Debugging Embedded Linux Software
Debugging the Linux Kernel

NOTE
O0xxxxx0000 is the address printed by U-Boot at line "Now running in ram". You can also
see this address in the Disassembly view and observe the current address space you
are in.

2. From the Debug view toolbar, select the Instruction Stepping Mode (I) command.

3. From the Debug view toolbar, select the Step Into (-*-) command to step into blr.
Figure 104: U-Boot Debug - Running in RAM

Sle bne 5b TR

r3,rs i

mr
920 mr rd4,rlld P
bl board init r

-1 oot o

4. Deselect the Instruction Stepping Mode command when the instruction pointer is at in_ram.

You can now do source-level debugging and set breakpoints in all the RAM area, including board_init r.
See Points to remember on page 267 for more details.

NOTE
You can enter the board_init_r, nand boot, and uboot functions. Beginning with
the uboot function, the second image is relocated to RAM at 0x11000000 and you begin
to execute the entire code again from RAM address space. See Points to remember on
page 267 to avoid any debugging issues.

NOTE
Before closing the debug session, change back the alternate load address to flash
address space by issuing the setpicloadaddr 0xFFF40000 command in the
Debugger Shell. Now, you do not need to manually set it from the Debugger Shell in
Stage 1.

7.7 Debugging the Linux Kernel

This section shows you how to use the CodeWarrior debugger to debug the Linux kernel.

The Linux operating system (OS) works in two modes, kerne/ mode and user mode. The Linux kernel operates
in kernel mode and resides at the top level of the OS memory space, or kernel space. The kernel performs the
function of a mediator among all the currently running programs and between the programs and the hardware.
The kernel manages the memory for all the programs (processes) currently running and ensures that the
processes share the available memory such that each process has enough memory to function adequately. In
addition, the kernel allows application programs to manipulate various hardware architectures via a common
software interface.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 283

Debugging Embedded Linux Software
Debugging the Linux Kernel

User mode uses the memory in the lowest level of the OS memory space, called the user space or the application
level. At the application level, a program accesses memory or other hardware through system calls to the kernel
as it does not have permission to directly access these resources.

Debugging the Linux kernel involves the following major actions:

Setting Up the Target Hardware on page 284

Installing the Board Support Package (BSP) on page 286

Configuring the Build Tool on page 287

Configuring the Linux Kernel on page 287

Creating a CodeWarrior Project using the Linux Kernel Image on page 289
Configuring the kernel project for debugging on page 290

Debugging the kernel to download the kernel, RAM disk, and device tree on page 301

© N o g N~

Debugging the kernel based on MMU initialization on page 302
9. Debugging the kernel by attaching to a running U-Boot on page 305

7.7.1 Setting Up the Target Hardware

Before you use the CodeWarrior IDE to debug the Linux kernel, you need to set up the target hardware.

One requirement of the setup is to have a debug probe connected between the CodeWarrior debug host and
target board.

The figure below illustrates the setup required to use the IDE to debug the Linux kernel running on a Power
Architecture target board.

Figure 105: Setup for Kernel Debugging Using the CodeWarrior IDE

CodeWarrior Debug Host

Freaszcale BSP for vour target

e board

Hamdwame debug pmbe connected 1o
the tamet board

Power Architecture 7 T

Target Board

Connect the hardware debug probe between the target board and CodeWarrior debug host. Kernel debugging
is possible using a Linux-hosted or Windows-hosted CodeWarrior installation. There are a variety of debug

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
284 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

probes. The current kernel debugging example uses the USB TAP. Connection information for other debug
probes can be determined from documentation provided with the probes.

The following subsections provide the steps to set up the target hardware:

1. Connect USB TAP on page 285

2. Establish a Console Connection on page 285

7.7.1.1 Connect USB TAP

This section explains how to connect the USB TAP between the CodeWarrior debug host and target board.
To connect the USB TAP, perform these steps:

1. Ensure that the power switch on the target board is OFF.

2. Connect the square end (USB "B" connector) of the USB cable to the USB TAP.

3. Connect the rectangular end (USB "A" connector) of the USB cable to a free USB port on the host Linux
machine.

4. Connect the ribbon cable coming out of the USB TAP to the 16-pin connector on the target board.

5. Connect the power supply to the USB TAP.

7.7.1.2 Establish a Console Connection

You need to establish a console connection before applying power to the target board, so that boot messages
can be viewed in a terminal window.

