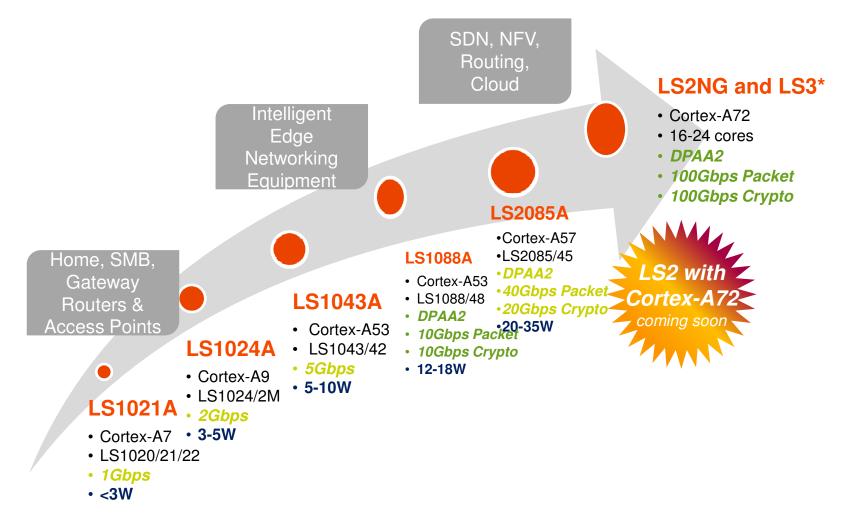
### QORIQ LAYERSCAPE LS2085/88 MULTICORE COMMUNICATIONS PROCESSORS FOR THE FUTURE OF NETWORKING

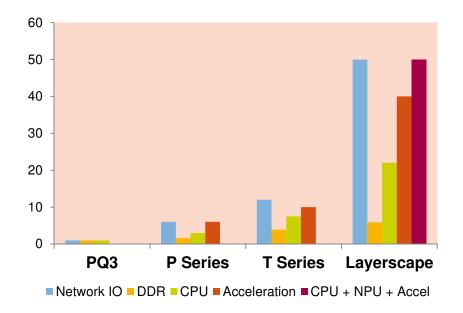





### Agenda

- Block diagram, new features
- ARM<sup>®</sup> related information
- Serdes information
- SoC infrastructure blocks
- LSDPAA introduction
- Use cases




# **Continued Momentum:** SoC Optimization



First to announce the extremely low-power Cortex<sup>®</sup>-A72 core in a networking processor



# Layerscape : A New Architecture for a New Network



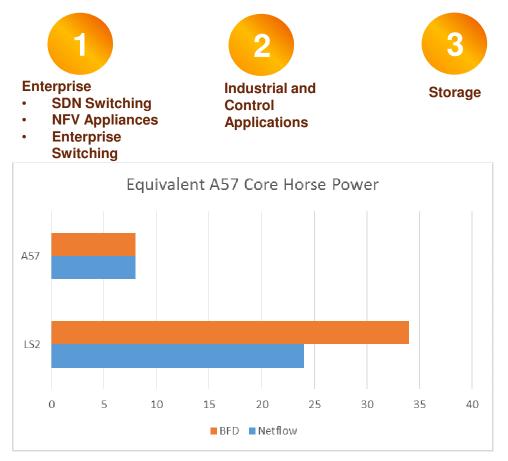


Many-core processor approach is not sustainable due to power, software complexity and integration costs

Need to provide right mix of high performance and programmability

### **MUST HAVE:**

### Advance Packet Processing


- Tightly coupled accelerators called as C functions
- H/W preloaded task state, headers, stack frame
- Customer programmable
- Run-to-completion model using standard C (C99)

