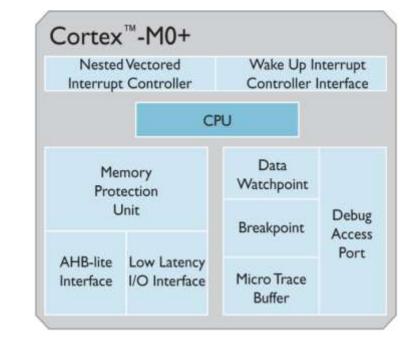
CONSIDERING AN 8-BIT MCU? THINK AGAIN

AMISH DESAI APPLICATIONS MANAGER FTF-DES-N1968 MAY 17, 2016 LEARN THE CLEAR ADVANTAGES OF WHY AND HOW LPC MCUS BASED ON CORTEX®-M0/M0+ CORES BRING SIGNIFICANT VALUE TO EMBEDDED APPLICATIONS

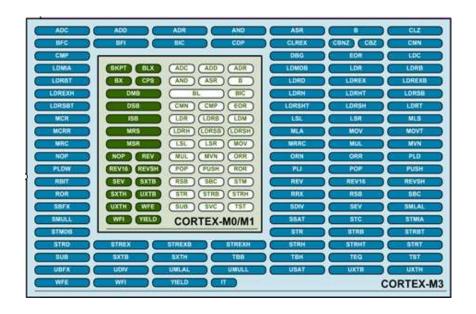
SECURE CONNECTIONS FOR A SMARTER WORLD

AGENGA

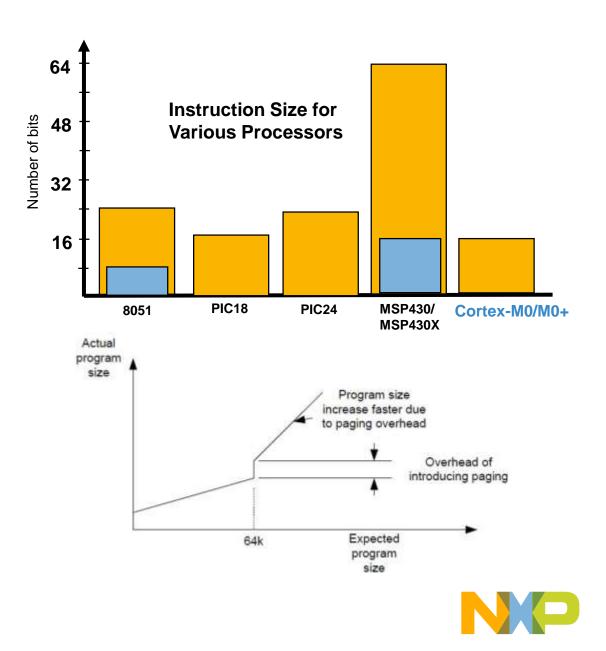
- LPC800 and LPC1100 Introduction
- Cortex-M0+ Introduction
- LPC1100 Technical Introduction
- LPC800 Technical Introduction
- LPC800 Tools and Support
- Questions

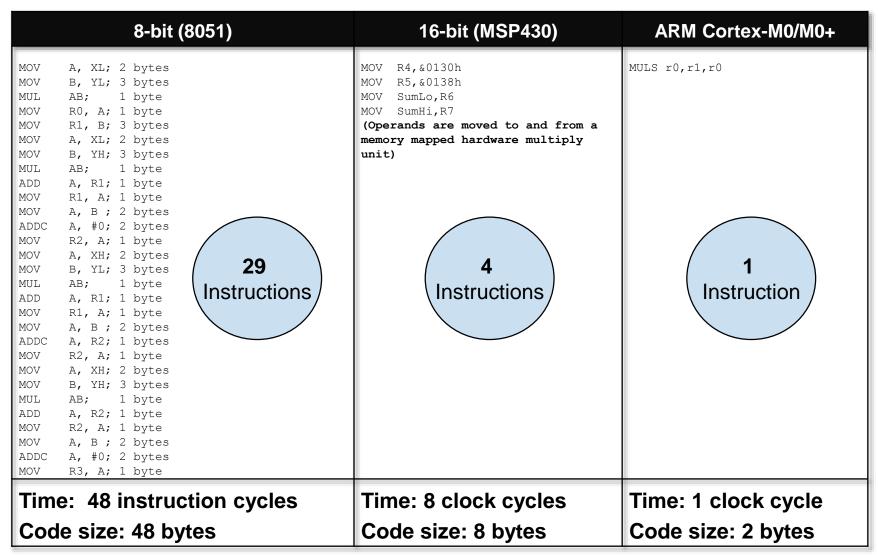

1

CORTEX-M0+/M0 OVERVIEW

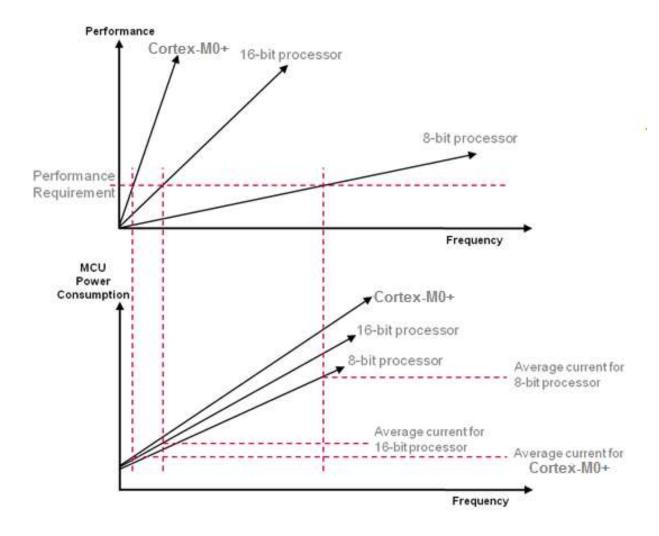

Cortex-M0+ Overview

- High performance 32-bit CPU
- 2 stage pipeline
- Performance efficiency
 - 1.77 CoreMark/MHz 0.93 DMIPS/MHz
- Deterministic operation
- Single cycle IO
- Built-in Nested Vectored Interrupt Controller (NVIC) with Wake-up Interrupt Controller (WIC)
- Debug using 2 pins with up to 4 breakpoints and 2 watchpoints
- Micro Trace Buffer (MTB)
- Vector Table relocation
- Thumb2 instructions (56 instructions)



