Understanding the Autonomous System

Christopher Chong
Director of Product Manager, Automotive Microcontrollers \& Processors

September 2018 | APF-AUT-T3319

SECURE CONNECTIONS FOR A SMARTER WORLD

HIT BY A VEHICLE TRAVELING AT:

5 OUT OF 10 PEDESTRIANS SURVIVE

HIT BY A VEHICLE TRAVELING AT:

HIT BY A VEHICLE TRAVELING AT:

1.3 MILLION

Road traffic deaths
occur every year -........

- A.

\&
ONLY 1 OUT OF 10 PEDESTRIANS SURVIVES

OUT OF ALL ACCIDENTS GLOBALLY, 90\% are caused by HUMAN ERROR

Enabling Self-driving Cars

Better senses than the human driver.

Automation of driving decisions.

Architecting the Car of the Future

More than a brain on four wheels. The core of safe and secure mobility.

@ SENSE

浸 THINKLEVERAGING
Leadership in processing, security and mobile

NXP Core Values to Solve the Current Challenges of the Market

Computation Performance

Lead the heterogeneous compute performance with purpose built processors, optimized for power

Safety

No compromise on safety. Progression from ASIL to enhanced dependability and fail operational modes support

Ease of Use

Based on OPEN standards, portable and relocatable
Modularity Scalability
Built on 'clear functionally separated extensible' entities

Autonomous Driving

Higher Levels of Automation: Higher
 Computation, Storage \& Sensors

Typical Vehicle Architecture

SAE J3016: driving automation levels

- DDT : Dynamic Driving Tasks
- ODD: Operational Design Domain
- Lateral, Longitudinal movement control
- OEDR: Object Event and Detection and Response
- DDT- FALLBACK
- MINIMAL RISK CONDITION
- REQUEST TO INTERVENE: Receptivity (of the driver)

Speciffied ODD No ODD

DDT-Fallback is the DRIVER			DDT-Falloack is the ADS MAY Request to intervene	
DDT fallback-ready user must be immediately receptive		$\begin{gathered} \text { Request to } \\ \text { intervene (} x x \text { Secs) } \end{gathered}$		
Partial OEDR Driver MUST complement it		Complete OEDR FULL perception and response		
Control of Lateral OR Longitudinal	Control of Lateral AND	gitudinal		
Sustained automation system		AUTOMATED DRIVING SYSTEM (ADS)		

Autonomous Drive - Mobile Robot Systems

General Structure of ADS

Perception \quad Localization and Mapping Motion and Planning
What is around me?
What is moving?
What is static?
Will I hit anything?
What will I hit?

Environment Perception scope

Sensors

- Static layer: 3D static objects (from sensors) and road elements (from sensors and Map)
- Dynamic layer: Independently moving objects (cars, pedestrians, bicycles...).
- Localization layer: Accurate vehicle localization (pose)
- MAP-driven approaches: Control the vehicle's pose in relation to a global coordinate system.
- The map data is used to provide information about the stationary environment, especially about the course of the lanes.
- Even more detailed maps are used to improve the vehicle's global map-relative position
- Perception-driven approaches: Perceive the complete environment with on-board sensors.
- Sensors data are fused together to determine accurate distances and speed of relevant objects.

Perception - LIDAR

LIDAR

- Range up to 100-200 meters
- Field of View FOV up to 360 deg Horizontal 0-30 deg Vertical
- Accuracy: 5 to $1.5 \mathrm{~cm}, 3-0.1$ degree

Perception - Radar

RADAR

- short range (30-70 meters)
- long range (70-200+ meters)
- FOV V:5degree H: 60 degree
- accuracies $5 \mathrm{~cm}, 0.5 \mathrm{~m} / \mathrm{Sec}(\sim 18 \mathrm{Km} / \mathrm{hr}$), 1-3 deg

targets

Perception - Camera

CAMERA

- 30/60/120 Megabyte/sec
- Range: 3 to 100 meters
- Field of View strongly depend on range

