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What is FreeMASTER?
FreeMASTER is a user-friendly real-time debug monitor and 

data visualization tool that can be used for application 

development and information management.

• Supports non-intrusive monitoring of variables on a running 

system.

• Display multiple variables changing over time on an oscilloscope-

like display, or view data in text form.

• Supports additional capabilities and targets with an on-target driver 

for transmitting data from the target to the host computer.

What do we do with FreeMASTER?

• Connect: to target MCU over UART, CAN, BDM, JTAG etc

• Monitor: read & show variables in run-time

• Control: set variables, send commands

• Share: enable Excel, Matlab or a script engine to add hardware to 

the control loop
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What is FreeMASTER? 

Application control 

and monitor

Real-time 

operation monitor

Live graphs, 

variable watches, 

and graphical 

control page
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FreeMASTER Connection Options
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• Supported Devices

− S08

− DSC

− ARM Cortex-M (Kinetis/S32K)

− S12/S12X/S12Z(MagniV), 

− MPC56xx, MPC57xx

− ColdFire V1/V2

• Supported Interfaces

− BDM

− JTAG/SWD (Segger,PE,CMSIS
DAP,etc)

− Serial

− CAN

− LIN

− USB
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FreeMASTER Supported Devices and Interfaces

NOTE:

If it is desired to run 

the debugger and 

FreeMASTER
concurrently, the 

target driver option is 

required!

System Requirements
• Host side operating system: Windows XP to through Windows 10 32/64bit

• Required software: Internet Explorer 8 or higher installed beforehand.

• Hard drive space: 50 MB

• Other hardware requirements: Serial RS-232 port for local control or USB-to Serial converter.

BDM /JTAG eOnce /JTAG
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FreeMASTER Features and Usage
Real Time Monitor
• Watching on-board variables or memory locations in various formats 

• Text (name, value, min, max, enumerated labels...)

• Real-time waveform (real-time oscilloscope)

• High-speed recorded data (on-board memory oscilloscope)

• User-defined dashboard for data visualization

Control Panel
• Direct setting of the variable value from the variable watch

• Time-table stimulation of the variable value

• User command/message control

• Visual Basic script or JScript-powered HTML Forms (with push buttons, 

indicators and sliders) or custom HTML5 gauges

• By external application like Excel, Matlab or other which support ActiveX 

embedding

Demonstration Platform
• You can both describe and demonstrate your embedded application by HTML 

pages that contain pictures, sounds, video sequences, links or any web 

content

• Display simultaneous real-time data monitoring

• Browse through the functional blocks of the embedded application

Easy Project Deployment
• Entire project saved to a single file

• All resources/files packed in the project file

• "Demo mode" with password protection available

• New in v2.0: Project files embedded in target MCU Flash memory
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FreeMASTER vs. IDE/Debugger
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Tuning Application Constants With FreeMASTER

• The most challenging task for the developer is the setting of the 

application constants, sometimes trial-error method must be used 

when the system (drive) parameters are difficult to identify:

− P and I constants of the regulators

− Filter constants

− Constants of the position estimation algorithms

− Tuning the merging process when switching from the open loop start-up to full 

sensorless mode
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FreeMASTER Highlights

• FreeMASTER helps developers to debug or tune their applications

• Replaces debugger in situations when the processor core can not be simply stopped (e.g. motor 

control)

• Recorder may be used to visualize transitions in near 10-us resolution 

• No EXTRA code is required on the embedded side to interface to FreeMASTER via 

BDM/OpenSDA/OSJTAG plug in modules.
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How to Get FreeMASTER

FreeMASTER is a FREE download 

from www.nxp.com/freemaster

http://www.nxp.com/freemaster
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FreeMASTER Window Description
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FreeMASTER Application Windows

Variable Watch
• Watch

• Control

Detail View
• Scope / Recorder

• Description / Control

Project Tree

Variable Stimulus / App 

Commands
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FreeMASTER Variable 

Watch

Variable Transformations

• Variable value can be transformed to a custom unit

• Variable transformations may reference other variable 
values

• Values are transformed back when writing a new value 
to the variable

Ability to protect memory regions 

• Describing variables visible to FreeMASTER

• Declaring variables as read-write to read-only for 
FreeMASTER

• the access is guarded by the embedded-side driver

Variable update rate

• Choose rate of update based on type of variable

• Rate selectable from 100ms to 10s or as fast as possible 
(limited by communication interface)
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FreeMASTER Explanation of Variables

Variable Name

Variable 

Address/Type/Size 

and Format

Variable 

Transformation 

if Show as: is 

REAL

Variable Update Rate

Display Format

Display Value 

and optionally 

display min/max 

values

Enumerate 

values to text

Bit Field 

Manipulation
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FreeMASTER Explanation of Variables

