Skills Gaps & Engineering Capacity SW&HW Services, GFX, Linux Kernel expertise, **Premium Support** PRIOBI Time to Market Acceleration **Risk Reduction Dedicated Resources Commercial Software** Services PEG, Wireless Charging, Miracast Free Enablement - Audio Video Bridge, Tessellation RLE **Complimentary Software & Tools** Jump Start your Design Kinetis Design Studio & SDK – FreeRTOS, Linux<sup>®</sup>, Android<sup>™</sup> BSP **Complimentary Support** - Communities (Online) Technical Information Center (TIC)

- Distributor Apps Engineer (DFAE)
- Field Application Engineer (FAE)

- Reducing project risk
- Increasing team efficiency
- Securing time to market

NXP ref. Platform

**Customer Platform** 

Time to Market acceleration



**Jump Start** 





# i.MX 7D SABRE



# i.MX 7: SABRE Platform Key Features

#### Processor

- NXP i.MX 7Dual
  - Dual Cortex™-A7 @1GHz
  - 512KB L2\$
- NXP PF3000 PMIC

#### Memory

- 1 GB DDR3
- eMMC5.0 footprint
- QuadSPI Flash
- SD/MMC socket
- NAND footprint

#### Display/Camera Connectors

- HDMI
- Parallel LCD
- MIPI-DSI
- Electronic Paper Display
- MIPI-CSI (camera)

#### Wireless

- Wifi (802.11ac) onboard
- BT4.0 / BLE onboard

#### Audio

- Audio HP Jack
- External speaker connection



#### Connectivity

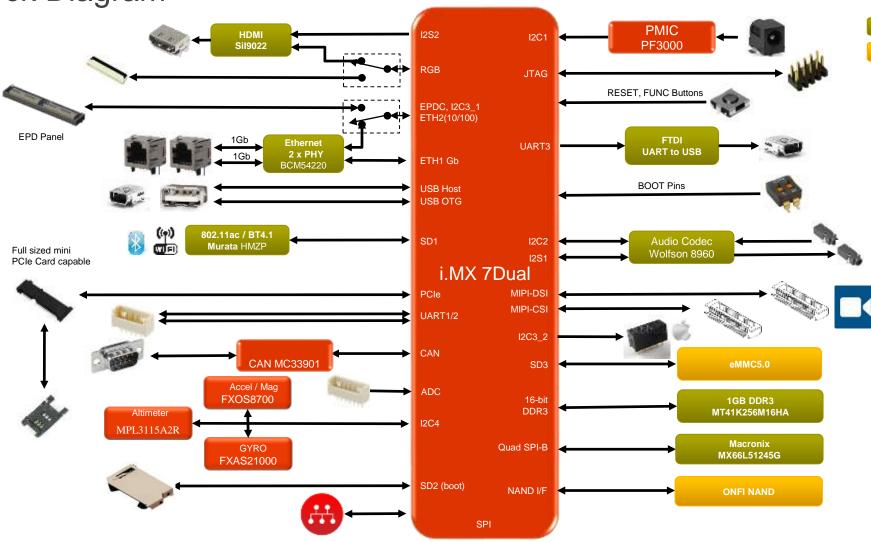
- USB Host connectors
- microUSB OTG connector
- 2 ETH (1Gbit) Receptacle
- Full Mini PCIe socket
- SIM Card slot
- CAN (DB-9)
- GPIO
- MikroBus expander

#### Debug

- JTAG connector
- UART via USB

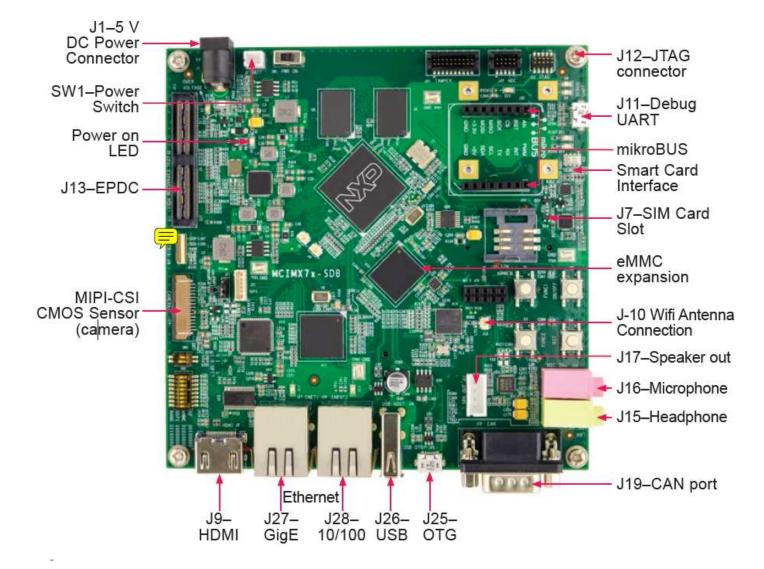
#### Sensors

- FXOS8700 three-axis digital accelerometer/Magnetometer
- MPL3115A2R Altimeter/Pressure sensor
- FXAS21000 three-axis digital Gyroscope