Resolution depends on sensor/optics/distance (pix $3.75 \mathrm{um}, \mathrm{f}: 5.7 \mathrm{~mm}, \mathrm{~d}: 70 \mathrm{~m} \sim 50 \mathrm{~mm}$)

Sensors for Perception

- 3-D map of the world around you. Can generate ROAD MAP
- Works independent of the ambient light
- It is robust against interference
- Is virtually immune to problematic visibility and lighting conditions
- Has a good accuracy in longitudinal distance measurement
- return speed and distance
- VERY CHEAP

[^0]- Expensive (today)
- In hot conditions, Lidar doesn't distinguish between a big dust cloud and a brick wall
- Limited information about texture or color of surfaces
- Challenged for identifying non metallic objects.
- No information about texture or color (no TL, no TSR)
- Has poor accuracy in lateral measurement

```
- Low range
- Low speed
- Low resolution
```

- Challenged by lights conditions
- Challenged by weather conditions
- Need Multiple-camera systems to provides reliable 3D information
- Difficult interpretation

Perception

strongly depends on the ADS ODD and level.
Long Range

Short Range

 0-3 meters

- SRR radar
- Cameras
- Ultrasonic

Mid Range

- MRR radar
- Cameras
- LIDAR

Highway Pilot - radar based

High Speed Cross traffic - Radar

Sensor Diversity - Cameras

Camera constellation

$\mathrm{FOV} \pm 12.5^{\circ} / \sim 135 \mathrm{~m}(8 \mathrm{MP})$ $1 \sim 96 \mathrm{~m}(4 \mathrm{MP})$ $1 \sim 70 \mathrm{~m}(2 \mathrm{MP})$

- Objects (car, pedestrian, bicycles)
- Lanes
- Traffic Lights
- Debris
- Disparity with Main to get redundancy

- Objects (car, pedestrian, bicycles)
- Lanes
- TSR, AHB, Traffic Lights
- Path delimiter
- Used for Lateral control assist
- CLOSE Objects (car, pedestrian, bicycles)
- Lanes for tights curves
- TSR, AHB, Traffic Lights
- Cut in detection
- First in row Traffic Light

High-speed Multisensor svstem

Architectures Topologies

Distributed

No central fusion unit

: redundant ECUs

- Each ECU does fusion at object level
- Each ECU knows all others data
- Lower BW for 'fused' data to be exchanged
- Simultaneity required

Increase sensors costs and complexity

Hybrid
Central fusion \& smart sensors

: flexible

and Scalable

- Leverage Smart Sensing and tocal Aggregation with a scalable Central Fusion
- Manages costs of Data distribution vs. precision for fusion
- Distributes effort and eases interoperability

Central Super computer
Central server and naïve sensors

: complexity vs. cost

- Requires industry level interoperability
- Early Fusion highly wished but little done to date due to complexity
- Best Sensor Data fusion in theory
- Extra large BW for raw data to be TX-ed
- Sensors are simplified and cheaper potentially (but Sensors vendors fight against this trend)

Sensor Sub-System Architectures

Environment Perception scope

SAPS

- Static layer: 3D static objects (from sensors) and road elements (from sensors and Map)
- Dynamic layer: Independently moving objects (cars, pedestrians, bicycles...).
- Localization layer: Accurate vehicle localization (pose)
- MAP-driven approaches: Control the vehicle's pose in relation to a global coordinate system.
- The map data is used to provide information about the stationary environment, especially about the course of the lanes.
- Even more detailed maps are used to improve the vehicle's global map-relative position
- Perception-driven approaches: Perceive the complete environment with on-board sensors.
- Sensors data are fused together to determine accurate distances and speed of relevant objects.

Localization example

GPS/IMU can be used

- GPS accurate at 1-5 m and slow update
- IMU inaccurate and fast update

Cameras can be used for localization as well considering an EGO Motion estimation (via stereo cameras or Mono Optical flow) and feature matching. Approach very sensitive to light.