Variable 

Protection

Define when 

variable is 

actually written

Limit variable modification 

as Min/Max

Limit variable 

by pre-defined 

valuesDefine 

appearance of 

variable editing
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FreeMASTER Variable Watch Customization

Display Order

Variable Color and Size

Variable Stimulus
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FreeMASTER Scope and Recorder Views

Multiple Scope or Recorders can be configured

• Select between different Scope views

• Can do time graphing or X-Y graphing

• Scope can display multiple variables and/or multiple axis

• Can set up a left and right y-axis on same graph
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S32K144-EVB
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Get To Know the S32K144-EVB

The S32K144-EVB is a low-cost development platform for the S32K144 MCU.

• Supports S32K144 100LQFP 

• Small form factor size supports up to 6” x 4” 

• Arduino™ UNO footprint-compatible with expansion 

“shield” support 

• Integrated open-standard serial and debug adapter 

(OpenSDA) with support for several industry-

standard debug interfaces 

• Easy access to the MCU I/O header pins for 

prototyping 

• On-chip connectivity for CAN, LIN, UART/SCI. 

• SBC UJA1169 and LIN phy TJA1027 

• Potentiometer for precise voltage and analog 

measurement 

• RGB LED 

• Two push-button switches (SW2 and SW3) and two 

touch electrodes 

• Flexible power supply options 
• microUSB or 

• external 12V power supply
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S32K144-EVB Programming Interface and Peripherals
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S32K144-EVB Connections and Peripherals
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S32K144-EVB Interface Connections

PTD15/FTM0_CH0/LPSPI0_SCK

PTD16/FTM0_CH1/LPSPI0_SIN/CMP0_RRT

PTD0/FTM0_CH2/LPSPI1_SCK/FTM2_CH0/FXIO_D0/TRGMUX_OUT1

PTC13/FTM3_CH7/FTM2_CH7/LPUART2_RTS

PTC12/FTM3_CH6/FTM2_CH6/LPUART2_CTS

PTC14/ADC0_SE12/FTM1_CH2/LPSPI2

Potentiometer

Push Buttons

RGB Led



PUBLIC 23

Exercise #1: Starting with 

FREEMASTER – No Driver
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Exercise #1 – Programming the Target

• Open S32DS for ARM

• Import the test project

1 – Select Import Project

2 – Check Select archive file:

3 – Browse to project file

C:/Freemaster Quickstart/freeMaster101_S32K144_noDriver.zip



PUBLIC 25

Exercise #1 – Programming the Target

• Open S32DS for ARM

• Select the test project 
Freemaster101_s32k144_noDriver 

• Build and download the project

1 - Build Project

2 - Debug Project

3 – Terminate Connection

Note:  Freemaster and Debugger cannot access debug port at the same time
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Exercise #1 – No Driver Configuration

• Open FREEMASTER (v2.0)

• Select Project Options

1. Select Project / Options
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Exercise #1 – No Driver Configuration

• Configure Freemaster for target 

board and project

Set up connection (Comm Tab)

2. Select Comm Tab

3. Select Connection Interface
BDM Communication Plug-in(HCS08/12…)
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Exercise #1 – No Driver Configuration

• Configure Freemaster for target 

board and project

Set up connection (Comm Tab)

4. Configure the Connection
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Exercise #1 – No Driver Configuration

• Configure Freemaster for target 

board and project

Set up connection (Comm Tab)

5. Select Connection Driver P&E 

Kinetis

6. Select Connection Interface 

USB Multilink

7. PE OpenSDA Device number 

should be found
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Exercise #1 – Testing the Connection

• Configure Freemaster for target 

board and project

Test the connection

8. Click Test Connection

If everything is good 

…communications will be 

indicated by the sampled 

target registers
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Exercise #1 – Set Up Symbol File

• Configure Freemaster for 

target board and project

Set up symbol file (MAP files 

tab)

1 - Select MAP Files Tab

2 - Find symbol file from IDE

3 - Select File Format

Click OK
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Exercise #1 – Start the Connection

• Configure FreeMASTER

for target board and 

project

Connect to the target 

board

1 – Start communication

If no error windows pop-up, 

FREEMASTER is communicating 

with the target board.
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Exercise #2: 

Customizing the Project
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Exercise #2 – Configuring Watch Variables

• counter2, counter2max – generic counter 

and limit

• sw2 – state of switch2 (PTC12)

• sw3 – state of switch3 (PTC13)

• ftmCounter - increments every FTM 

rollover

• ftmCounterLimit – sets time to execute 

motor algorithm

• freq_test – enables PWM testing

• freq – changes frequency during pwm

testing.