#### Tools & OS Support

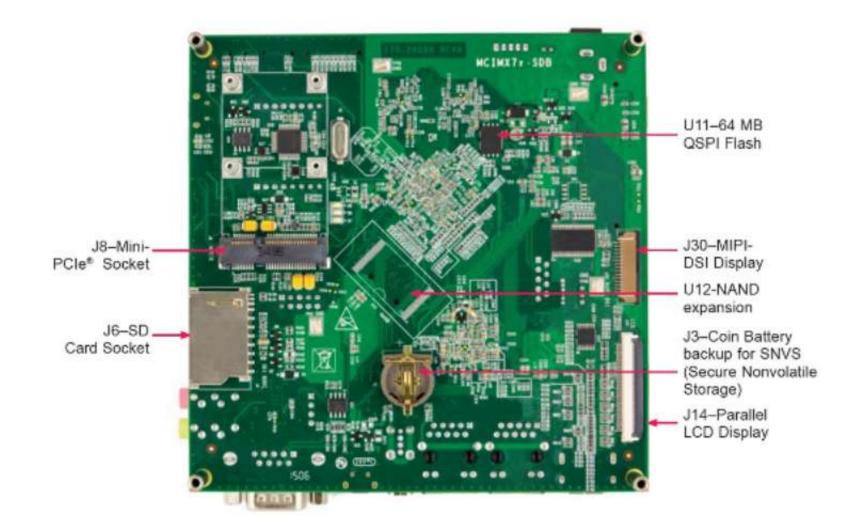
- $\bullet \ Linux^{{}_{{}^{\!\!R}}}$
- Android™
- FreeRTOS




# i.MX 7 Platform

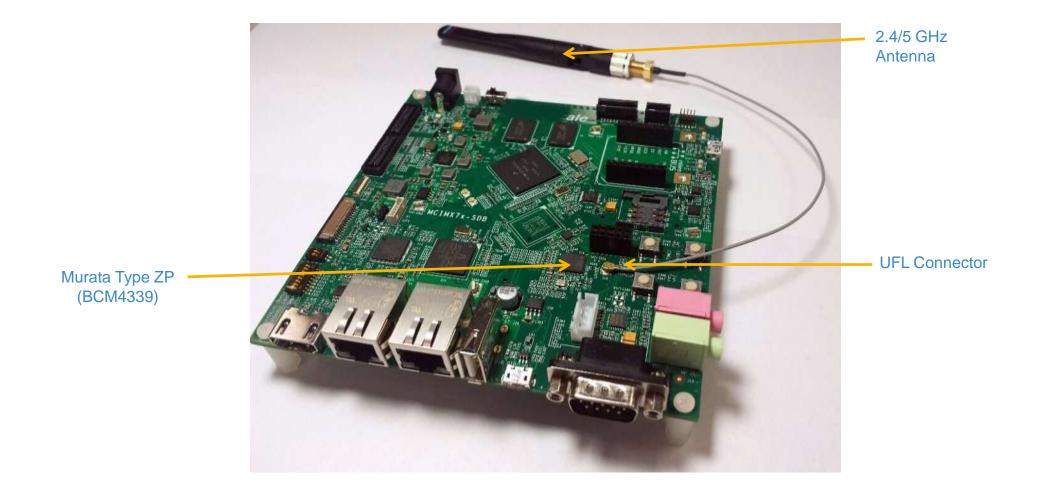
**Block Diagram** 




Populated by default Footprint only, unpopulated by default

# **SABRE Top Side**






# **SABRE Bottom Side**





# NXP i.MX 7D EVK with Wi-Fi/BT Module







# SECURE CONNECTIONS FOR A SMARTER WORLD

# **RPMSG DEMO**



# **Virtual TTY Demo**

| 🖉 COM11 - PuTTY 🗖 🗖 🖾                                                 | 🛃 COM12 - PuTTY 🗖 🔲 🕱                                            |
|-----------------------------------------------------------------------|------------------------------------------------------------------|
| starting statd: done                                                  | RPMSG String Echo Demo                                           |
| Starting advanced power management daemon: No APM support in kernel   | RPMSG Init as Remote                                             |
| (failed.)                                                             | init M4 as REMOTE                                                |
| NFS daemon support not enabled in kernel                              | Name service handshake is done, M4 has setup a rpmsg channel [1> |
| Starting syslogd/klogd: done                                          | 1024]                                                            |
| * Starting Avahi mDNS/DNS-SD Daemon: avahi-daemon                     | Get Message From A7 : "hello world!" [len : 12] from slot 0      |
| done.                                                                 |                                                                  |
| Starting Telephony daemon                                             |                                                                  |
| Starting Linux NFC daemon                                             |                                                                  |
| Starting OProfileUI server                                            |                                                                  |
| Running local boot scripts (/etc/rc.local).                           |                                                                  |
| Freescale i.MX Release Distro 3.14.52-1.1.0 imx7dsabresd /dev/ttymxc0 |                                                                  |
| imx7dsabresd login: ASoC: HiFi startup failed: -16                    |                                                                  |
| ASoC: HiFi startup failed: -16                                        |                                                                  |
| fsl-sai 308a0000.sai: ASoC: can't open interface 308a0000.sai: -16    |                                                                  |
| fsl-sai 308a0000.sai: ASoC: can't open interface 308a0000.sai: -16    |                                                                  |
| ASoC: HiFi startup failed: -16                                        |                                                                  |
| fsl-sai 308a0000.sai: ASoC: can't open interface 308a0000.sai: -16    |                                                                  |
| libphy: 30be0000.etherne:00 - Link is Up - 1000/Full                  |                                                                  |
| IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready               |                                                                  |
| Freescale i.MX Release Distro 3.14.52-1.1.0 imx7dsabresd /dev/ttymxc0 |                                                                  |
| imx7dsabresd login: root                                              |                                                                  |
| root@imx7dsabresd:~# modprobe imx rpmsg tty                           |                                                                  |
| $imx_rpmsg_tty rpmsg0: new channel: 0x400 -> 0x1!$                    |                                                                  |
| Install rpmsg tty driver!                                             |                                                                  |
| root@imx7dsabresd:~#                                                  |                                                                  |



#### ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE, MIFARE Classic, MIFARE DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale, the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2015–2016 NXP B.V.