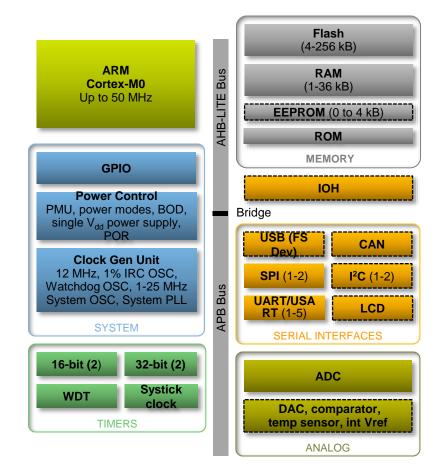

Superior Code Density

- Leading to superior code density:
 - In Cortex-M0/M0+ all instructions (except BL) are 16 bits wide instructions
 - Over 64kB of address space, 8- and 16- processors have to introduce paging, leading to extra overhead in code


Superior Code Density (e.g. 16-bit Multiply)

Cortex-M0/Cortex-M0+ Has Lower Power Consumption

- Cortex-M0/M0+ runs at a much slower clock frequency for the same required performance
- Cortex-M0/M0+ can sleep most of the time, or it can handle additional tasks

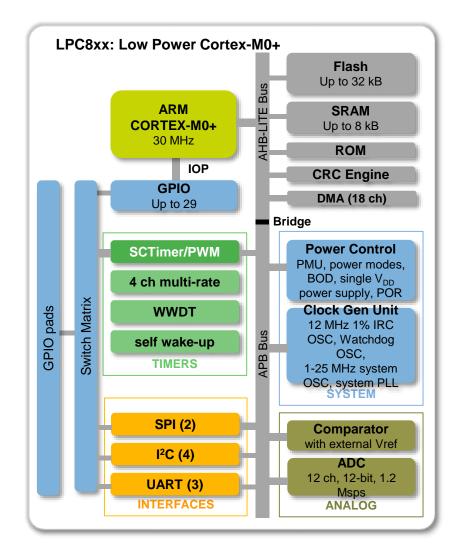


LPC1100 TECHNICAL OVERVIEW

LPC1100 Family Block Diagram

- Cortex-M0+ processor, up to 50MHz
- Low Active Current 150 µA/MHz
- Single VDD power supply (1.8V to 3.6V)
- Memory
 - Up to 256 kB Flash, up to 36 kB RAM
 - ROM:
 - USB, USART, I2C, Power Profile, integer divide, ISP/IAP Drivers, DMA drivers
- Wide range of connectivity options
 - LPC11xx: Basic control and serial connectivity
 - <u>LPC11xxLV</u>: Low voltage (1.8V VDD)
 - LPC 11Axx: 10-bit DAC, comparators
 - LPC11Cxx: CAN with/without integrated transceiver
 - LPC11Dxx: LCD display controller
 - LPC11Exx: EEPROM
 - LPC11Uxx: Full Speed USB device; certified ROM driver
- ADC, DAC and temperature sensor
- Innovative low-pin-count packages

LPC800 TECHNICAL OVERVIEW



LPC81x and LPC82x Block Diagram

- Cortex-M0+ processor, up to 30MHz
- Low Active Current 100 µA/MHz
- Single VDD power supply (1.8V to 3.6V)
- Memory:
 - LPC81x 16kB Flash, 4kB SRAM
 - LPC82x 32kB Flash, 8kB SRAM
 - ROM:

USART, I2C, Power Profile, integer divide (LPC82x), ISP/IAP Drivers, SPI (LPC82x), ADC (LPC82x)

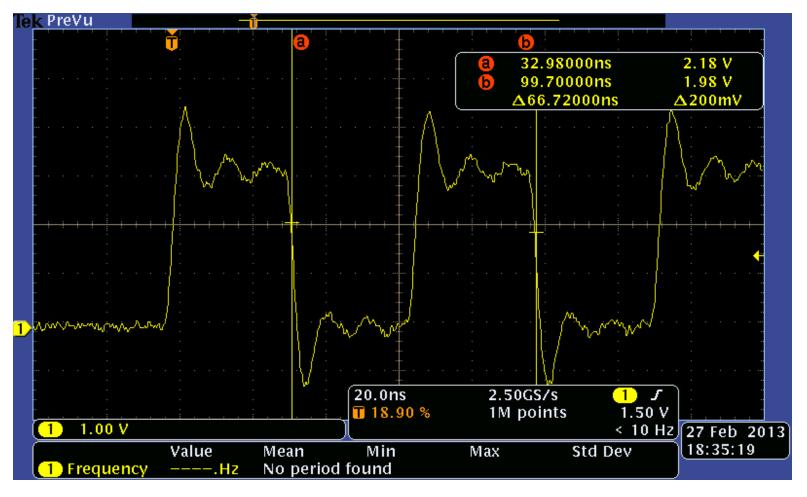
- Peripherals:
- Switch matrix for peripheral configurations
- SCTimer/PWM
- Pattern matching engine (GPIO)
- 3 USART, 2 SPI, up to 4 I2C
- Comparator with external Vref
- 4-channel Multi-Rate Timer (MRT)
- Self wake-up timer, Systick timer, Watchdog timer
- High-speed GPIO with up to 29 GPIOs
- 1.5% accuracy, 12 MHz IRC oscillator
- 12-bit ADC with up to 12 channels (LPC82x)
- DMA with 18 channels and 9 trigger inputs (LPC82x)
- LPC81x TSSOP16/20, SO20 and DIP8
- LPC82x HVQFN33, and TSSOP20