Lidar can also be used and compared with HDMAP using Particle Filters

Wheel Odometry

Dead Reckoning is the process of calculating vehicle current position using a previously determined position through known course and velocity information over given length of time.
The most simplistic way is Wheel encoders to measures wheel rotation and/or steering orientation. The idea is to integrate over time that also cumulate the errors.
Fusing them with other sensors we can improve the accuracy.
Wheel odometry suppose rotation is translated to linear displacement. That
 suppose DRIFT will introduced further errors:

- Systematic errors like change in wheel diameter. It accumulates constantly.
- Non-systematic errors: uneven floor, wheel slippage due to oil or acceleration. May appear suddenly and add huge errors.

Detection and Classification

Autonomous vehicle share road with many other traffic participants.
There are also obstacles, lane dividers, and many other objects on the road Fast and reliable detection is crucial for safety reasons.

Detection and classification can also be based on Lidar and Radar but mostly rely on Vision.

Machine Learning and Classification

Test Image

Conv. Neural Network

Each neuron receives some inputs, performs a dot product and optionally follows it with a non-linearity.

AlexNet (2012)

1. Region Proposal (R-CNN); e.g. using 3×3 sliding windows, different scales (1:1, 1:2,2:1) of $3 \times 3=9$ combination are considered. On a 1000×600 this is 20000 hypothesis. CNN will make this very efficient and reduce redundancy (max suppression) to ~2000 proposals.
2. The proposed window is projected into a fix-size feature map by a ROI pooling layer

Semantic Segmentation

Parsing image from camera into semantic meaningful segment gives autonomous vehicle structured understanding of its environment

Semantic segmentation predicts classes labeling dense part of the image.

Environment Perception scope

SAPS

Traffic Prediction

Traffic Prediction

Predict the behavior of the detected perception objects in the near future.
Output spatial-temporary trajectory points.

Traffic Prediction is trying provide for the detected dynamic objects 2 attributes:

- Kinematic: Considering simple physical models (different for different objects) an immediate prediction related with attributes like position, velocity, heading, acceleration.... can be done. Result is in practice a predicted trajectory for each detected moving object. This module can be implemented on the perception side or in the planner side, depending on the nature of the sensors and the fusion mechanism.
- Behavior: the objective of T.P. is not just immediate prediction given the physical attributes but more about a behavioral level that span for a periods of few seconds ($5+$ secs). This is where machine learning based approach are mostly used.

Traffic Prediction - Kinematic

Traffic Prediction - Kinematic

Model of pedestrian motion
$x_{k+1}=f\left(x_{k}\right)$

$$
\begin{aligned}
& p x_{k+1}=p x_{k}+v x_{k} * \Delta t \\
& p y_{k+1}=p y_{k}+v y_{k} * \Delta t \\
& v x_{k+1}=v x_{k} \\
& v y_{k+1}=v y_{k}
\end{aligned}
$$

Model is a physical approximation of real world

Traffic Prediction - Kinematic

Model of pedestrian motion
 of real world event

Traffic Prediction - Kinematic

Measurements (from sensor)

$$
\begin{gathered}
\boldsymbol{z}_{\boldsymbol{k}}=\boldsymbol{h}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)+\boldsymbol{N} \mathbf{z} \\
\text { Lidar } \\
\mathbf{z}_{\boldsymbol{k}}=\binom{p x_{k}}{p y_{k}}
\end{gathered}
$$

Model of pedestrian motion

deterministic

$$
\left\{\begin{array}{l}
p x_{k+1}=p x_{k}+v x_{k} * \Delta t+N x \\
p y_{k+1}=p y_{k}+v y_{k} * \Delta t+N y \\
v x_{k+1}=v x_{k}+N v x \\
v y_{k+1}=v y_{k}
\end{array}\right.
$$

Model is a physical approximation of real world event

How I can adjust my prediction with the Information coming from the sensors?

