

QorlQ T1040 and T2081 Communication Processors Compatible Design Guidelines APF-NET-T0457

Chun Chang | Application Engineer

A P R . 2 0 1 4

External Use

Presscala, the Presscale Jogo, AMVer, C.-6, Code/TERT, Code/Wantor, ColeFine, ColleFine, C.Ware, the Energy Efficient Solutions logo, Kinetis, mobileGT, PEG, Posee/QUICC, Processor Expert, QorXD, Ocrive, Taskaaune, the BaleAssare logo, StarCore, Symptony and VortiGa are trademarks of Presscale Semiconductor, Inc., Reg. U.S. Pat, & Trix, Ott, Arthes, BaeXD, See/Stack, ConNex, Fasis, Layerscape, MagNV, MRC, Reatorn in a Package, QorXD Converge, QUICC Engine, Ready Play, SMARTMOS, Tower, TuroLink, UMENE, World and Xinnets are trademarks of Presscale Semiconductor, Inc. At other product or semicine areas are the property of their trademarks of 2014 Presscale Semiconductor, Inc.

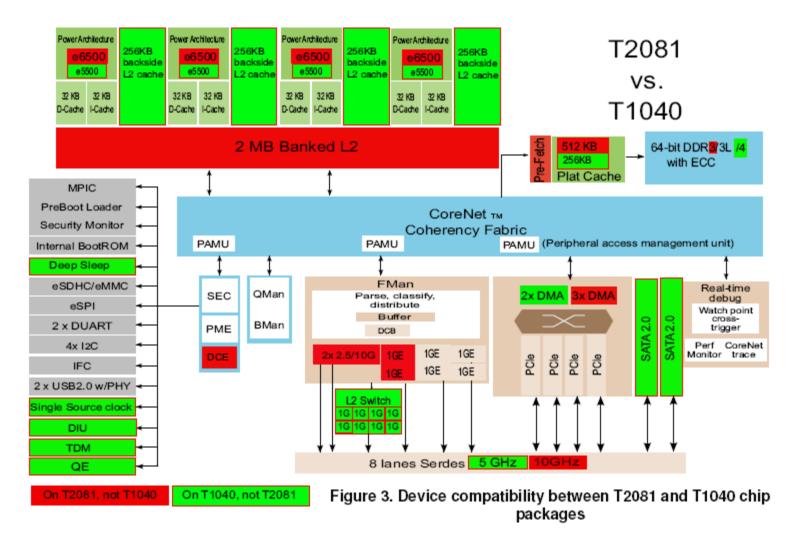
Agenda

- Hardware Compatibility
- Software Compatibility
- Pinout comparision
- Session Review and Wrap-Up

Use a common board

With the introduction of the T1040 and T2081, customers can now create common boards for both devices.

- T1040 and T2081 are pin compatible
- One common board design would reduce design time and save cost
- Make migration much faster and easier



Hardware Compatibility

- Hardware Compatibility
- Commonality and difference
- Overcome the difference

Device Comparison – T1040 and T2081

Commonality and Difference

Features	T2081	T1040	T1042				
	Cores						
Number of cores	4 × e6500 dual threaded Power Architecture	4 × e5500 Power Architecture	4 x e5500 Power Architecture				
Architecture width	64-bit	64-bit	64-bit				
Max frequency (MHz)	1800	1400	1400				
DMIPS/MHz	6	3	3				
	Memory	/ Size					
L1 cache	32 KB I/D	32 KB I/D	32 KB I/D				
L2 cache	Shared 2MB	256KB per core backside	256KB per core backside				
CoreNet platform cache (CPC) 512KB frontside		256KB frontside	256KB frontside				
Cache-line size	64 bytes	64 bytes	64 bytes				
Main memory type	1 × DDR3/3L 2133 MT/s	1 × DDR3L/4 1600 MT/s	1 DDR3L/4 1600 MT/s				
Maximum size of main memory	32 GB (1Gbit x8 device)	32 GB (1Gbit x8 device)	32 GB (1Gbit x8 device)				

Commonality and Difference (continue)