LPC800 CLOCK GENERATION UNIT

LPC800 Clock Generation Unit

Clock Sources	Characteristics
IRC Oscillator	System clock by default Stable power up and power down 12 MHz (±1.5% over specified temperature and voltage)
Watchdog Oscillator	Low power operation Low frequency oscillator 9.3 kHz – 2.3 MHz (+/- 40%)
MAIN Oscillator	1 MHz – 25 MHz
CLKIN	1 MHz – 25 MHz
SYS PLL	Multiplies the clock source (IRC, Main Osc, CLKIN) Up to 100 MHz and divide down to 30 MHz or less
Low Power Oscillator	Low power operation Low frequency oscillator 10 kHz (+/- 40%)

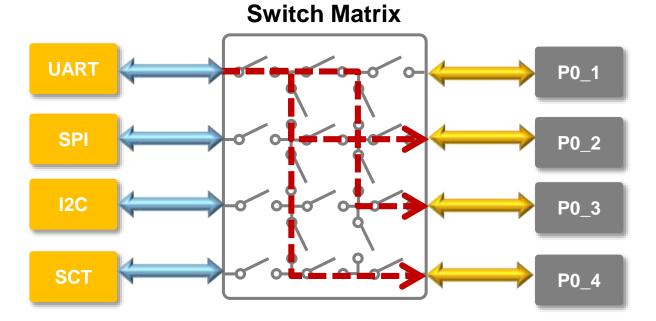
LPC800 GPIO


LPC800: Flexible I/O Port

- I/O Port
 - Up to 29 GPIOs
 - Single cycle access to all port pins
 - Support high frequency I/O toggling As fast as CPU_Clock/2 = 15MHz!
 - Enhanced GPIO Pin Manipulation Capable of simultaneously reading Bit/Byte/Word or toggling up to 29 I/Os per instruction
 - Up to 8 pins can be selected from all GPIO pins as edge- or level-sensitive interrupt requests
 - Programmable Internal pull-up/pull-down resistor, open-drain function, input inverter, and repeater mode
 - All GPIO pins are equipped with a **programmable digital glitch filter**. The filter rejects input pulses with a selectable duration of shorter than one, two, or three cycles of a filter clock
 - High-current source output driver (20 mA) on four pins
 - High-current sink driver (20 mA) on two true open-drain pins

Enhanced GPIO Pin Manipulation

- Support high frequency
 I/O toggling as fast as
 CPU_Clock/2= 15MHz!
- This scope trace shows the single cycle IO port access allowing 15 MHz with a core clock of 30 MHz


Switch Matrix

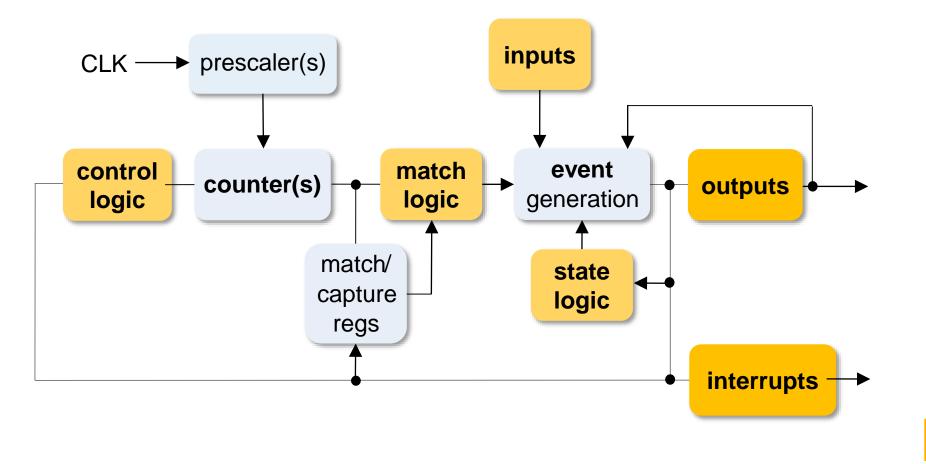
Movable functions

- Can be assigned to any external pin that is not power or ground
- -UART, SPI, I²C, SCT, comparator output, CLKOUT, pattern match output

Fixed pin functions

- -Oscillator pins, comparator input, GPIOs
- Can be replaced by movable functions