Establishing the console connection allows you to:

» View target generated log and debug messages

» Confirm successful installation of the bootloader (U-Boot)

+ Use the bootloader to boot the Linux OS

+ Halt the booting of the Linux OS

The bootloader receives keyboard input through a serial port that has default settings 115,200-8-N-1.

Follow these steps to establish a console connection to the target hardware.

1. Connect a serial cable from a serial port of the CodeWarrior debug host to a serial port of the target board.

2. On the CodeWarrior debug host computer, open a terminal-emulator program of your choice (for example,
minicom for a Linux host).

3. From the terminal-emulator program, open a console connection to the target hardware.

Use the connection settings given in the table below.

Table 132: Terminal Connection Settings

Name Setting

Baud rate 115, 200 bits per second
Data bits 8

Parity None

Stop bits 1

Flow control Hardware

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 285

Debugging Embedded Linux Software
Debugging the Linux Kernel

NOTE
See the board specific README file inside the stationery wizard project to find out more
details on the serial connection settings, changing the serial port on the board, and the
type of serial cable to use.

4. Test the connection by turning on the test board with the power switch and viewing the boot messages in
the console connection.

7.7.2 Installing the Board Support Package (BSP)

This section describes installation of a BSP on a Linux computer.

NOTE
The BSP versions keep changing frequently. For different BSP versions, you might
encounter build environments based on ltib, bitbake, or other tools. The subsequent
sections will describe necessary procedures and use specific examples from real
Freescale BSPs for illustration. The examples in these sections will need to be adapted
based on the BSP versions or build tools you are currently using.
To install a BSP, perform the following steps:

1. On the Linux computer, download the Board Support Package (BSP) for your target hardware to install
kernel files and Linux compiler toolchains on your system.

Board Support Package image files for target boards are located at http://www.freescale.com/linux.

2. Download the BSP image file for your target board.

NOTE
You will need to log in or register to download the BSP image file.

The downloaded image file has an . iso extension.

For example,
QorIQ-DPAA-SDK-<yyyymmdd>-yocto.iso
3. Mount the image file to the CDROM as root, or using "sudo":

<sudo> mount -o loop QorIQ-DPAA-SDK-<yyyymmdd>-yocto.iso /mnt/cdrom

NOTE
sudo is a Linux utility that allows users to run applications as root. You need to be
setup to run sudo commands by your system administrator to mount the BSP image
files.

4. Execute the BSP install file to install the build tool files to a directory of your choice, where you have
privileges to write files:

/mnt/cdrom/install

NOTE
The BSP must be installed as a non-root user, otherwise the install will exit.

5. Answer the questions from the installation program until the file copy process begins.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
286 NXP Semiconductors

6.

Debugging Embedded Linux Software
Debugging the Linux Kernel

You will be prompted to input the required build tool install path. Ensure you have the correct permissions for
the install path.

Upon successful installation, you will be prompted to install the ISO for the core(s) you want to build.

For example, if you want to build the SDK for P4080, that is a €500mc core, then you have to install the ISO
images for e500mc core:

c23174e5e3d187£43414e5b4420e8587 QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.partl
292c6elc5e97834987fbdb5£f69635ald QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.part2

NOTE
You can see the SDK User Manual for instructions about how to build the BSP images
and run different scenarios from the iso/help/documents/pdf location.

7.7.3 Configuring the Build Tool

After installing the BSP, you need to configure the build tool and build the Linux kernel and U-boot images for
CodeWarrior debug.

For more information on configuring the build tool, see the SDK User Manual from iso/help/documents/pdf.

7.7.4 Configuring the Linux Kernel

After you complete the BSP configuration, configure the Linux kernel to enable CodeWarrior support.

To configure the Linux kernel, perform the following steps:

1.

Launch a terminal window and navigate to the <yocto installtion paths/build <board> release
folder.

Execute the following command to get a new and clean kernel tree:

bitbake -c¢ configure -f virtual/kernel

Configure the Linux kernel using the various configuration options available in the kernel configuration user
interface. For example, run the following command to display the kernel configuration user interface:

bitbake -c menuconfig virtual/kernel

The kernel configuration user interface appears.

CodeWarrior supports both SMP and non-SMP debug. To change the default settings, you can make
changes by selecting the Processor support options.

To run a monolithic kernel, you do not need to enable loadable module support. However, during the
debug phase of drivers, it is easier to debug them as loadable modules to avoid rebuilding the Linux kernel
on every debug iteration. If you intend to use loadable modules, select the Loadable module support menu
item.