Ι/O						
Ethernet controllers	2× 10Gbps XFI; 6x 1Gbps SGMII; 2x 2.5Gbps SGMII; 2x RGMII	2× 5Gbps QSGMII; 6x 1Gbps SGMII; 2x RGMII; 1x MII	5x 1Gbps SGMII; 2x 2.5Gbps SGMII; 2x RGMII; 1x MII			
SerDes lanes	8 lanes at up to 10 GHz	8 lanes at up to 5 GHz	8 lanes at up to 5 GHz			
PCI Express controllers	3 × Gen 2.0 controllers; 5 Gbps and 1× Gen 3.0 controllers; 8 Gbps	4 × Gen 2.0 controllers; 5 Gbps	4 × Gen 2.0 controllers; 5 Gbps			
SATA	None	2 x SATA controllers upto 3.0Gbps operation	2 x SATA controllers upto 3.0Gbps operation			
TDM	None	Full duplex serial port	Full duplex serial port			
Display Interface Unit	None	12 bit dual data rate	12 bit dual data rate			
CoreNet	700 MHz at 256 bits	600 MHz at 128 bits	600 MHz at 128 bits			
L2 switch	None	8 Port	None			
QE	None	HDLC, Transparent UART, TDM/SI	HDLC, Transparent UART, TDM/SI			
Integrated Flash Controller (IFC)	8-/16-bit data width, 32-bit address width	8-/16-bit data width, 32-bit address width	8-/16-bit data width, 32-bit address width			

Hardware Compatibility

- Identical Interfaces
- DDR Controller
- eSDHC Controller
- TEST_SEL Pin
- Sense Pin
- Power Sequencing
- Power Supply
- Sysclk

External Use 7

Identical interfaces

The following interfaces are identical between the T2081 and T1040:

- Integrated Flash Controller (IFC)
- Enhanced SPI controller (eSPI)
- DUART controller
- USB controller

DDR Controller

The T2081 supports DDR3/3L DDR controller, T1040 supports DDR3L/4 DDR controller. As DDR3L is common to both T2081 and T1040, it should be used for common board design.

	MDIC[0]	MDIC[1]
T1040	162 ohm 1%	162 ohm 1%
T2081	187 ohm 1%	187 ohm 1%

Table 4. DDR calibration resistor values

External Use 9

eSDC Controller

3.3 eSDHC controller recommendations

Both T2081 and T1040 support SD 3.0 specification introducing higher capacity upto 2 TB and frequency up to 208 MHz.

In order to support these modes, dynamic switching of I/O voltage from 3.3 V to 1.8 V is required. This dynamic switching is not supported on T2081 and board level shifters are required for common board design.

Figures below shows the SD card connections for T2081 compatibility for different modes.

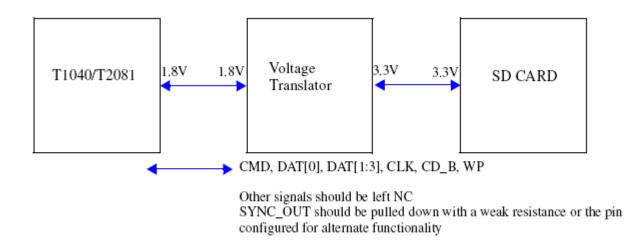
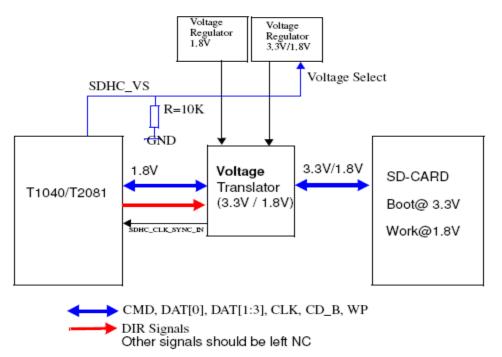



Figure 4. SD card connections for T2081 compatability (DS and HS modes)

SD Card Connection example

Figure 5. SD card connections for T2081 compatability (SDR 12, 25, 50, 104 and DDR50 modes)

NOTE

In Figure 5,

- SYNC_OUT should be pulled-down with a weak resistor or the pin should be configured for alternate functionality
- SYNC_IN connection is needed in DDR50 mode only
- · In SDR50, DDR50 modes, all the input signals are sampled with respect to SYNC_IN
- · Resistor R is only needed when RCW loading is required to be done from SD card

TEST_SEL_B pin

3.11 TEST_SEL_B requirements

External Use | 12

When migrating between the T1020 and T1040, the connection of TEST_SEL_B needs to be considered. This table lists the different TEST_SEL_B connection requirements for each chip.