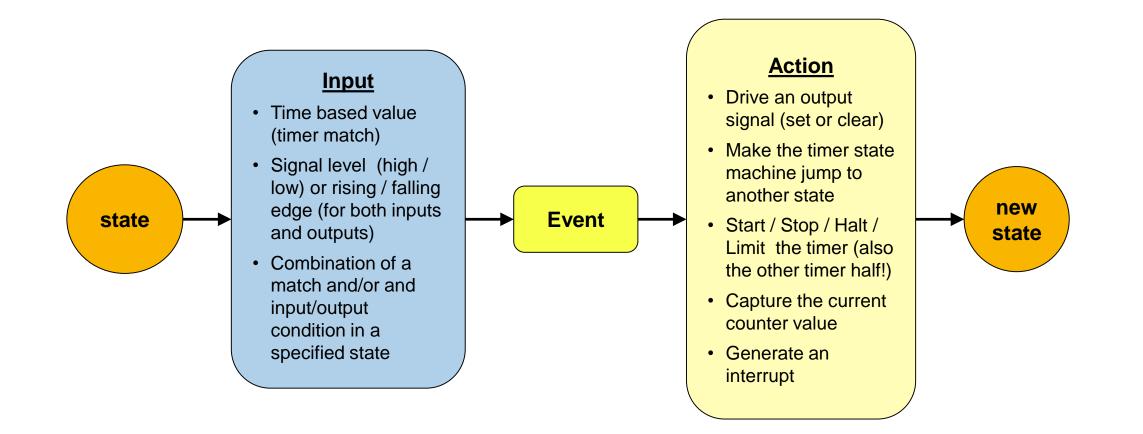
LPC800 PERIPHERALS


Timers

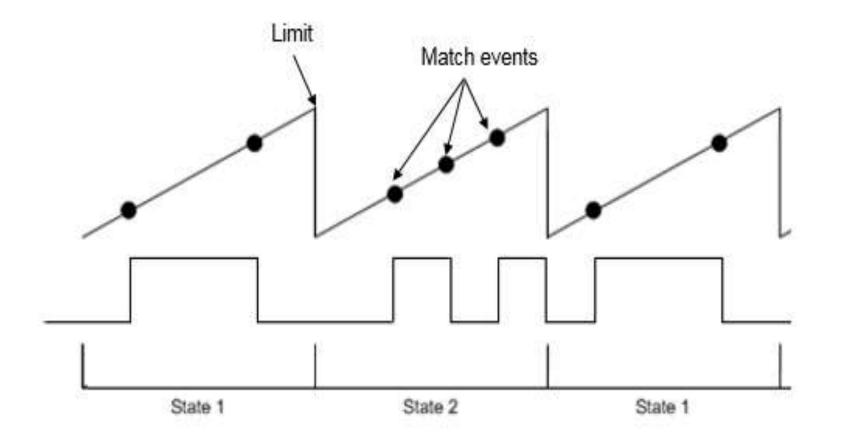
- Multi-Rate timer (MRT)
 - Timer with four independent channels
 - Each channel can generate interrupts
 - Repeat interrupt mode
 - One-shot interrupt mode
- Self wake-up timer (WKT)
 - A non-zero value in this 32-bit timer initiates a countdown sequence.
 Wake-up source from low-power modes
- Windowed watchdog timer (24-bit timer)
- Systick Timer (24-bit timer)

State Configurable Timer/PWM (SCTimer/PWM)

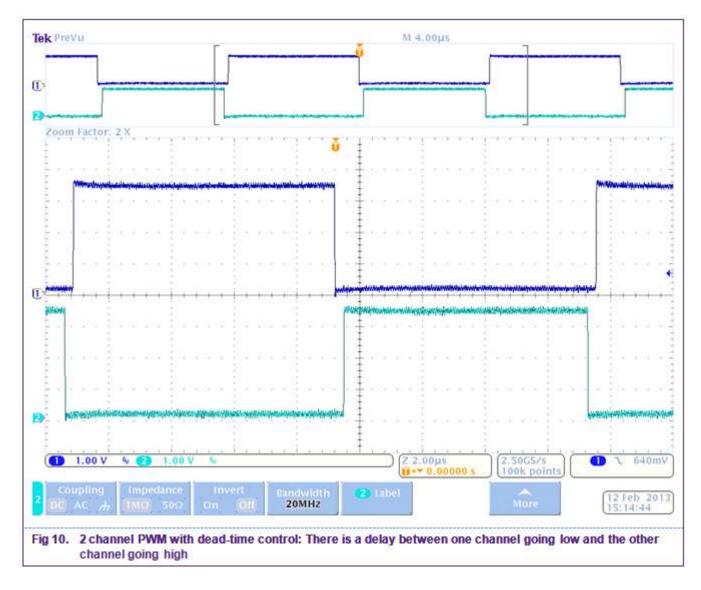
- State Configurable Timer/PWM (SCTimer/PWM) is a timer/capture unit coupled with a highly flexible event driven state machine block.
- Can be configured as 32-bit counter or two 16-bit counters with a configurable state machine


State Configurable Timer/PWM (SCTimer/PWM)

- Allows a wide variety of timing, counting, output modulation, and input capture operations
- Key Features:
 - -4 inputs
 - -4 outputs
 - -5 match/capture registers
 - -6 events with state machine support
 - -2 states



How Does the SCT Work?



SCTimer/PWM – Examples

2-channel PWM with Dead-time Control Using SCT

SCTimer/PWM Cookbook

- Collection of code examples (both LPCXpresso and Keil)
- Each code example summarized in Cookbook document
- Available so far (and more to follow):
 - SCT_blinky_irq
 - SCT_blinky_match
 - SCT_match_toggle
 - SCT_pwm
 - SCT_pwm_um
 - SCT_pwm_deadtime
 - SCT_pwm_4ch
 - SCT_pwm_decode
 - SCT_rc5_send
 - SCT_rc5_receive

- : generate 10 msec timer tick
- : toggle output every 10 msec
- : same using conflict resolution
- : generate PWM output
- : PWM with two different duty cycles
- : PWM and dead time generation (for HB control)
- : 4 channel PWM + abort input
- : pulse width measurement
- : modulate RC5 code at 36 kHz carrier
- : decode RC5 frame (Manchester coding)

State Configurable Timer/PWM (SCTimer/PWM)

- Implements virtually any timing or PWM function found on popular 8-bit MCUs without loading the CPU
 - -Wide variety of counting, output, input, and control operations
 - Dead time insertion
 - High resolution PWMs
- GUI-based configuration tool (Redstate)
 - Integrated into LPCXpresso
 - Choose pre-configured timing functions or build your own

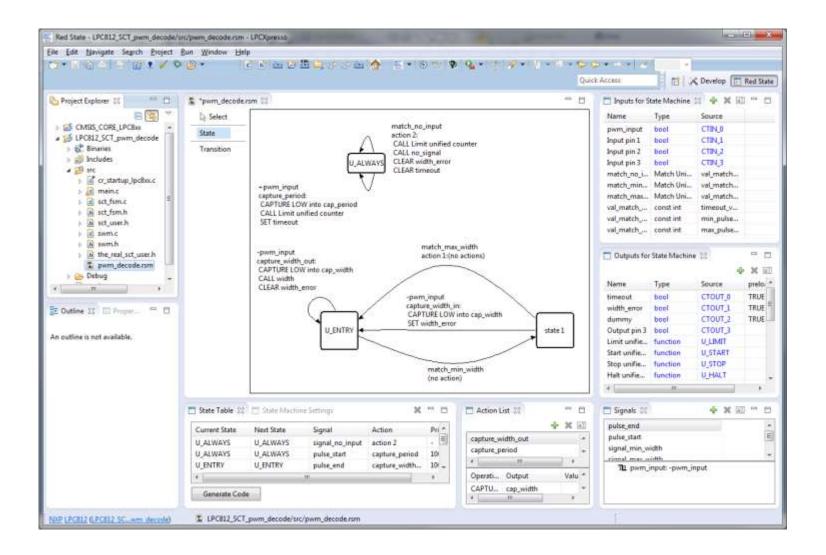
Motor Control PWM

Generating PWM outputs with programmable dead-time

Lighting

Modulated PWM outputs, reaction to lamp sensor

Custom sampling of input signals for:

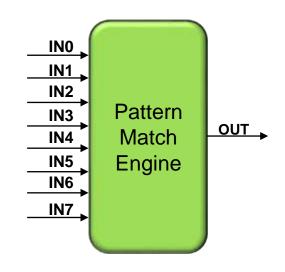

- Frequency detection
- Pulse width detection
- Phase detection

Custom control signals in hardware:

- Clock or signal gating
- Complex modulation of outputs
- Pulse sequences

Red State – Graphical SCT Configuration Tool

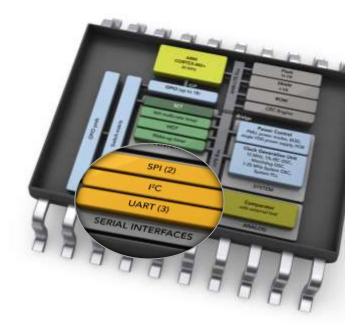
Pattern Match Engine (PME)


- Pin Interrupt generator
 - Up to 8 pins can be selected to generate interrupts to the core
- Pattern match feature
 - The same 8 pins (above) can be selected from all GPIO pins to contribute to a Boolean expression

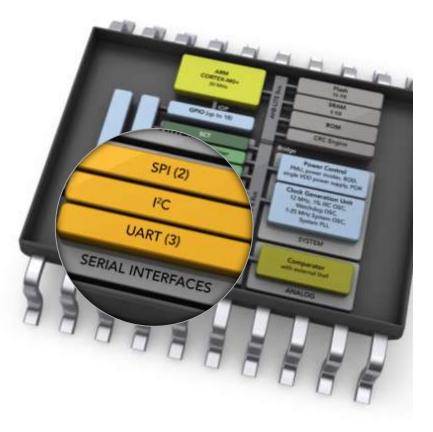
• Example:

(INO)~(IN1) (IN3)^+(IN4) (IN5)+(IN0)~(IN3)~(IN4)

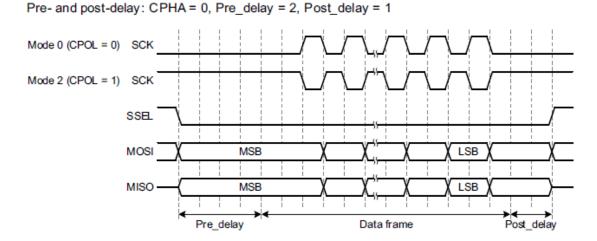
```
where: ~=low; ^=rising edge; +=OR
```

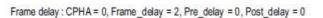

- The PME keeps polling these pins and generates an interrupt to the core when one or more of the bit slices match
- Both the pin interrupt and pattern match blocks are mutually exclusive

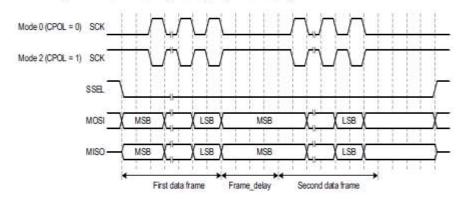
USART


- Synchronous operations on all 3 UARTs
- Maximum bit rates of 1.875 Mbit/s in asynchronous mode and 10 Mbit/s in synchronous mode for USART functions
- ROM drivers to configure USART
- 7, 8, or 9 data bits and 1 or 2 stop bits
- Multiprocessor/multi-drop (9-bit) mode with software address compare
- Parity generation and checking: odd, even, or none
- RTS/CTS for hardware signaling for automatic flow control
- Fractional rate divider is shared among all USARTs
- Built-in baud rate generator
- Wake from sleep, deep-sleep, or power-down mode

1²**C**


- I²C operation can be routed to dedicated open-drain pins (by routing the functions using switch matrix), or any other pin
- Fast-mode Plus (up to 1Mbit/s) capability on the open-drain pins
- Not software compatible with I²C in other devices in the LPC portfolio
- Independent master, slave, and monitor functions
- Time-out register
- ROM drivers to configure I²C
- Wake-up from low power modes from I²C interrupt



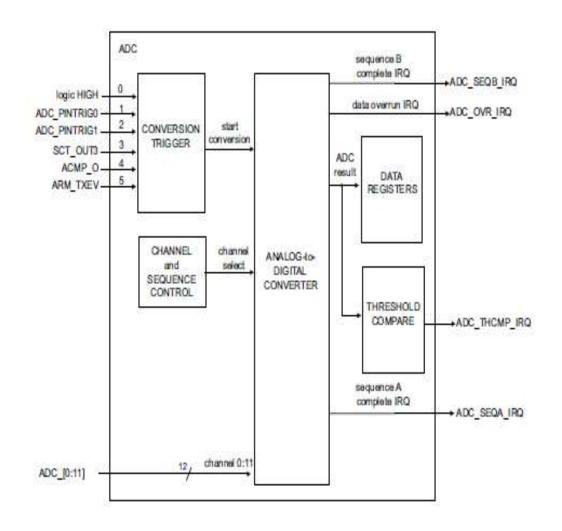


SPI

- Maximum data rate of 30 Mbit/s in master and 25 Mbit/s in slave
 - Programmable pre and post delays
 - Programmable frame delay
 - -ROM drivers to configure the SPI
 - Wake from sleep, deep-sleep, or power-down mode

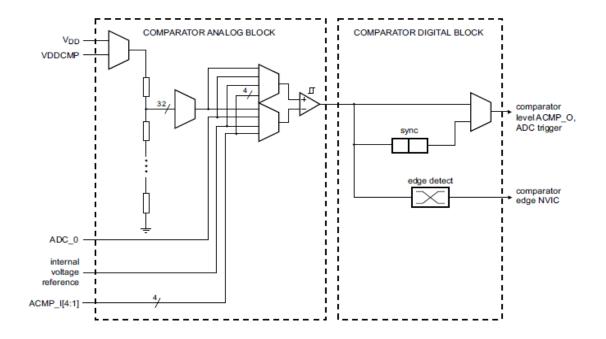
DMA

- 18 channel DMA: all connected to peripheral request inputs and outputs
 - -18 sources from USART, SPI and I2C peripherals
 - -SCT request 0&1, ADC sequence A&B, ACMP, pin interrupt 0&1
- Supports single transfers up to 1024 words
- Operates in sleep mode
- Priority is user selectable for each channel
- Continuous priority arbitration
- Address cache with four entries
- Address increment options allow packing and/or unpacking data