**3-4x** Performance over general purpose cores in a lower power envelope

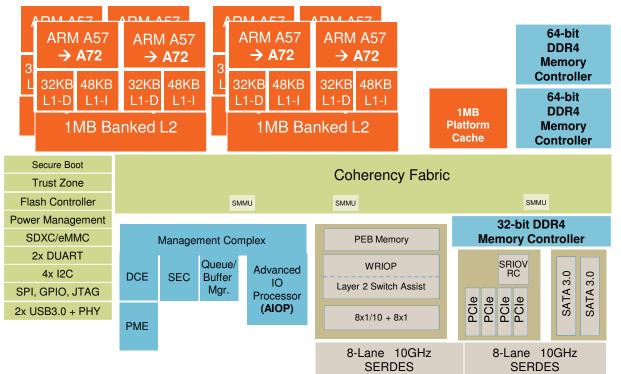




### LS2085A's (AIOP) Packet Acceleration Benefits




| LS2085A BFD<br>Performance                        |           |
|---------------------------------------------------|-----------|
| GPP<br>Performance                                | 3Gbps     |
| AIOP<br>Performance<br>(3.3ms on 25K<br>sessions) | 9.7Gbps   |
| Equivalent A57<br>Core<br>performance             | 34 Cores! |
| LS2085A Netfow<br>Performance                     |           |
| GPP<br>Performance                                | 10Gbps    |
| AIOP<br>Performance                               | 20Gbps    |
| Equivalent A57<br>Core<br>performance             | 24 Cores! |


The LS2 device featuring AIOP behaves much better than an 8-core device (without the power dissipation penalty)!



# Value of DPAA2: Power Efficiency



# Product Definition: LS208X Platform



#### **Other Parametrics**

- 37.5x37.5 Flipchip
- 1mm Pitch
- 1292pins

#### **Datapath Acceleration**

- SEC- crypto acceleration
- DCE Data Compression Engine
- PME Pattern Matching Engine
- L2 Switching -- via Datapath Acceleration Hardware
- Management Complex Configuration
   Abstraction

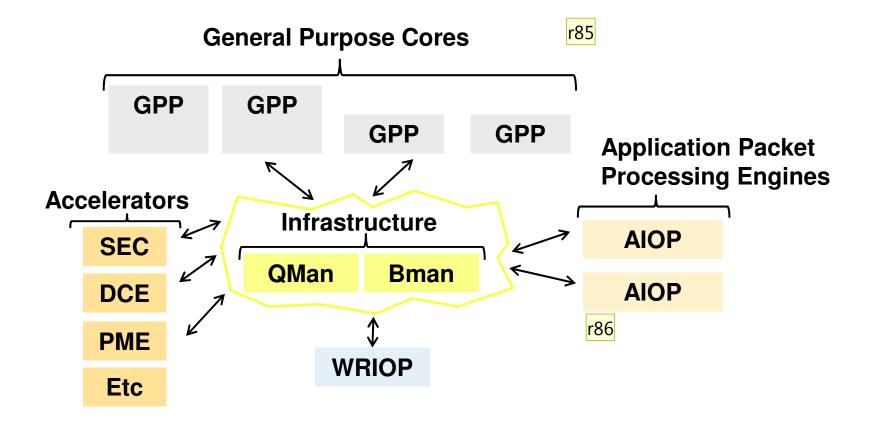
#### **General Purpose Processing**

- 8x ARM<sup>®</sup> A57 CPUs, 64b, 2.0GHz
   1MB L2 cache
- Rev2: 8x ARM A72 CPUs
- HW L1 & L2 Prefetch Engines
- Neon SIMD in all CPUs
- 1MB L3 platform cache w/ECC
- 4MB Coherent Cache
- 2x64b DDR4 up to 2.4GT/s

#### **Accelerated Packet Processing**

- 20Gbps SEC- crypto acceleration
- 10Gbps Pattern Match/RegEx
- 20Gbps Data Compression Engine