Device	TEST_SEL_B pin requirement
T1040, T1042	Pull to O1V _{DD}
T1020, T1022	Pull to GND
T2081	Pull to OV _{DD}

Table 13. TEST_SEL_B pin connection requirements

Sense Pins

3.9.4 SENSE Pins requirements

If sense pins are to be used for the regulators, $SENSEV_{DD}$ should be used. $SENSEV_{DDC}$ can be left floating.

Ball	T2081	T1040
G19	SENSEVDD	SENSEV _{DD}
AB9	RSVD28	SENSEVDDC

Table 12. Regulator sense-pin source

Power Sequencing

3.10 Power Sequencing requirements

T1040 requires its power rails to rampup in a specific sequence, whereas T2081 has no such requirement. Common board should follow T1040 hardware specification for the Power sequencing requirements.

Power Supply for Core

3.9.1 Core Power island requirements

External Use | 15

T1040 has V_{DD} and V_{DDC} power domains for Core and platform supply whereas there is only V_{DD} power domain for core and platform supply in T2081. For a common board design, it is recommended to use a single rail for V_{DD} and V_{DDC} in T1040.

T2081	T1040	Recommnedation
V _{DD} , USB_SV _{DD}	V _{DD} , V _{DDC} , USB_SV _{DD}	V _{DD} and V _{DDC} should be connected to a common rail.

Table	10.	VDD	configuration
-------	-----	-----	---------------

Power Supply for I/O

3.9.3 I/O Power island requirements

External Use | 16

The table below summarizes the Power island requirements for T2081 and T1040 and provides recommendations for common board design.

Supply	T2081	T1040	Recommendation for a common board design	Interface wise recommendation	Interfaces
$O1V_{DD}$	-	1.8V	Use Single regulator for OV _{DD}	eSDHC interface of T2081 is on	Common: MPIC, GPIO,
OV _{DD}	1.8V	1.8V	and O1V _{DD} on T1040 at 1.8V	OV_{DD} supply while IO power supply of eSDHC in T1040 is fed by EV_{DD} . If eSDHC is used, EV_{DD} and OV_{DD} should be connected to 1.8V. On board level shifters are required to support SD 3.0 modes.	RTC and power

Table 11. I/O Power island configuration

I/O Power Supply (continue)

Supply	T2081	T1040	Recommendation for a common board design	Interface wise recommendation	Interfaces
DV _{DD}	2.5V 1.8V	3.3V 2.5V 1.8V	Use 2.5V or 1.8V only for DV _{DD} supply	DIU and TDM are supported at 3.3V so voltage translators may be required on a common board. QE interface is supported at 2.5V and 3.3V, restricting DV _{DD} to 2.5V for common board.	Common: DUART, I2C, DMA, MPIC T1040 only: QE, TDM, DIU
CV _{DD}	2.5V 1.8V	3.3V 1.8V	Use 1.8V for CV _{DD} supply	—	Common: eSPI, SDHC_DAT[4:7]
EV _{DD}	_	3.3V 1.8V	Use OV _{DD} supply for EV _{DD}	SDHC_DAT[0:3], SDHC_CMD and SDHC_CLK are the signals on EV _{DD} supply in T1040. These signals are on OV _{DD} supply in T2081. See OV _{DD} supply for details.	Common: eSDHC See Note
G1V _{DD}	1.5V 1.35V	1.35V 1.2V	Use G1V _{DD} at 1.35V	Use DDR3L only	Common:DDR3L T1040: DDR4 T2081: DDR3
L1V _{DD}	_	3.3V 2.5V 1.8V	Use Single regulator for LV _{DD} and L1V _{DD} on T1040 It can support 2.5V or 1.8V	Use RGMII interface at 2.5V only.	Common:GPIO, RGMII@2.5V T1040: MII, RGMII@1.8V
LV _{DD}	2.5V 1.8V	3.3V 2.5V 1.8V			

Sysclk

4 Internal clocking differences

T1040 supports additional clocking schemes and differences are summarised in the table below.