BAYES FILTER

Object Tracking

- Object of tracking is to estimate objects state such location, speed and acceleration aver time.
- ADS need to track a lot of objects to maintain distance, predict trajectory and avoid them.
- Tracking is formulated as a sequential Bayesian filtering problem.
- Prediction Step: Based on PRIOR time step predict current state based on model
- Correction Step: Given predicted obj state at current time and sensors observation a POSTERIOR probability density of the state is calculated at current time

Object Tracking - BAYES FILTER

- Object of tracking is to estimate objects state such location, speed and acceleration aver time.
- Tracking is formulated as a sequential Bayesian filtering problem.
- Prediction Step: Based on PRIOR state time step and model predict the current state

Object Tracking - BAYES FILTER

- Object of tracking is to estimate objects state such location, speed and acceleration aver time.
- Tracking is formulated as a sequential Bayesian filtering problem.
- Prediction Step: Based on PRIOR state time step and model predict the current state
- Correction Step: Given predicted obj state at current time and sensors observation a probability density of the state is calculated at current time (POSTERIOR)

Object Tracking - BAYES FILTER

- Object of tracking is to estimate objects state such location, speed and acceleration aver time.
- Tracking is formulated as a sequential Bayesian filtering problem.
- Prediction Step: Based on PRIOR state time step and model predict the current state
- Correction Step: Given predicted obj state at current time and sensors observation a probability density of the state is calculated at current time (POSTERIOR)

Object Tracking - BAYES FILTER

- Object of tracking is to estimate objects state such location, speed and acceleration aver time.
- Tracking is formulated as a sequential Bayesian filtering problem.
- Prediction Step: Based on PRIOR state time step and model predict the current state
- Correction Step: Given predicted obj state at current time and sensors observation a probability density of the state is calculated at current time (POSTERIOR)

Bayes Filters Algorithms

ALGORITHM	Class	- Pros	Cons
Kalman Filter \& Extended Kalman Filter	Parametric - μ, Σ Gaussian Filters Unimodal Continous state state	- Well known. Easy to model Motion Update - Execute in Polynomial time	- Needs to Invert Matrix and uses Jacobian of parameters (tough already with $10-15$ states)
Unscented Kalman Filter (UKF)	Parametric - μ, Σ Gaussian Filters Unimodal Continous state state	- For non linear systems the UKF produces equal or better results than the EKF. In many practical applications, the difference between EKF and UKF is negligible. - UKF does not requires Jacobian (derivative free)	- Same complexity of EKF, a little slower
Histogram Filters	Non-parametric. Split distribution in regions with constant values Discrete state state	- Can model multimodal distribution - Easier to compute	- Exponential time of execution.
Particle Filters	Montecarlo Methods - Samples from Posterior and associate Weight Continous state state	- Extremely easy to implement and can be adapted to all distribution multimodal	- Needs large amount of samples (eg.1000) \Rightarrow Computationally intense

Sensor Fusion

- In order to achieve robustness and reliability we utilize sensor fusion strategy to combine multiple sensors together.
- Try to solve the uncertainty always present in the autonomous vehicle system:
- Environment highly unpredictable
- Sensors range, resolution and noise
- Models inaccuracy
- Limited Computation and real time requirements scarify accuracy

Tracking and sensor fusion

Occupancy Maps

An occupancy map is a usually two-dimensional raster image uniformly distributed over the robot's working space. Each map pixel contains a binary value indicating whether the according space is free or occupied by an obstacle.

1 m
resolution

Central Grid computing

- HUGE amount of computation power
- Parallel Computation
- HUGE data structures (arrays) to be stored

Occupancy Grid Mapping example (single sensor)

Occupancy Grid Mapping with Multiple sensors

Plan and Control

| Routing | route | Route Planning (navigation)
 At the highest level a route is planned through the road network.
 Is the strategic target of the drive |
| :---: | :---: | :---: | :---: |
| Prediction | Traffic Prediction | |
| Predict the behavior of the detected perception objects in the near future. | | |
| Output spatial-temporary trajectory points. | | |

Traffic Prediction

- The detected perception obstacles have attributes of position, velocity, headings, acceleration... Those are more on the kinematic side.
- The scope of traffic prediction is not just immediate prediction given the physical attributes but rather a behavioral level prediction spanning for periods of several seconds.
- Multiples factors must be considered like historical behavior, surrounding scenarios

Traffic Prediction

Prediction are mostly categorical and could also be formalized into classification problems and solved by machine learning.

