
Company External – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of

NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

Senior Automotive Applications Engineer

Peter Pinewski

FreeMASTER Quick Start:
Development and Debug Made Easy

October 2018 | AMF- AUT-T3393

PUBLIC 11PUBLIC

• What is FreeMASTER

• How to get FreeMASTER

• FreeMASTER features

− As a Real-Time Monitor

− As a Control GUI

− vs. a Debugger

• Setting up FreeMASTER – no Driver

• Configuring a Project

• Setting up a Project App with Freemaster Driver

• Summary

Agenda

PUBLIC 2

What is FreeMASTER?
FreeMASTER is a user-friendly real-time debug monitor and

data visualization tool that can be used for application

development and information management.

• Supports non-intrusive monitoring of variables on a running

system.

• Display multiple variables changing over time on an oscilloscope-

like display, or view data in text form.

• Supports additional capabilities and targets with an on-target driver

for transmitting data from the target to the host computer.

What do we do with FreeMASTER?

• Connect: to target MCU over UART, CAN, BDM, JTAG etc

• Monitor: read & show variables in run-time

• Control: set variables, send commands

• Share: enable Excel, Matlab or a script engine to add hardware to

the control loop

PUBLIC 3

What is FreeMASTER?

Application control

and monitor

Real-time

operation monitor

Live graphs,

variable watches,

and graphical

control page

PUBLIC 4

FreeMASTER Connection Options

PC Side

F
re

e
M

A
S

T
E

R

B
D

M
,

J
T

A
G

Direct

No Driver

PC Side

F
re

e
M

A
S

T
E

R

U
A

R
T

,
U

S
B

,
C

A
N

,
L
IN

,

B
D

M
,J

T
A

G
…

Driver

Embedded Side
F

re
e
M

A
S

T
E

R

U
A

R
T

,
U

S
B

,
C

A
N

,
L
IN

,

B
D

M
,J

T
A

G
…

• Supported Devices

− S08

− DSC

− ARM Cortex-M (Kinetis/S32K)

− S12/S12X/S12Z(MagniV),

− MPC56xx, MPC57xx

− ColdFire V1/V2

• Supported Interfaces

− BDM

− JTAG/SWD (Segger,PE,CMSIS
DAP,etc)

− Serial

− CAN

− LIN

− USB

PUBLIC 5

FreeMASTER Supported Devices and Interfaces

NOTE:

If it is desired to run

the debugger and

FreeMASTER
concurrently, the

target driver option is

required!

System Requirements
• Host side operating system: Windows XP to through Windows 10 32/64bit

• Required software: Internet Explorer 8 or higher installed beforehand.

• Hard drive space: 50 MB

• Other hardware requirements: Serial RS-232 port for local control or USB-to Serial converter.

BDM /JTAG eOnce /JTAG

PUBLIC 6

FreeMASTER Features and Usage
Real Time Monitor
• Watching on-board variables or memory locations in various formats

• Text (name, value, min, max, enumerated labels...)

• Real-time waveform (real-time oscilloscope)

• High-speed recorded data (on-board memory oscilloscope)

• User-defined dashboard for data visualization

Control Panel
• Direct setting of the variable value from the variable watch

• Time-table stimulation of the variable value

• User command/message control

• Visual Basic script or JScript-powered HTML Forms (with push buttons,

indicators and sliders) or custom HTML5 gauges

• By external application like Excel, Matlab or other which support ActiveX

embedding

Demonstration Platform
• You can both describe and demonstrate your embedded application by HTML

pages that contain pictures, sounds, video sequences, links or any web

content

• Display simultaneous real-time data monitoring

• Browse through the functional blocks of the embedded application

Easy Project Deployment
• Entire project saved to a single file

• All resources/files packed in the project file

• "Demo mode" with password protection available

• New in v2.0: Project files embedded in target MCU Flash memory

PUBLIC 7

FreeMASTER vs. IDE/Debugger

PUBLIC 8

Tuning Application Constants With FreeMASTER

• The most challenging task for the developer is the setting of the

application constants, sometimes trial-error method must be used

when the system (drive) parameters are difficult to identify:

− P and I constants of the regulators

− Filter constants

− Constants of the position estimation algorithms

− Tuning the merging process when switching from the open loop start-up to full

sensorless mode

PUBLIC 9

FreeMASTER Highlights

• FreeMASTER helps developers to debug or tune their applications

• Replaces debugger in situations when the processor core can not be simply stopped (e.g. motor

control)

• Recorder may be used to visualize transitions in near 10-us resolution

• No EXTRA code is required on the embedded side to interface to FreeMASTER via

BDM/OpenSDA/OSJTAG plug in modules.