Clocking scheme	T2081	T1040	Recommendation
Single Reference clock mode No Yes T1040: Supported through DIFF_SYSCLK/Di clock input pair		T1040: Supported through DIFF_SYSCLK/DIFF_SYSCLK_B clock input pair	
Multiple reference clock mode	Yes	Yes	Through separate oscillators for SYSCLK, DDRCLK, USBCLK, SDREF_CLKn inputs. Recommended mode for common board design.

Table 14. T2081/T1040 clocking comparison

NOTE

For a common board design, use SYSCLK as the system clock input and leave the differential pair as floating or connect through 10K resistor to GND

Exceptions

2.2 Pin-compatibility considerations

Exceptions and recommendations in regards to pin compatibility between the T2081 and T1040 processor family are as follows:

- T1040 supports MII interfaces on EC1 which is not supported by T2081. Only RGMII interfaces should be used for EC1 and EC2.
- T2081 supports XFI interface, while T1040 does not.
- T1040 supports an 8 port L2 switch, while T2081 does not.
- T1040 supports up to two QSGMII interfaces, while T2081 does not.
- T1040 has four PCI Express controllers supporting PCI Express 2.0 protocol while the T2081 has three PCI express controllers supporting PCI Express 2.0 protocol and one PCI Express controllers supporting PCI Express 3.0 protocol at 8 Gbps.
- T1040 supports two SATA 2.0 interfaces, while T2081 does not.
- T1040 supports TDM or HDLC over uQE interface. uQE is not supported on T2081.
- T1040 supports 12 bit DIU interface, while T2081 does not.
- T1040 supports Deep sleep, a low power state, this state is not supported by T2081.
- TEST_SEL pin connection requirements vary per device family derivative; see Section 3.11, "TEST_SEL_B requirements."

Software Compatibility

- e6500 and e5500mc
- RGMII
- Serdes configurations
- RCW

e6500 and e500mc Compatibility

- User code runs equally well on e6500 or e500mc
 - Interrupts per thread
 - Soft reset per thread (hard reset per core only)
 - Debug state per thread
- Changes are hidden by OS
 - L2 initialization uses a different register

External Use

- Cache locking controlled differently
- P4080 SDK, emulated for e6500, didn't require changes.
- Additional enablement for new features not present on e500mc:
 64b, drowsy power manager, Altivec.

e500mc/e6500 Caching Structure Differences

	e500mc	e6500	Implication
L1	32kB. Can lock per core	32kB. Can lock per core.	e6500 doesn't lock per thread.
L2	128kB per core	2MB shared	There will be a somewhat different latency profile, overall improved for e6500
L3	512MB for SC4080	512kB	

- Cache changes are transparent to user application.
- L1 locking is less granular in e6500.

RGMII

3.8 Ethernet MACs options

While the two RGMII interfaces are pin compatible, the configurations for RGMII mode are different between the T2081 and T1040 devices. This table lists the RGMII configuration options and the assigned FMan/MACx on both T2081 and T1040.

Configuration	RGMII assignment			
Configuration	T2081	T1040		
RCW[EC1] = 0b00	FMan MAC3	FMan MAC4 MAC2_GMII_SEL =		
		FMan MAC2	MAC2_GMII_SEL = 0b1	
RCW[EC2] = 0b00	FMan MAC4	FMan MAC5	—	
RCW[EC2] = 0b01	FMan MAC10	_		

Table 8. Configuration	for RGMII mode
------------------------	----------------

Additionally T1040 also supports MII interface on EC1 Interface. When using MII interface, $L1V_{DD}$ and LV_{DD} are restricted to 3.3V and RGMII cannot be supported on EC1 or EC2.