It can be split into 2 sub-problems
Classification for road object behavior : like change vehicle stay in lane, change lane or pedestrian cross at intersection and so on...
Regression problem to associate the predicted path with speed and time info.

In reality the prediction is a very complex problem to solve because real maps, especially in urban environment, can be very complicated (multiple right/left, multiple lanes, and more than 4 way interceptions).

Traffic Prediction - Classification for road object behavior

1 Lane 1, Lane 7, Lane 8

2 Lane 1, Lane 2, Lane 3

3 Lane 1, Lane 4, Lane 5, Lane 6
We can label each trajectory as sequence of lanes.

We can formulate the behavioral prediction problem on the road into a binary classification on weather the vehicle will take a certain lane sequence.

Machine learning can be build considering:

- history features (w frames with absolute and lane relative position)
- Lane sequence features (sampled point in the lanes)
- Surrounding object features.

Traffic Prediction - Model for Vehicle Behavior Prediction

There are 2 class of ML models that can be used:

- Memory less models (SVM, DNN). The model stay the same once trained. Output does not depend on previous input. Easy to implement and train have the limitation of the history provided by feature. The predicted trajectory is maximum equal to the history (even if shorter is preferred). E.g. if the history is set to ~5 seconds, the max predicted trajectory must be <5 s (better ~3).
- Memory models (Long Short-Term memory with Recursive NN) LSTN-RNN . The model have memory. Much more difficult to train. With RNN the history can be omitted because network will handle itself.
It the mapping and surrounding are not very complicated (like highway) then Memory less can work. For
Urban driver cases, the RNN is preferred.

Lane Level Routing

- Solve the problem to go from "A" to "B" via a series of roads.

- Is different from standard Navigation. Its output is not from human but is for the other blocks
- (behavioral decision and motion planning)
- Requires a HD-MAP with indication of lanes
- The HD-defined lanes are not the natural lanes but correspond to the lane markers.

- L2, L5, L8 are the virtual turning lanes as defined by the MAP
- A long lane can be segmented in several lanes (L3,L4)

The output is a a lane segmentations defined in MAP:

$$
\mathrm{L}_{\mathrm{i}}=\left\{\text { lane }_{\mathrm{i}}, \text { start_position }{ }_{\mathrm{i}} \text {, end_position }\right\}
$$

Lane Level Routing
The ROAD GRAPH has been provided by the routing solving an Optimal policy.

$$
\mathrm{L}_{\mathrm{i}}=\left\{\text { lane }_{\mathrm{i}}, \text { start_position }_{\mathrm{i}} \text {, end_position }\right\}
$$

Routing has to take into consideration the difficulties of certain movement. Difficulties of ADI are different from human, so the routing will be different.

Example of policy :

- Avoid to switch parallel lane if not really required (longer road, more time to fulfill, switching rad has an higher safety impact).
- Parallel lane switch will have higher cost.

The ROUTING becomes a search of the shortest path into a weighted graph implementing an optimal policy.

Routing output from HD-MAP with indication of lanes

Lane Level Routing

B

Lane Level Routing

- ROUTING is solved thought weighted graph built from HD-MAPS
- Configuration of cost is the most important for authonomous drive
- Algorithm like Dijkstra, Greedy Best-First-Search, A*, are used to solve the optimal path

- Weights could changed based on other information (traffic) or dynamically adjusted
- There are 2 types of routing request:
- Start the journey (from the driver)
- Recalculate (from the other blocks). E.G. if the dynamic traffic oblige to change a lane then routing must be recalculating.
- STRONG ROUTING: downstream follow strongly the routing. Decision an planning will follow the lane by lane set from routing (L1/L2)
- WEAK ROUTING: the decision could not follow the routing under certain conditions (vehicle behavior).
- SAFETY FIRST WILL BE the main DRIVE for any policy.