LPC800 ANALOG

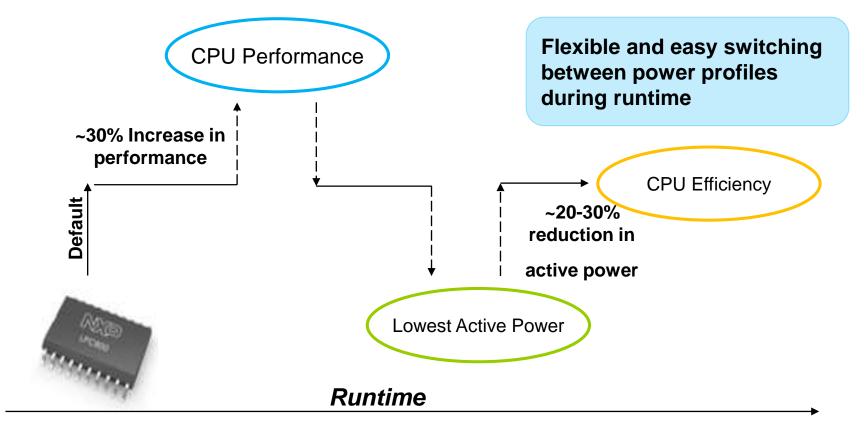
Analog to Digital Converter


- 12-bit successive approximation
- Input multiplexing among 12 pins and one internal source
- 12-bit conversion rate up to 1.2 Msps
- Two configurable conversion sequences with independent triggers
- Optional automatic high/low threshold comparison and "zero crossing" detection
- Power down mode and low-power operating mode
- Burst conversion mode for single and multiple inputs
- DMA support

Analog Comparator

- Compares voltage levels on external pins and internal voltages
- 4 inputs are multiplexed separately to the positive voltage input and negative inputs
- The Internal voltage reference (0.9 V bandgap reference) can be used as either the positive or negative input of the comparator
- Voltage ladder source selectable between the supply pin VDD or VDDCMP pin
- 32 levels of Comparator reference voltage for fine grain comparison
- Edge and level Comparator output signals connected to <u>State Configurable Timer (SCT)</u> using the <u>Switch matrix</u>, allows for the recording of event comparison – "timestamps"

LPC800 ROM DRIVERS


ROM Drivers

- On-chip ROM contains the boot loader and the following application programming interfaces (API):
 - In-system programming (ISP) and in-application programming (IAP) support for flash programming
 - USART driver API routines
 - Send or receive characters using any of the USART blocks in asynchronous mode
 - I²C-bus driver API routines
 - Send or receive data on the I2C bus in master and slave modes
 - SPI drivers (LPC82x)
 - Control multiple SPI slave devices through this standardized API
 - ADC drivers (LPC82x)
 - ADC calibration, triggered AD conversions and Interrupt handling
 - Power profiles for optimizing power consumption and PLL settings
 - Integer divide routines

Power Profiles

- An <u>easy-to-use</u> API driven interface for dynamic current management at <u>runtime</u>
- Application can be focused towards:

Power Profile Results Using Keil v4.70

Power Profile	12 MHz			24 MHz			
	Current (mA)	CoreMark	CoreMark/ MHz	Current (mA)	CoreMark	CoreMark/ MHz	
Default	2.50	16.88	1.41	4.40	33.76	1.41	
CPU Performance	1.98	24.62	2.05	4.27	49.24	2.05	
Efficiency	1.98	24.62	2.05	4.27	49.24	2.05	
Low Current	1.56	12.93	1.08	3.15	25.85	1.08	

• Note:

- The current consumption is improved by using Power Profiles
- The CoreMark scores are improved by using Power Profiles

CoreMark Benchmark Results (EEMBC)

Processor	CoreMark/MHz	CoreMark
NXP LPC800* (24 MHz)	2.05	49.24
Atmel ATmega644 (20 MHz)	0.54	10.81
Microchip PIC24FJ64 (32MHz)	0.75	23.87
TI MSP430F5438A (25 MHz)	0.78	19.56

http://www.coremark.org/benchmark/index.php?pg=benchmark

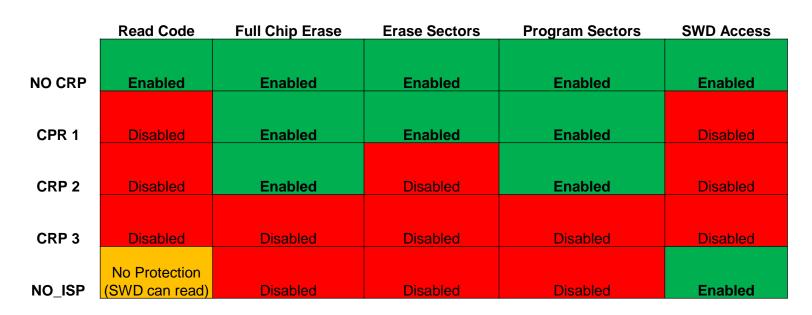
LPC800 LOW POWER MODES

LPC800 Low Power Modes

Low Power Mode	Impact	Wake-Up Sources	Current Consumption
Sleep	System Clock to Cortex-M0+ is stopped. Peripherals and memories are active. Processor state and registers, peripheral registers, and internal SRAM are maintained, and the logic levels of the pins remain static	Any peripherals interrupts (SCT, MRT, USART, SPI, I2C, CMP) Pin interrupts & Pattern Match Engine BOD interrupt and reset WWDT interrupt and reset External Reset Self Wake-up Timer	600 µA *
Deep Sleep	Peripherals receive no internal clocks. Flash is in stand-by mode. Peripherals and memories are active. Processor state/registers, peripheral registers, and internal SRAM contents are maintained, and the logic levels of the pins remain static	Interrupts from USART, SPI, I2C Pin interrupts BOD interrupt and reset WWDT interrupt and reset External Reset Self Wake-up Timer	170 µA
Power-Down	Peripherals receive no internal clocks. The flash memory is powered down. Processor state/registers, peripheral registers, and internal SRAM contents are maintained, and the logic levels of the pins remain static	Interrupts from USART, SPI, I2C) Pin interrupts BOD interrupt and reset WWDT interrupt and reset External Reset Self Wake-up Timer	1.8 µA
Deep Power-Down	The entire system is shut down except for four 32-bit general purpose registers in the PMU and the self wake-up timer. Register states and internal SRAM contents are lost	Wake up on a pulse on the WAKEUP pin or when the self wake- up timer times out. On wake-up, the part reboots.	220 nA