Serdes configurations

T1040 SRDS_PRCTL_S1	A	в	с	D	E	F	G	н	T2081 SRDS_PRTCL_S1	
0x00 (2 RGMII; FMAN MAC4 & MAC5)	PEX1 (5/2/5)			PEX2 (5/2.5)			0xAA (2 RGMII; FMAN MAC3 & MAC4/10)			
MAC4 & MAC5)	PEX3 (5/2.5)			PEX4 (8/5/2.5)						
0x40 (2 RGMII; FMAN		EX1 2.5)	sg.m1 (1.25)	sg.m2 (1.25)	PEX2 (5/2.5)			0xBC (2 RGMII; FMAN		
MAC4 & MAC5)		EX3 2.5)	SG1 (1.25)	SG2 (1.25)	PEX4 (8/5/2.5)		MAC3 & MAC4/10)			
0xA5 (0 RGMII)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (3.125)	sg.m2 (3.125)	PEX2 sg.m4 sg.m5 (5/2.5) (1.25) (1.25)		0xC8			
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (3.125)	SG2 (3.125)	PEX4 (5/2.5)		SG5 1.25)	SG6 (1.25)	(2 RGMII; FMAN MAC3 & MAC4)	
0xAA (0 RGMII)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (3.125)	sg.m2 (3.125)	PEX2 (5/2.5)	PEX3 (5/2.5)	sg.m4 (1.25)	sg.m5 (1.25)	0xFA (2 RGMII; FMAN	
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (3.125)	SG2 (3.125)	PEX4 (5/2.5)	PEX1 (5/2.5)	SG5 (1.25)	SG6 (1.25)	MAC3 & MAC4)	
0x85 (0 RGMII)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (1.25)	sg.m2 (1.25)		X2 2.5)	sg.m4 (1.25)	sg.m5 (1.25)	0xD6 (2 RGMII; FMAN	
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (1.25)	SG2 (1.25)		X4 /2.5)	SG5 (1.25)	SG6 (1.25)	MAC3 & MAC4)	

Reset Configuration Word

RCW are mostly compatible, detail listed in T1040 and T2080 reference manual.

Table 10. Reset Configuration Word Comparison (continued)

RCW Bit(s)	P4 Function	P5 Function	Notes		
8–9	MEM_P	LL_CFG	—		
10–14	MEM_P	LL_RAT	Cutoff frequencies for the P4 and P5 differ. 19:1 async mode setting is available for P5.		
15–63	Reserved				
64–65	CC1_PL	L_CFG	0b01 is not a valid setting for P5		
66–70	CC1_PI	LL_RAT	Synchronous mode ratios are available for P5. 17:1 async mode setting is available for P5.		
71		Reserved			
72–73	CC2_PL	L_CFG	0b01 is not a valid setting for P5		
74–78	CC2_PI	LL_RAT	Synchronous mode ratios are available for P5. 17:1 async mode setting is available for P5.		