Behavioral Decision

Act as a Co-Pilot in the autonomous vehicle Motion Plannina and Control

CRUISE

ROUTING

sequence of lanes with start and end
AD VEHICLE ATTRIBUTES
Position, current lane, relative position to lane, speed, Heading, target lane

HYSTORICAL VEHICLE information The previous frame or cycles of behavior decisions

OBSTACLE INFORMATION

All the objects within a certain radius. Each obj has located lane, speed, heading and predicted trajectory.

TRAFFIC AND MAP
The lanes and relationships as defined by HD MAP. Info also on traffic lights, stop signs and pedestrian cross-walk (from MAPPING and/or PERCEPTION)

LOCAL TRAFFIC RULES

City speed limits, legal to make right turn on red TL

STOP

- Current Lane
- Id of obj to stop, if any

Stop by 1 m behind the obj to stop

Behavioral Decision

The approach is based on a Divide and Conquer idea, to decompose the surrounding environment into layers and solve them individually

The main stream solutions are RULES BASED deterministic models, mostly based on Markov Decision Process. A MDP is defined by 5 elements $\left(S, A, P_{a}, R_{a}, \gamma\right)$:
S: state space, represented with grid map and map elements.
A: behavior decision output space (Cruise, Follow, Turn, Change Lane, Stop)
$P_{a}\left(s, s^{\prime}\right)=P_{a}\left(s^{\prime}, s \mid a\right)$ Prob. To reach s' being on s anc taking the action s.
$R_{a}\left(s, s^{\prime}\right)$ reward function of transition from s to s' taking action a. Factors like safety, confort, execution of rout planning needs to be considered.
γ Decay factor for reward. Guarantee that present is more valuable than future reward.

Scenario Based Divide and Conquer

CRUISE

Current Lane
Speed Limit in the lane

FOLLOW

Current Lane
Id of vehicle to follow
Speed of current lane and
vehicle to follow
Min distance to keep

TURN

Current Lane
Target lane
Left / Right
Speed limit for turning

CHANGE LANE

Current Lane
Target lane
Overtaking and speed up $10 \mathrm{~m} / \mathrm{s}$
By yielding and slow $2 \mathrm{~m} / \mathrm{s}$

STOP

Current Lane
Id of obj to stop, if any
Stop by 1 m behind the obj to stop

SYNTETHIC DECISION is about how the AV should behaves considering all the information available, including all the road objects

INDIVIDUAL DECISION only relates to individual elements in the surrounding world. The SYNTETIC DECISION will be calculated considering a consolidation of the individual decision.

FOLLOW

Id of vehicle
Speed and min distance

STOP

Id of vehicle
Distance of the vehicle to stop

Attention

Id of vehicle
Min distance

Overtake

Id of vehicle
Min distance for overtaking
Min time gap for overtaking

YIELD

Id of vehicle
Min distance for overtaking
Min time gap for overtaking

STOP

〒 - Id of vehicle
Distance of the ped. to stop

SWERWE

Id of vehicle
Distance of the ped. to Swerve

Examples

Scenario and Individual Decision 0: AD VEHICLE

1: Left lane
Overtake d
Yield a
2: Front lane
Attention b
3: Right lane Ignore c

4: Back lane Ignore e

Synthetic Decision
Switch lane from current to left; yield a, overtake d, attention to b on current lane

Layered Scenario and Decisions

Merge individual decisions to Guarantee safety

Synthetic Decision

Motion Planning

- The task is to generate a trajectory and send it to feedback control for physical execution. Optimize the spatial-temporal trajectory among the points.
- The planning is 2D problem with limited degrees (break, throttle and steer) so not too complex.
- The output trajectory is specified as a sequence of points. Each point contain attributes like position, time, speed, curvature, higher order derivative of curvature.
- Optimization is usually represented with cost of different solutions. The goal is to search from min solutions. COST is build to obey to the Behavioral module.
- The solution again is to split the problem:
- Solve the path planning without speed info
- Solve the speed planning.