PUBLIC 10

How to Get FreeMASTER

FreeMASTER is a FREE download

from www.nxp.com/freemaster

http://www.nxp.com/freemaster

PUBLIC 11

FreeMASTER Window Description

PUBLIC 12

FreeMASTER Application Windows

Variable Watch
• Watch

• Control

Detail View
• Scope / Recorder

• Description / Control

Project Tree

Variable Stimulus / App

Commands

PUBLIC 13

FreeMASTER Variable

Watch

Variable Transformations

• Variable value can be transformed to a custom unit

• Variable transformations may reference other variable
values

• Values are transformed back when writing a new value
to the variable

Ability to protect memory regions

• Describing variables visible to FreeMASTER

• Declaring variables as read-write to read-only for
FreeMASTER

• the access is guarded by the embedded-side driver

Variable update rate

• Choose rate of update based on type of variable

• Rate selectable from 100ms to 10s or as fast as possible
(limited by communication interface)

PUBLIC 14

FreeMASTER Explanation of Variables

Variable Name

Variable

Address/Type/Size

and Format

Variable

Transformation

if Show as: is

REAL

Variable Update Rate

Display Format

Display Value

and optionally

display min/max

values

Enumerate

values to text

Bit Field

Manipulation

PUBLIC 15

FreeMASTER Explanation of Variables

Variable

Protection

Define when

variable is

actually written

Limit variable modification

as Min/Max

Limit variable

by pre-defined

valuesDefine

appearance of

variable editing

PUBLIC 16

FreeMASTER Variable Watch Customization

Display Order

Variable Color and Size

Variable Stimulus

PUBLIC 17

FreeMASTER Scope and Recorder Views

Multiple Scope or Recorders can be configured

• Select between different Scope views

• Can do time graphing or X-Y graphing

• Scope can display multiple variables and/or multiple axis

• Can set up a left and right y-axis on same graph

PUBLIC 18

S32K144-EVB

PUBLIC 19

Get To Know the S32K144-EVB

The S32K144-EVB is a low-cost development platform for the S32K144 MCU.

• Supports S32K144 100LQFP

• Small form factor size supports up to 6” x 4”

• Arduino™ UNO footprint-compatible with expansion

“shield” support

• Integrated open-standard serial and debug adapter

(OpenSDA) with support for several industry-

standard debug interfaces

• Easy access to the MCU I/O header pins for

prototyping

• On-chip connectivity for CAN, LIN, UART/SCI.

• SBC UJA1169 and LIN phy TJA1027

• Potentiometer for precise voltage and analog

measurement

• RGB LED

• Two push-button switches (SW2 and SW3) and two

touch electrodes

• Flexible power supply options
• microUSB or

• external 12V power supply

PUBLIC 20

S32K144-EVB Programming Interface and Peripherals

PUBLIC 21

S32K144-EVB Connections and Peripherals

PUBLIC 22

S32K144-EVB Interface Connections

PTD15/FTM0_CH0/LPSPI0_SCK

PTD16/FTM0_CH1/LPSPI0_SIN/CMP0_RRT

PTD0/FTM0_CH2/LPSPI1_SCK/FTM2_CH0/FXIO_D0/TRGMUX_OUT1

PTC13/FTM3_CH7/FTM2_CH7/LPUART2_RTS

PTC12/FTM3_CH6/FTM2_CH6/LPUART2_CTS

PTC14/ADC0_SE12/FTM1_CH2/LPSPI2

Potentiometer

Push Buttons

RGB Led

PUBLIC 23

Exercise #1: Starting with

FREEMASTER – No Driver

PUBLIC 24

Exercise #1 – Programming the Target

• Open S32DS for ARM

• Import the test project

1 – Select Import Project

2 – Check Select archive file:

3 – Browse to project file

C:/Freemaster Quickstart/freeMaster101_S32K144_noDriver.zip

PUBLIC 25

Exercise #1 – Programming the Target

• Open S32DS for ARM

• Select the test project
Freemaster101_s32k144_noDriver

• Build and download the project

1 - Build Project

2 - Debug Project

3 – Terminate Connection

Note: Freemaster and Debugger cannot access debug port at the same time

PUBLIC 26

Exercise #1 – No Driver Configuration

• Open FREEMASTER (v2.0)