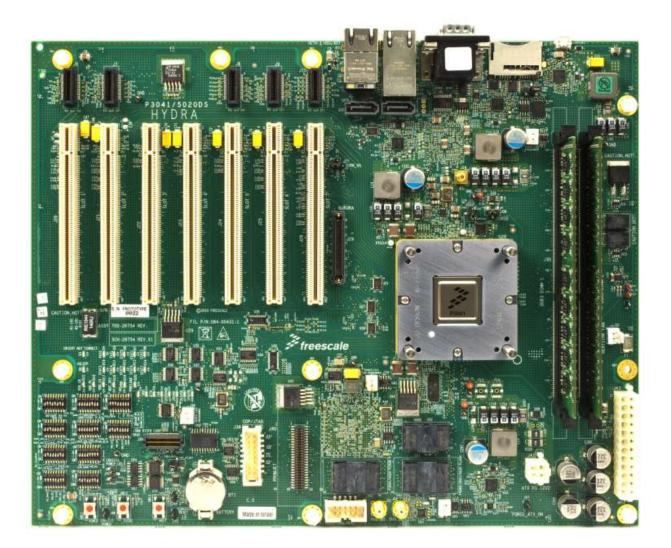
Pinout Comparison

Pin	T2081	T1040	Compatible connection			
Ethernet MI 2 pins						
L6	EMI2_MDC	RSVD10	All the Ethernet PHY's to be used with			
M6	EMI2_MDIO	RSVD11	T1040 should be managed through the EMI1 interface.			
Ethernet Cont. 1 pins						
AC4	RSVD34	EC1_TX_ER	EC1 Interface on T1040 also supports MII interface (see Section 3.8, "Ethernet MACs options")This output pin can be left floating if not used.			
AC2	RSVD33	EC1_RX_ER	Tie low through a 2-10 kohm resistor if			
AC1	RSVD32	EC1_COL	not used.			
Differential SYSCLK pins (see Section 4, "Internal clocking differences")						
G14	RSVD07	DIFF_SYSCLK	Differential SYSCLK input is available			
F14	RSVD05	DIFF_SYSCLK_B	only in T1040. These can be left floating or connected to GND if unused.			
· · ·						

Software Development Kit (need to update)

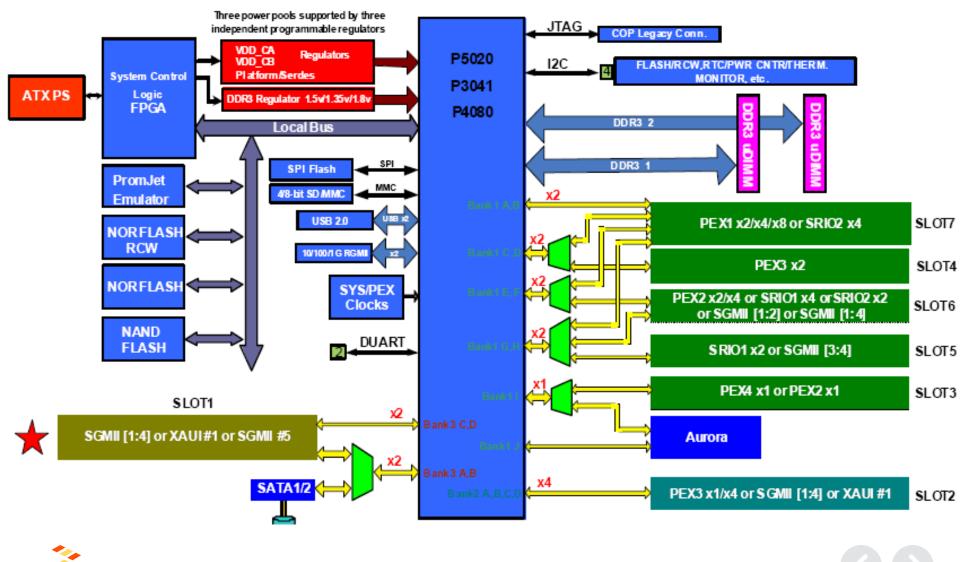
- The Software Development Kit (SDK) 1.5 was released for T1040 and T2080 on Feb. 14, 2014. The components (described in more detail in the SDK product brief for the P4080) are:
 - T2080 rev. 1 silicon + QDS
 - Bare-metal support
 - U-boot debug
 - Register details
 - Linux Kernel and Application Debug

External Use 27



CodeWarrior

- CodeWarrior for Power Architecture v10.3.3 Service pack 2 product with T1040 and T2080 support are available along with first silicon. It features the next generation of CodeWarrior tools based on the Eclipse framework:
 - T2080 rev. 1 silicon + QDS
 - Bare-metal support
 - U-boot debug
 - Register details



T1040/T2081 Development System (need to update with T1040 RDB picture)

T1040 Development System Block Diagram (need to update with T1040 RDB)

30

Reference Documentation

- T1040 Hardware Specification and Reference Manual
- T2081 Hardware Specification and Reference Manual
- Application note (AN4733) T1040 to T2081 Migration Guide
- T1040/T2081 Design Checklist
- T1040 RDB User Manual
- T1040 RDB Schematic

Session Closing

- By now, you should be able to:
 - Use Freescale's design collateral to aid your own T1040 and T2081 designs
 - Understand the commonality and difference between these devices
 - Understand the unique challenges facing P4, P5 and P3 common design and the solutions to overcome them

www.Freescale.com

© 2014 Freescale Semiconductor, Inc. | External Use