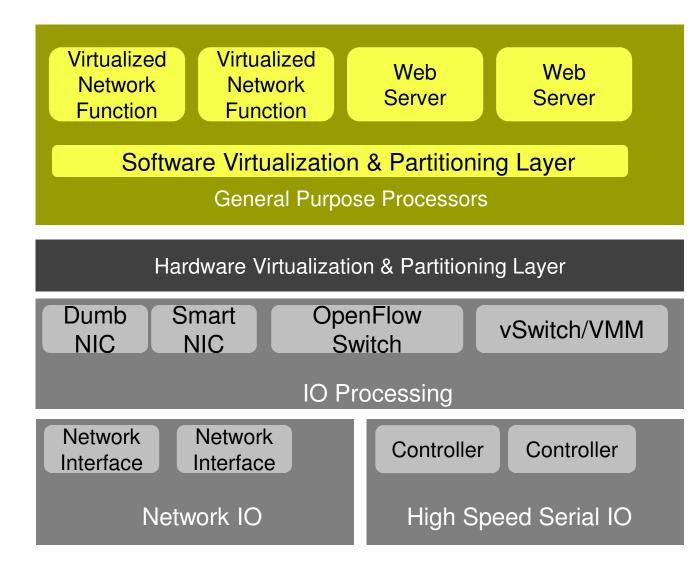
#### **Express Packet IO**


- Supports1x8, 4x4, 4x2, 4x1 PCIe Gen3 controllers
  - SR-IOV support, Root Complex
- 2 x SATA 3.0, 2 x USB 3.0 with PHY

#### **Network IO**

- Wire Rate IO Processor:
  - 8x1/10GbE + 8x1G
  - XAUI/XFI/KR and SGMII
  - MACSec on up to 4x 1/10GbE
  - Layer 2 Switch Assist




### **DPAA2 Hardware**





| Slide 8 |                                                                                                           |  |
|---------|-----------------------------------------------------------------------------------------------------------|--|
| r85     | Use different slide or eliminate big/little, use GPP<br>ra6722; 02/12/2014                                |  |
| r86     | If not spelling out Advanced IO Processor, call these C-programmable packet processors ra6722; 02/12/2014 |  |

### **QorlQ Layerscape architecture Concept: Functional View**



High Performance General Purpose Processors with HW enforced/accelerated virtualization capabilities.

VMs in the GPPs perceive direct access to private IO and acceleration resources; IOs and accelerators adopt the permissions of the VMs using them.

Virtualized IOs & accelerators instantiated as network objects useful to the VMs; such as normal and smart NICs, vSwitch.



## **Major New Features Summary**

- 64-bit ARM<sup>®</sup> core 8 x A57 cores, 2GHz Rev2: 8 x A72
- DPAA2 Major paradigm/software model shift
- DDR4 only
- SATA x2 gen3
- USB x2 SuperSpeed/High Speed with PHY
- PCIe Gen 3
- QSPI, QDMA



### **ARM cores**

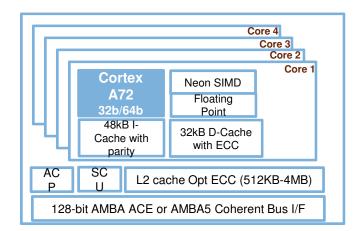
- 8 ARM cores: 4 clusters, 2 cores/clusers
- Up to 2GHz.

Each cluster can run at different speeds

- ARM® A57 Core ARM® A57 Core 32 KB 48 KB 32 KB 48 KB D-Cache I-Cache D-Cache I-Cache 1 MB Coherent L2 Cache
- General purpose processor ARMv8 64-bit architecture
- Superscalar, dual symmetric single-cycle ALU/shift
- Advanced SIMD and floating-point unit
- 64-byte cache line size
- · L1 cache: 48KB I-Cache, 32KB D-Cache
- L2 Cache: 1MB with ECC
- 40-bit physical addressing
- Hardware page table walk

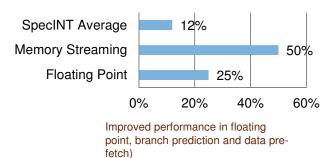


#### r12 General Purpose Processors: ARM v8 ra6722; 02/12/2014


### **Rev2: Highest Performance Cortex<sup>®</sup> A72 ARM<sup>®</sup> v8 Processor**

### Highest Single-Threaded Performance

- Lower power enabling maximum performance in thermal limit
- Large performance increase across integer, memory-streaming, float
- Significant Advancements in Power Efficiency
  - -17.4% power reduction from Cortex-A57
  - -6% ~ 10% cluster area reduction lowers static power


### Enhanced Multicore Scalability

Larger L2 for optimizing SDN/NFV applications



### Performance Improvement A72 relative to A57

L2 cache in LS2088A set to 512KB





### **High Speed Serial Interface: SERDES**

- Two x 8-lane 10Gbps SERDES: total 16 lanes Shared by
  - 16 x Ethernet Controllers
  - 4 x PCIe Controllers
  - 2 x SATA controllers (Gen3, 6Gbps)
- Ethernet Interfaces:

10Gbps: 8 x XFI or 2 x XAUI 1Gbps: 16 x SGMII, 4 x QSGMII(16 ports)

 SGMII base line at 1.25Gbaud for 1Gbps Ethernet SGMII can also runs at 3.125Gbaud for 2.5Gbps Ethernet QSGMII runs at 5Gbaud



## **DDR controllers**

- Supports DDR4 only
- Two 64-bit DDR controllers with ECC, 2.1Ghz data rate
- One 32-bit DDR controller with ECC, 1.6Ghz data rate
  - Intended for AIOP only.
  - Can be power gated if not needed
- Support x4, x8, and x16 memory widths
  - Programmable support for single, dual, and quad ranked devices and modules
  - Support for both unbuffered and registered DIMMs
  - 4 chip-selects per controller
  - Max amount of DDR memory supported

16Gb is highest density approved by JEDEC

r17

x4, we can put 64/4=16 device for one CS 16Gb\*16/8=32Gbytes/CS

4 Chip select =128Gbytes

Caution: For 2166Mhz, we might limit to 2 CS. We need to wait until silicon.

- And we have two controllers for main memory
- Support self-refresh mode for implementation of battery backed main memory



Slide 14

- r17 Two 64b Main DDR controllers with ECC, etc
  - Used by whole SoC
  - One 32b DPAA2 DDR controller with ECC, etc.
    - Optional. When enabled, for use by AIOP only

Don't need the CS details. Main DDR capacity is up to 256GB. DPAA2 DDR capacity is up to ? ra6722; 02/12/2014

## **PCI Express**

- Four Gen 3 PCI Express controllers
- Power-on configuration options allow root complex or endpoint
- The physical layer operates at 2.5, 5, or 8 Gbaud data rate per lane.

r18

- Link Width
  - PEX1, PEX2, PEX4: x1/x2/x4
  - PEX3: x1/x2/x4/x8
- Both 32-bit and 64-bit addressing, 256-byte maximum payload size
- Inbound INTx transactions
- Message Signaled Interrupt (MSI and MSI-X) transactions
- PCI Express controller 3 supports end-point SR-IOV
  - -Two physical functions
  - -32 virtual functions per physical function
  - -Eight MSI-X per virtual function



r18This can be abstracted a bit...All controllers supportxyz3 controllers support up to x4 link width1 controller supports up to x8 link width- This controller supports end point SRIOV- 2 PFs, 32 VFs per PF, 8 MSI-X per VFra6722; 02/12/2014

### USB r26

- Two USB controllers with integrated PHY
- Complies with USB specification, Rev. 3.0
- Supports super-speed (5 Gbps), high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- Both controllers support operation as a stand-alone USB host controller
   Supports USB root hub with one downstream-facing port
  - Enhanced host controller interface (EHCI)-compatible
- Both controllers supports operation as a stand-alone USB device – Supports one upstream-facing port
  - -Supports six programmable USB endpoints
- SYSCLK is also used as reference clock for USB PHY

| SYSCLK | requirements f | for USB PHY |
|--------|----------------|-------------|
|--------|----------------|-------------|

| Parameter/condition                                   | Symbol              | Min | Тур      | Мах | Unit | Notes |
|-------------------------------------------------------|---------------------|-----|----------|-----|------|-------|
| SYSCLK frequency for USB 3.0<br>superspeed only       | f <sub>SYSCLK</sub> | —   | 100, 125 | —   | MHz  | _     |
| SYSCLK frequency for USB 2.0 only<br>or mixed 2.0/3.0 | fsysclk             | —   | 100      | —   | MHz  | —     |



#### r26 Either make this overview level or training level. ra6722; 02/12/2014

# SATA

- 2xSATA controllers support 1.5Gbps, 3.0Gbps, 6.0Gbps
- AHCI 1.3 Compliant
  - Define both hardware behavior and programming Interface
  - Use standard driver with minimal Freescale specific code
- 2 x AHCI controller

In AHCI spec, it supports 1-32 ports/controller.