• voltage – changes voltage during pwm testing.

• duty0enable – enables PWM connected to RED 

led

• duty0updwn – duty cycle increments/decrements 

or increments

• BlueLED – connected to motor PWM

• GreeLED – connected to motor PWM

• adcRawValue – raw adc (potentiometer) reading

• adcValue – adc value in voltage (floating poin)
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Exercise #2 – Configuring Watch Variables

1 – Select Project/Variables

2 – Select Generate

• Generate links to project 

variables
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Exercise #2 – Configuring Watch Variables

• Generate links to 

project variables

1. Select Desired 

Variables

2. Make sure they 

are writeable

3. Select Generate 

single variables

Close
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Exercise #2 – Configuring Watch Variables

• Generate links to project 

variables

Close

Available variables 

are now listed
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Exercise #2 – View Watch Variables

• Select which variables to 

view

1. Right click in Variable 

Watch Pane

2. Select Watch Properties
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Exercise #2 – View Watch Variables

• Select which variables to view

Main Tab Watch Tab
1. Set Project 

Name

3. Select 

viewing 

options

4. Select variables

5. Specify viewing order
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Exercise #2 – View Watch Variables

• Modify variable 

characteristics

• modify duty0enable

1. Right click variable 

to modify

2. Select Edit variable…
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Exercise #2 – View Watch Variables

• Modify duty0enable

− Change variable name

− Set text enumeration

1. Change variable name

2. Change variable name

3. Add Enumeration 

Definitions

4. In Modifying Tab, Select 

Text enumerations

Define Enable 

Define Disable 
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Exercise #2 – View Watch Variables

• Try adding other vairables

• Try changing colors, font 

and size of displayed 

variables

• Try variable 

transformations 

(dutyCycle0:  0 = 0%, 32767 = 100%)

• counter2, counter2max – generic counter and limit

• sw2 – state of switch2 (PTC12)

• sw3 – state of switch3 (PTC13)

• ftmCounter - increments every FTM rollover

• ftmCounterLimit – sets time to execute motor algorithm

• freq_test – enables PWM testing

• freq – changes frequency during pwm testing.

• voltage – changes voltage during pwm testing.

• duty0enable – enables PWM connected to RED led

• duty0updwn – duty cycle increments/decrements or increments

• BlueLED – connected to motor PWM

• GreeLED – connected to motor PWM

• adcRawValue – raw adc (potentiometer) reading

• adcValue – adc value in voltage (floating poin)
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Exercise #2 – Configuring a Scope

• Create Scope

1. Right-click project name

2 – Select Create Scope
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Example #2 – Configuring the Scope

In Main Tab:

1. Create scope name

2. Define sample speed

3. Define Axis width

In Setup Tab:

1. Select Variables to graph

2. Define Blocks

3. Define Axis
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Example #2 – Configuring the Scope

• Try changing 
scope properties 
and blocks

• Try changing 
ftmCounterLimit
and counter2max

• Try setting right 
hand axis

• Try adding 
another scope
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Example #2 – Set Up Variable Stimulus

• Add automatic control 

of a variable(s)

1. Right click in Variable 

Stimulus Pane

2. Select New…
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Example #2 – Set Up Variable Stimulus

• Add automatic control 

of a variable(s)

1. Select Stimulus name

2. Select Variable to stimulate

3. Set time points and value

3. Set to run in a 

loop
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Example #2 – Set Up Variable Stimulus

• Run the Stimulus!

• Try changing the 

stimulus times and 

iteration

• Try changing the 

stimulus variable
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Exercises #1 and #2 – Complete!

Summary:

• FreeMASTER can be used 
without any SW modification (No 
Driver Option)

• FreeMASTER is a powerful 
debug and demonstration tool.

• FreeMASTER cannot be 
connected at the same time as a 
debugger unless the 
communication driver option is 
used.

• More features can be used (i.e. 
Application Commands, 
Recorder) if an embedded driver 
is used.
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FreeMaster With

Communication Driver
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Why Add Freemaster Communication Driver to a Project?
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Application Commands

• Command codes and parameters are delivered to an 

application for arbitrary processing

• After command is processed, a response code can be sent 

back

Recorder

• Provides monitoring/visualization of application variables that 

are changing at a rate faster than the sampling rate of the 

oscilloscope. 

• Created in SW on the Target board and stores changes of 

variables in real-time.

• Can define list of variables which will be recorded by the 

embedded side periodic service routine

• After the requested number of variable samples are stored, 

data is transferred to the FreeMASTER Recorder pane

Run debugger and Freemaster simultaneously!
• Use FreeMASTER to view or control variables real-time

• Use Debugger to Start/Stop code, single step and edit. 