LPC800 MEMORY

Memory Block


 Flash: 1kB sectors with 64-byte page program/erase

Sector number	Sector size [kB]	Page number	Address range	4 kB	8 kB	16 kB
0	1	0 -15	0x0000 0000 - 0x0000 03FF	yes	yes	yes
1	1	16 - 31	0x0000 0400 - 0x0000 07FF	yes	yes	yes
2	1	32 - 47	0x0000 0800 - 0x0000 0BFF	-	yes	yes
3	1	48 - 63	0x0000 0C00 - 0x0000 0FFF	-	yes	yes
4	1	64 - 79	0x0000 1000 - 0x0000 13FF	-	yes	yes
5	1	80 - 95	0x0000 1400 - 0x0000 17FF	-	yes	yes
6	1	96 - 111	0x0000 1800 - 0x0000 1BFF	-	yes	yes
7	1	112 - 127	0x0000 1C00 - 0x0000 1FFF	-	yes	yes
8	1	128 - 143	0x0000 2000 - 0x0000 23FF	-	yes	yes
9	1	144 - 159	0x0000 2400 - 0x0000 27FF	yes	yes	yes
10	1	160 - 175	0x0000 2800 - 0x0000 2BFF	yes	yes	yes
11	1	176 - 191	0x0000 2C00 - 0x0000 2FFF	yes	yes	yes
12	1	192 - 207	0x0000 3000 - 0x0000 33FF	yes	yes	yes
13	1	208 - 223	0x0000 3400 - 0x0000 37FF	yes	yes	yes
14	1	224 - 239	0x0000 3800 - 0x0000 3BFF	yes	yes	yes
15	1	240 - 255	0x0000 3C00 - 0x0000 3FFF	yes	yes	yes

Code Read Protection Levels

- Four levels of the Code Read Protection
- This feature allows user to enable different levels of security in the system so that access to the on-chip flash and use of the SWD and ISP can be restricted
- When needed, CRP is invoked by programming a specific pattern into a dedicated flash location
- Program CRP pattern at location @2FC

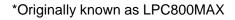
Cyclic Redundancy Check (CRC) Engine

- Supports three common polynomials CRC-CCITT, CRC-16, and CRC-32
 - CRC-CCITT: X¹⁶ + X¹² + X⁵ + 1
 - CRC-16: X¹⁶ + X¹⁵ + X² + 1
 - CRC-32: $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
- Accept any size of data width per write: 8, 16 or 32-bit
 - -8-bit write: 1-cycle operation
 - -16-bit write: 2-cycle operation (8-bit x 2-cycle)
 - -32-bit write: 4-cycle operation (8-bit x 4-cycle)

LPC800 DEBUG MODULE

Emulation and Debugging

- Debug and trace functions are integrated into the ARM Cortex-M0+
- Serial wire debug (SWD: 2 pins)
- Supports up to four breakpoints and two watchpoints
- Micro Trace Buffer (MTB) supported
- Standard JTAG pins (5 pins) supports ONLY boundary scan testing

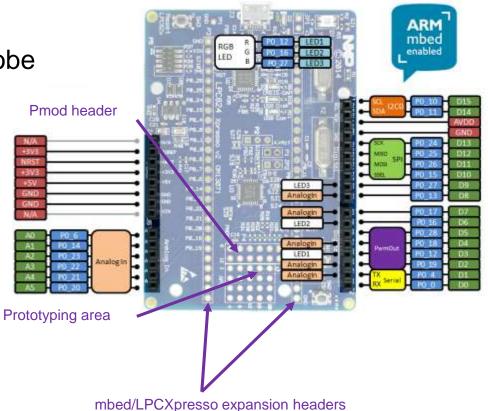


LPC800 TOOLS AND SUPPORT

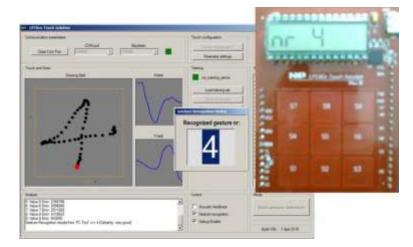


LPCXpresso812MAX* (OM13055)

- LPC812 in TSSOP20 package
- Works with LPCXpresso IDE, Keil, IAR and other 3rd party tools
- mbed compatible
- On-board CMSIS-DAP debug probe or optional external probe (e.g. J-Link, LPC-Link2, ULINK etc.)
- Arduino UNO R3-compatible expansion
- Original mbed/LPCXpresso connectors
- RGB user LED
- User push button


End customer price: ~\$18.75 USD Order: OM13055 Information: http://www.nxp.com/demoboard/OM13055.html

LPCXpresso824MAX Development Board (OM13071)