The computed trajectory must be harmonious (and the car is not an harmonious system) the solution must have property of spline trajectory.

Motion Planning

We introduce a SL-coordinate system. (s - longitudinal, I lateral)

Motion Planning

Split s and I and distribute 4 points on I and 5 points on s
The total number of path is $4^{5}=1024$ path among which the path planning, given the Behavior constrain, need to search for optimal cost solution.

The path have a cubic or quintic spline $\kappa(s)=\kappa_{0}+\kappa 1 s+\kappa 2 s^{2}+\kappa 3 s^{3}+\kappa 4 s^{4}+\kappa 5 s^{5}$ the second order (wheel rotating speed) is not continuous in cubic. For low speed is ok but for high speed quintic spline must be implemented.

Furthermore there are other dependency:
$\mathrm{K}_{0}=\kappa 1=\frac{d \kappa(0)}{d s} \kappa 2=\frac{d^{2} \kappa(0)}{d^{2} s}$ so to connect qi=[xi,yi, $\left.\psi i, \kappa i\right]$ to qend $=[x e, y e, \psi e, \kappa e]$ so the free parameter are ($\kappa e, \kappa 3, \kappa 4, \kappa 5$) that can be calculated with gradient descent.

Motion Planning

y

MOTION PLANNING only consider s; I will be considered in SPEED PLANNING
COST function:

- Road-map related aspects: Path must be closed to central reference line of the lane based on Behavior (e.g. if FOLLOW, then cost will be related to lateral distance)
- Obstacle related: collision to STATIC objects must be penalized. Motion planning cannot address moving obj that will be addressed in SPEED PLANNING
- Comfort and control feasibility: Path must be smooth, (expressed by derivative). Not only the path but the also the connection between two path.

Speed Planning S-T Graph

The Bicycle Model

- the vectors p_{r} and $p_{\text {f }}$ denote the location of the rear and front wheels in a stationary or inertial coordinate system with basis vectors (${ }^{\wedge} \mathrm{e}_{\mathrm{x}},{ }^{\wedge} \mathrm{e}_{\mathrm{y}},{ }^{\wedge} \mathrm{e}_{2}$).
- θ is an angle describing the direction that the vehicle is facing (vehicle heading angle). This is defined as the angle between vectors ^ e_{x} and $\mathrm{pf}-\mathrm{pr}$.
- δ is the steering angle of the front wheel.

The motion of the points p_{r} and $p_{\text {t }}$ must be collinear with the wheel orientation to satisfy the no-slip assumption.

$$
\begin{array}{ll}
\text { REAR equation: } & \left(\dot{p}_{r} \cdot \hat{e}_{y}\right) \cos (\theta)-\left(\dot{p}_{r} \cdot \hat{e}_{x}\right) \sin (\theta)=0 \\
\text { Front equation: } & \left(\dot{p}_{f} \cdot \hat{e}_{y}\right) \cos (\theta+\delta)-\left(\dot{p}_{f} \cdot \hat{e}_{x}\right) \sin (\theta+\delta)=0
\end{array}
$$

In general, sr and pr are not collinear and may have nonzero components normal to the plane depicted.

At speed $>50 \mathrm{~km} / \mathrm{h}$ a more complex model considering the wheel drift model must be considered.

SAFE AND SECURE MOBILITY

 AT THE HEART OF AUTONOMOUS DRIVING N>0

SECURE CONNECTIONS FOR A SMARTER WORLD

[^0]: - Inexpensive
 - Works by received lights (recognize color and pattern)
 - Has good accuracy in lateral measurement
 - RICH informations
 - Semantic Understanding