• Eliminates need to open and close connections!
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Exercise #3: Adding the Comm

Driver
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Exercise #3 – Install the Freemaster Communication Drivers

• Go to: 

www.nxp.com/Freemaster

• Select the DOWNLOADS tab

Download 
FreeMASTER Communication 

Driver

http://www.nxp.com/Freemaster


PUBLIC 54

Exercise #3 – Install the Freemaster Communication Drivers

• After installing the drivers will be at:

C:\nxp\FreeMASTER_Serial_Communication_Driver_V2.0
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Exercise #3 – Copy Driver Files to Your Project 

Copy all files from 

src_common
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Exercise #3 – Copy Driver Files to Your Project 

Copy all files from 

src_platforms/S32xx

Rename 
freemaster_cfg.h.example

to 
freemaster_cfg.h
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Exercise #3 – Configure the Driver – freemaster_cfg.h

Define as 

FMSTR_SHORT_INTR

Set UART address 

based on device

Set to use UART

• Edit freemaster_cfg.h
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Exercise #3 – Configure the Driver – freemaster_cfg.h

Enable APPCMDs

Enable SCOPE usage

Enable Recorder

• Edit freemaster_cfg.h
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Exercise #3 – Configure the Driver – freemaster_cfg.h

• Edit freemaster_cfg.h

Enable Memory and 

Variable access
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Exercise #3 – Include freemaster.h

Include freemaster.h
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Exercise #3 – Configure the UART in Your Project

• Initialize the LPUART for 

Freemaster usage

• Enable UART interrupts

• Set UART interrupt callback 

to FMSTR_Isr
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Exercise #3 – Call the FMSTR Functions

• Call FMSTR_Init()

• Call FMSTR_Poll() at 

regular rate or in idle task

NOTE: 

if the Recorder function is desired, 

FMSTR_Recorder() also needs to be called.  

This is normally called in a periodic routine where 

the variables of interest are updated or sampled.
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Exercise #3 – Setting Up the Communication Driver 

Driver setup should be complete!
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Exercise #3 – Program example project with driver

• Open S32DS for ARM

• Import the test project

freeMaster101_S32K144_withDriver.zip

1 – Select Import Project

2 – Check Select archive file:

3 – Browse to project file

C:/Freemaster 

Quickstart/freeMaster101_S32K144_withDriver.zip



PUBLIC 65

Exercise #3 – Examine the Code

Freemaster drivers

Note Freemaster files

Freemaster config file
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Exercise #3 – Change Freemaster Communication Option

Change Communication 

for UART usage

Note: We can now leave the S32DS 

debugger active  and connected 

while also using Freemaster for 

visualization.
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Exercise #3 – Summary – Adding the FreeMASTER Driver

Adding the FreeMASTER driver:

1. Download communication drivers from 

www.nxp.com/freemaster and click on Downloads Tab

2. Add files to project from: 
C:\nxp\FreeMASTER_Serial_Communication_Driver_V2.0\src_common

3. Add files to project from: 
C:\nxp\FreeMASTER_Serial_Communication_Driver_V2.0\src_platforms\

S32xx

4. Edit freemaster_cfg.h

5. Add #define freemaster.h to project C file

6. Add FMSTR_Init() to initialization of C file

7. Add FMSTR_Poll() (or other) to loop in project

8. Optionally add FMSTR_Recorder() in periodic 

interrupt

9. Change FreeMASTER connection

10. Continue with FreeMASTER debugging

http://www.nxp.com/freemaster
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Exercise #4: 

Adding a Recorder
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Exercise #4 – Adding a Recorder

• Call FMSTR_Recorder() in 

pwm interrupt
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Exercise #4 – Adding a Recorder

1. Right-Click on Freemaster project

2. Select Create Recorder …

In FreeMASTER …
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Exercise #4 – Adding a Recorder

1. In Main tab, enter name, sample points, 

time base

2. In Setup tab, select variables of interest

2. In Trigger tab, select #pre trigger samples, 

trigger variable and trigger threshold

(i.e RollOverCounter, Threshold 9)

Click OK

In FreeMASTER …
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Exercise #4 – Adding a Recorder

Click Run

Select the new 

Recorder

In FreeMASTER …
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Exercise #4 – Adding a Recorder

In FreeMASTER …

We can now see the counter 

with better resolution
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Exercise #4 – Adding a Recorder

In FreeMASTER …

Try zooming in on 

the data
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Summary
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Summary

• At this point:

• We should all be able to use and configure FreeMASTER

− Watch variables

− Control variables

− Create a scope

− Create a Recorder

• We should be able to configure a project to use the driver connection

• We should be able to use the debugger and use FreeMASTER

simultaneously!
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