• Select Project Options

1. Select Project / Options

PUBLIC 27

Exercise #1 – No Driver Configuration

• Configure Freemaster for target

board and project

Set up connection (Comm Tab)

2. Select Comm Tab

3. Select Connection Interface
BDM Communication Plug-in(HCS08/12…)

PUBLIC 28

Exercise #1 – No Driver Configuration

• Configure Freemaster for target

board and project

Set up connection (Comm Tab)

4. Configure the Connection

PUBLIC 29

Exercise #1 – No Driver Configuration

• Configure Freemaster for target

board and project

Set up connection (Comm Tab)

5. Select Connection Driver P&E

Kinetis

6. Select Connection Interface

USB Multilink

7. PE OpenSDA Device number

should be found

PUBLIC 30

Exercise #1 – Testing the Connection

• Configure Freemaster for target

board and project

Test the connection

8. Click Test Connection

If everything is good

…communications will be

indicated by the sampled

target registers

PUBLIC 31

Exercise #1 – Set Up Symbol File

• Configure Freemaster for

target board and project

Set up symbol file (MAP files

tab)

1 - Select MAP Files Tab

2 - Find symbol file from IDE

3 - Select File Format

Click OK

PUBLIC 32

Exercise #1 – Start the Connection

• Configure FreeMASTER

for target board and

project

Connect to the target

board

1 – Start communication

If no error windows pop-up,

FREEMASTER is communicating

with the target board.

PUBLIC 33

Exercise #2:

Customizing the Project

PUBLIC 34

Exercise #2 – Configuring Watch Variables

• counter2, counter2max – generic counter

and limit

• sw2 – state of switch2 (PTC12)

• sw3 – state of switch3 (PTC13)

• ftmCounter - increments every FTM

rollover

• ftmCounterLimit – sets time to execute

motor algorithm

• freq_test – enables PWM testing

• freq – changes frequency during pwm

testing.

• voltage – changes voltage during pwm testing.

• duty0enable – enables PWM connected to RED

led

• duty0updwn – duty cycle increments/decrements

or increments

• BlueLED – connected to motor PWM

• GreeLED – connected to motor PWM

• adcRawValue – raw adc (potentiometer) reading

• adcValue – adc value in voltage (floating poin)

PUBLIC 35

Exercise #2 – Configuring Watch Variables

1 – Select Project/Variables

2 – Select Generate

• Generate links to project

variables

PUBLIC 36

Exercise #2 – Configuring Watch Variables

• Generate links to

project variables

1. Select Desired

Variables

2. Make sure they

are writeable

3. Select Generate

single variables

Close

PUBLIC 37

Exercise #2 – Configuring Watch Variables

• Generate links to project

variables

Close

Available variables

are now listed

PUBLIC 38

Exercise #2 – View Watch Variables

• Select which variables to

view

1. Right click in Variable

Watch Pane

2. Select Watch Properties

PUBLIC 39

Exercise #2 – View Watch Variables

• Select which variables to view

Main Tab Watch Tab
1. Set Project

Name

3. Select

viewing

options

4. Select variables

5. Specify viewing order

PUBLIC 40

Exercise #2 – View Watch Variables

• Modify variable

characteristics

• modify duty0enable

1. Right click variable

to modify

2. Select Edit variable…

PUBLIC 41

Exercise #2 – View Watch Variables

• Modify duty0enable

− Change variable name

− Set text enumeration

1. Change variable name

2. Change variable name

3. Add Enumeration

Definitions

4. In Modifying Tab, Select

Text enumerations

Define Enable

Define Disable

PUBLIC 42

Exercise #2 – View Watch Variables

• Try adding other vairables

• Try changing colors, font

and size of displayed

variables

• Try variable

transformations

(dutyCycle0: 0 = 0%, 32767 = 100%)

• counter2, counter2max – generic counter and limit

• sw2 – state of switch2 (PTC12)

• sw3 – state of switch3 (PTC13)

• ftmCounter - increments every FTM rollover

• ftmCounterLimit – sets time to execute motor algorithm

• freq_test – enables PWM testing

• freq – changes frequency during pwm testing.

• voltage – changes voltage during pwm testing.