In LS2, we support one port/AHCI controller

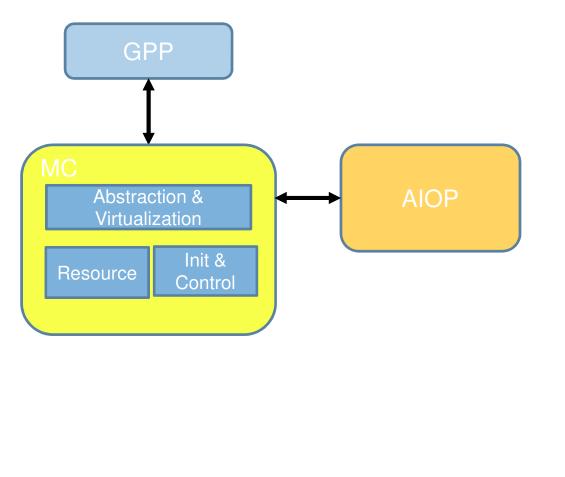
 pp2c, pp3c, pp4c, pp5c should be configured based on the speed of SYSCLK

These registers set OOB timing parameters

<mark>r20</mark>



**r20** If this is an overview slide, drop the register/timing info. If this is a training/config slide, add the rest of the details. ra6722; 02/12/2014


### **MC (Management Complex)**

- MC abstracts Layerscape architecture hardware into softwaremanaged objects that are:
  - -Simpler to use than directly managing the hardware
  - -Customers do not need to program the hardware directly
  - -Application-oriented in terminology and use
  - -Based on concepts generally familiar to programmers and system architects



### r28

# Value of the Management Complex: Ease of use "Agent" between the GPP and the AIOP

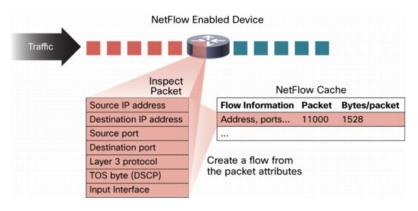


- Abstraction and Virtualization
  - -Allocates and configure elements: Virtual NI, switches networking functions/accelerators
  - -Dedicated vs. Virtual
- Resource Allocation
  - -No more awareness of queues, buffers, pointers (QBMan, CTLU, Accelerators)
- Initialization and Control
  - -Session establishment and tear-down
  - -Device discovery
  - -Policy elements

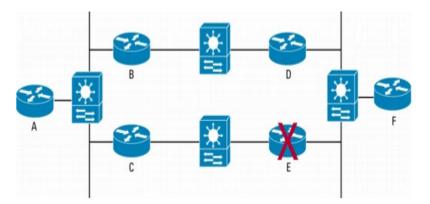


Reduce awareness and head-aches of working with AIOP

Slide 19


r28 Duplicate. ra6722; 02/12/2014

### **Next-Generation Data Centers Networking**


LS208X eases the implementation of analytics that will optimize the use of the data center network infrastructure

.

### **Netflow Use Case**



BFD



- Key tool for network trouble shooting, capacity planning and anomaly detection
- Implementation in the LS208X saves the cost of expensive ASICs normally used to inspect all packets.
  - LS208X's AIOP Performance is 20Gbps

- Implementation Details
- Implements Cisco netflow RFC 3954 in AIOP.
- Support for IPV4 and IPV6
- ACL support for selective monitoring.
- Support multiple observation domains and observation points.
- Support millions of flows (200K flows/s).

| Provide failure detection                                                                                                              | Confirms to RFC                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| in less than 1 sec.                                                                                                                    | 5880/81/82/83.                                                                        |
| Performance<br>Implementation: 9.7Gbps<br>at 3.3ms/25K flows<br>detection rate (which is<br>less than 50% the<br>capacity of LS2085A). | <ul> <li>Support for IPV4/V6<br/>single hop and multi<br/>hop peer failure</li> </ul> |
|                                                                                                                                        | detections.                                                                           |
|                                                                                                                                        | Support BFD     Authentication.                                                       |
|                                                                                                                                        | Addicition                                                                            |



**r83** This slide should come earlier to set the stage for the LS2 value proposition. Too much redundant info with other Netflow/BFD slides. ra6722; 02/12/2014



SECURE CONNECTIONS FOR A SMARTER WORLD