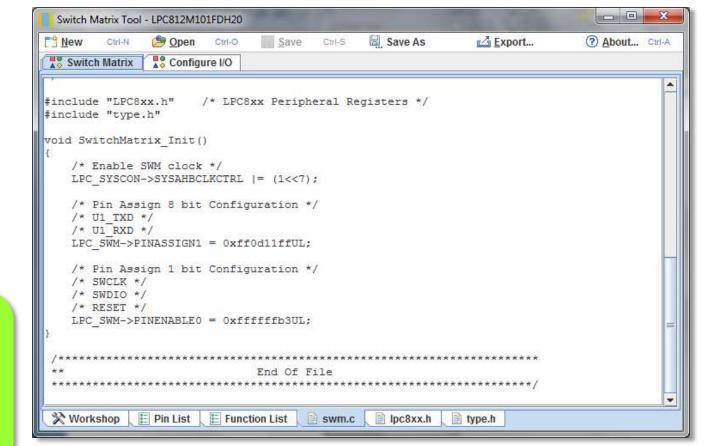

- LPC824 in HVQFN33 package
- Works with LPCXpresso IDE, Keil, IAR and other 3rd party tools
- mbed enabled platform
- On-board CMSIS-DAP debug probe or optional external probe (e.g. J-Link, LPC-Link2, ULINK etc.)
- Expansion options
 - Arduino UNO R3-compatible connectors
 - Original mbed/LPCXpresso connectors
 - Pmod header
 - Prototyping area
- Other features
 - RGB user LED
 - (UART) ISP and Wake buttons
 - Virtual com port (Target UART connection via USB)

LPC82x Touch Solution Kit (with Gesture Library)

- NXP's Capacitive Touch Solution based on Switched Capacitor Integration
 - Based on LPCXpresso824MAX capacitive touch shield w/ integrated LCD
- Full software provided:
 - Downloadable touch library
 - Auto-calibration to adapt for different environments
 - API programming guide, design guide & sample project for quick prototyping and easy development.
 - PC hosted GUI to visualize/analyze the touch data
 - PC hosted Gesture Library
- USB Drag and Drop Programming
- More information: <u>http://www.nxp.com/demoboard/om13081.html</u>
- Software: <u>http://www.lpcware.com/lpc82x_touch_solution</u>

Switch Matrix Configuration Tool

3. Click on the pin where you would like to place the peripheral function In this example, we will check U1_TXD


]	
[PIO0_17]	PIO0_17		20 PIO0_14	[PIO0_14]
[PIO0_13]		/1101FDH20	19 PIO0_0	[PIO0_0/ACMP_I1]
[PIO0_12]	PIO0_12 🚺 🗆 U1_RXD		18 PIO0_6	[PIO0_6/VDDCMP]
[RESET/PIO0_5]	RESET . U1_RTS	GPIOD	17 PIO0_7	[PIO0_7]
[PIO0_4]		с вст	16 ∨SS	[VSS]
[SWCLK/PIO0_3]	SWCLK 6		15 VDD	[VDD]
[SWDIO/PIO0_2]	SWDIO 7	SPI1	14 PIO0_8	[PIO0_8/XTALIN]
[PIO0_11(Open Drain)]	PIO0_11 8 SYSTE	M USARTO	13 PIO0_9	[PIO0_9/XTALOUT]
[PIO0_10(Open Drain)]	PIO0_10 9	USART2	12 PIO0_1	[PIO0_1/ACMP_I2/CLKIN]
[PIO0_16]	PIO0_16 10		11 PIO0_15	[PIO0_15]

Switch Matrix Configuration Tool

- The code for configuring the PINASSIGNx registers will be shown in the swm.c tab, as shown below. This can be copied into your source code
- Don't forget to enable the SWM clock!

Hint: you can disable the clock to the Switch Matrix after configuration to save power!!

Where to Get Started?

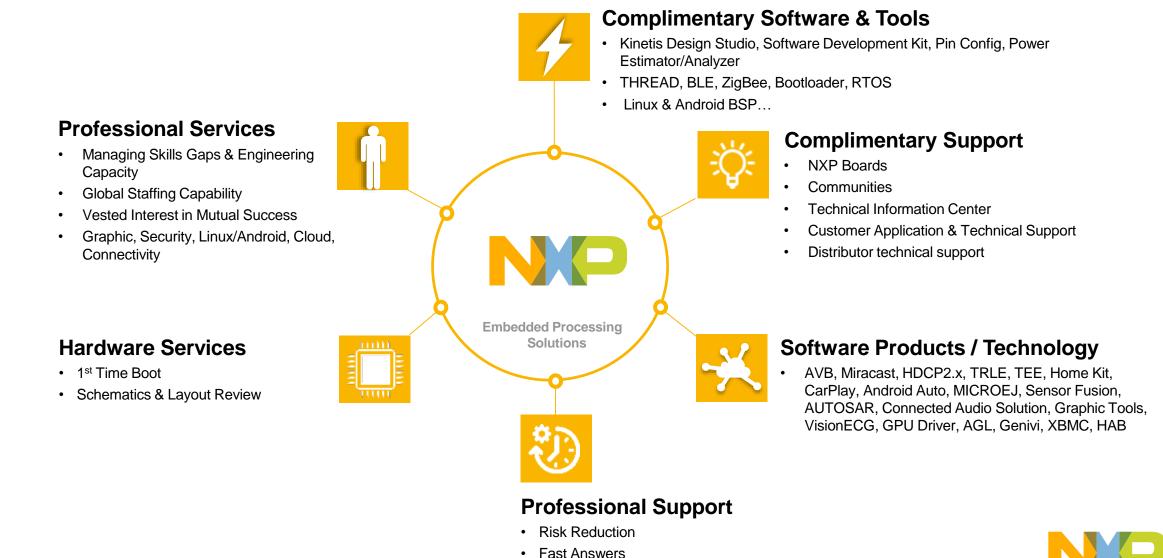
www.nxp.com/microcontrollers
 MCU homepage

NO

- www.nxp.com/lpcxpresso
 - -Low-cost development

- www.lpcware.com
 - Engineering community

LPC800 SUMMARY



LPC800 Summary

- Simplicity
- High performance at a low price point
- 2-10x higher performance than 8/16-bit MCUs
- 2-3x power saving compared to 8/16-bit MCUs
- 40-50% smaller code size than 8/16-bit MCUs
- Single cycle IO access
- Easy to use and flexible peripherals: SCTimer/PWM, Multi Rate Timer, Switch Matrix, USART, I2C, SPI

Software, Professional Support & Services

Hot Fixes

SECURE CONNECTIONS FOR A SMARTER WORLD

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE, MIFARE Classic, MIFARE DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale, the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2015–2016 NXP B.V.