• duty0enable – enables PWM connected to RED led

• duty0updwn – duty cycle increments/decrements or increments

• BlueLED – connected to motor PWM

• GreeLED – connected to motor PWM

• adcRawValue – raw adc (potentiometer) reading

• adcValue – adc value in voltage (floating poin)

PUBLIC 43

Exercise #2 – Configuring a Scope

• Create Scope

1. Right-click project name

2 – Select Create Scope

PUBLIC 44

Example #2 – Configuring the Scope

In Main Tab:

1. Create scope name

2. Define sample speed

3. Define Axis width

In Setup Tab:

1. Select Variables to graph

2. Define Blocks

3. Define Axis

PUBLIC 45

Example #2 – Configuring the Scope

• Try changing
scope properties
and blocks

• Try changing
ftmCounterLimit
and counter2max

• Try setting right
hand axis

• Try adding
another scope

PUBLIC 46

Example #2 – Set Up Variable Stimulus

• Add automatic control

of a variable(s)

1. Right click in Variable

Stimulus Pane

2. Select New…

PUBLIC 47

Example #2 – Set Up Variable Stimulus

• Add automatic control

of a variable(s)

1. Select Stimulus name

2. Select Variable to stimulate

3. Set time points and value

3. Set to run in a

loop

PUBLIC 48

Example #2 – Set Up Variable Stimulus

• Run the Stimulus!

• Try changing the

stimulus times and

iteration

• Try changing the

stimulus variable

PUBLIC 49

Exercises #1 and #2 – Complete!

Summary:

• FreeMASTER can be used
without any SW modification (No
Driver Option)

• FreeMASTER is a powerful
debug and demonstration tool.

• FreeMASTER cannot be
connected at the same time as a
debugger unless the
communication driver option is
used.

• More features can be used (i.e.
Application Commands,
Recorder) if an embedded driver
is used.

PC Side

F
re

e
M

A
S

T
E

R

B
D

M
,

J
T

A
G

Direct

No Driver

PC Side

F
re

e
M

A
S

T
E

R

U
A

R
T

,
U

S
B

,
C

A
N

,
L
IN

,

B
D

M
,J

T
A

G
…

Driver

Embedded Side

F
re

e
M

A
S

T
E

R

U
A

R
T

,
U

S
B

,
C

A
N

,
L
IN

,

B
D

M
,J

T
A

G
…

PUBLIC 50

FreeMaster With

Communication Driver

PUBLIC 51

Why Add Freemaster Communication Driver to a Project?

PC Side

F
re

e
M

A
S

T
E

R

B
D

M
,

J
T

A
G

Direct

No Driver

PC Side

F
re

e
M

A
S

T
E

R

U
A

R
T

,
U

S
B

,
C

A
N

,
L
IN

,

B
D

M
,J

T
A

G
…

Driver

Embedded Side

F
re

e
M

A
S

T
E

R

U
A

R
T

,
U

S
B

,
C

A
N

,
L
IN

,

B
D

M
,J

T
A

G
…

Application Commands

• Command codes and parameters are delivered to an

application for arbitrary processing

• After command is processed, a response code can be sent

back

Recorder

• Provides monitoring/visualization of application variables that

are changing at a rate faster than the sampling rate of the

oscilloscope.

• Created in SW on the Target board and stores changes of

variables in real-time.

• Can define list of variables which will be recorded by the

embedded side periodic service routine

• After the requested number of variable samples are stored,

data is transferred to the FreeMASTER Recorder pane

Run debugger and Freemaster simultaneously!
• Use FreeMASTER to view or control variables real-time

• Use Debugger to Start/Stop code, single step and edit.

• Eliminates need to open and close connections!

PUBLIC 52

Exercise #3: Adding the Comm

Driver

PUBLIC 53

Exercise #3 – Install the Freemaster Communication Drivers

• Go to:

www.nxp.com/Freemaster

• Select the DOWNLOADS tab

Download
FreeMASTER Communication

Driver

http://www.nxp.com/Freemaster

PUBLIC 54

Exercise #3 – Install the Freemaster Communication Drivers

• After installing the drivers will be at:

C:\nxp\FreeMASTER_Serial_Communication_Driver_V2.0

PUBLIC 55

Exercise #3 – Copy Driver Files to Your Project

Copy all files from

src_common

PUBLIC 56

Exercise #3 – Copy Driver Files to Your Project

Copy all files from

src_platforms/S32xx

Rename
freemaster_cfg.h.example

to
freemaster_cfg.h

PUBLIC 57

Exercise #3 – Configure the Driver – freemaster_cfg.h

Define as

FMSTR_SHORT_INTR

Set UART address

based on device

Set to use UART

• Edit freemaster_cfg.h

PUBLIC 58

Exercise #3 – Configure the Driver – freemaster_cfg.h

Enable APPCMDs

Enable SCOPE usage

Enable Recorder

• Edit freemaster_cfg.h

PUBLIC 59

Exercise #3 – Configure the Driver – freemaster_cfg.h

• Edit freemaster_cfg.h

Enable Memory and

Variable access

PUBLIC 60

Exercise #3 – Include freemaster.h

Include freemaster.h

PUBLIC 61

Exercise #3 – Configure the UART in Your Project

• Initialize the LPUART for

Freemaster usage

• Enable UART interrupts

• Set UART interrupt callback

to FMSTR_Isr

PUBLIC 62

Exercise #3 – Call the FMSTR Functions

• Call FMSTR_Init()

• Call FMSTR_Poll() at

regular rate or in idle task

NOTE:

if the Recorder function is desired,

FMSTR_Recorder() also needs to be called.

This is normally called in a periodic routine where

the variables of interest are updated or sampled.

PUBLIC 63

Exercise #3 – Setting Up the Communication Driver

Driver setup should be complete!

PUBLIC 64

Exercise #3 – Program example project with driver

• Open S32DS for ARM

• Import the test project

freeMaster101_S32K144_withDriver.zip

1 – Select Import Project

2 – Check Select archive file:

3 – Browse to project file

C:/Freemaster

Quickstart/freeMaster101_S32K144_withDriver.zip

PUBLIC 65

Exercise #3 – Examine the Code

Freemaster drivers

Note Freemaster files

Freemaster config file

PUBLIC 66

Exercise #3 – Change Freemaster Communication Option

Change Communication

for UART usage

Note: We can now leave the S32DS

debugger active and connected

while also using Freemaster for

visualization.

PUBLIC 67

Exercise #3 – Summary – Adding the FreeMASTER Driver

Adding the FreeMASTER driver:

1. Download communication drivers from

www.nxp.com/freemaster and click on Downloads Tab

2. Add files to project from:
C:\nxp\FreeMASTER_Serial_Communication_Driver_V2.0\src_common

3. Add files to project from:
C:\nxp\FreeMASTER_Serial_Communication_Driver_V2.0\src_platforms\

S32xx

4. Edit freemaster_cfg.h

5. Add #define freemaster.h to project C file

6. Add FMSTR_Init() to initialization of C file

7. Add FMSTR_Poll() (or other) to loop in project

8. Optionally add FMSTR_Recorder() in periodic

interrupt

9. Change FreeMASTER connection

10. Continue with FreeMASTER debugging

http://www.nxp.com/freemaster

PUBLIC 68

Exercise #4:

Adding a Recorder

PUBLIC 69

Exercise #4 – Adding a Recorder

• Call FMSTR_Recorder() in

pwm interrupt

PUBLIC 70

Exercise #4 – Adding a Recorder

1. Right-Click on Freemaster project

2. Select Create Recorder …

In FreeMASTER …

PUBLIC 71

Exercise #4 – Adding a Recorder

1. In Main tab, enter name, sample points,

time base

2. In Setup tab, select variables of interest

2. In Trigger tab, select #pre trigger samples,

trigger variable and trigger threshold

(i.e RollOverCounter, Threshold 9)

Click OK

In FreeMASTER …

PUBLIC 72

Exercise #4 – Adding a Recorder

Click Run

Select the new

Recorder

In FreeMASTER …

PUBLIC 73

Exercise #4 – Adding a Recorder

In FreeMASTER …

We can now see the counter

with better resolution

PUBLIC 74

Exercise #4 – Adding a Recorder

In FreeMASTER …

Try zooming in on

the data

PUBLIC 75

Summary

PUBLIC 76

Summary

• At this point:

• We should all be able to use and configure FreeMASTER

− Watch variables

− Control variables

− Create a scope

− Create a Recorder

• We should be able to configure a project to use the driver connection

• We should be able to use the debugger and use FreeMASTER

simultaneously!

NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

www.nxp.com

http://www.nxp.com/