Select the Enable loadable module support option.

Select the Module unloading option.

NOTE
If you want to use the rmmod -£ <mod_name> command for kernel modules under
development, select the Forced module unloading option.

Select Exit to return to the main configuration menu.

9. Select Kernel hacking.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 287

Debugging Embedded Linux Software
Debugging the Linux Kernel

10.Select Include CodeWarrior kernel debugging by pressing Y. Enabling this option allows the CodeWarrior
debugger to debug the target. Select other desired configuration options for Linux kernel debug.

11.Select Exit to return to the main configuration menu.

12.Select the General Setup option.

13.Select Configure standard kernel features (expert users) and ensure that the Sysctl syscall support option
is selected.

14.f you are using the Open Source Device Tree debugging method, under the General Setup > Configure
standard kernel features (expert users) option, then select:

» Load all symbols for debugging/ksymoops.

* Include all symbols in kallsyms.

These settings are optional. They aid th(la\l g;-bEugging process by providing the vmlinux
symbols in /proc/kallsyms.
15.Select Exit to exit the configuration screen.
16.Select Yes when asked if you want to save your configuration.
17 Execute the following command to rebuild the Linux kernel:
bitbake virtual/kernel

The uncompressed Linux kernel image with debug symbols, vmlinux.elf, is created.

NOTE
The location of the images directory might differ based on the BSP version being used.
For the correct location of where the Linux kernel images are stored, see the SDK User
Manual from iso/help/documents/pdf.
You just created a Linux kernel image that contains symbolic debugging information.

Now, you can use this image and create a CodeWarrior project for debugging the Linux kernel. The various use
cases for the Linux kernel debug scenario are:

» CodeWarrior allows you to download this Linux kernel image (vmlinux.elf), RAM disk, and dtb files to the
target.

* You can start the Linux kernel and RAM disk manually from U-Boot. The U-Boot, the kernel, RAM disk, and
dtb images are written into flash memory.

* You can download the Linux kernel and RAM disk from CodeWarrior without using U-Boot.

* You can perform an early kernel debug before the MMU is enabled or debug after the Linux kernel boots
and the login prompt is shown.

The Linux kernel debug scenarios are explained in the following sections:

+ Creating a CodeWarrior Project using the Linux Kernel Image on page 289

+ Configuring the kernel project for debugging on page 290

* Debugging the kernel to download the kernel, RAM disk, and device tree on page 301
» Debugging the kernel based on MMU initialization on page 302

» Debugging the kernel by attaching to a running U-Boot on page 305

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
288 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

7.7.5 Creating a CodeWarrior Project using the Linux Kernel Image

After creating a Linux kernel image with symbolic debugging information, you need to create a CodeWarrior
project using the kernel image.

To create a CodeWarrior project:

1. Start the CodeWarrior IDE from the Windows system.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.
4. Click Next.

The Import a CodeWarrior executable file page appears.

)]

. Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

NOTE
An existing directory cannot be specified for the project location.
7. Click Next.
The Import C/C++/Assembler Executable Files page appears.
8. Click Browse next to the Executable field.
9. Select the vmlinux file obtained.
10.Click Open.
11.From the Processor list, expand the processor family and select the required processor.
12.Select the Bareboard Application toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

13.Select the Linux Kernel option from the Target OS list.

NOTE

Selecting Linux Kernel will automatically configure the initialization file for kernel
download, the default translation settings (these settings need to be adjusted according
to the actual Linux kernel configuration) in the OS Awareness tab, and the startup stop
function to start_kernel.

14 Click Next.

The Debug Target Settings page appears.
15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board configuration, launch configuration, connection type, and TAP address
if you are using Ethernet or Gigabit TAP.

17 Click Next.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 289

Debugging Embedded Linux Software
Debugging the Linux Kernel

The Configurations page appears.
18.From the Core index list, select the required core.
19.Click Finish.
The wizard creates a project according to your specifications.
You can access the project from the CodeWarrior Projects view on the workbench.
7.7.5.1 Updating the Linux Kernel Image
By modifying the Linux kernel image, you can update the project you just created.

You have built a new Linux kernel image file, vmlinux.elf, with some changes as compared to the current
vmlinux.elf file being used in the CodeWarrior project you created. The following subsections present two
scenarios to replace the current vmlinux.elf file with the new vmlinux.elf file:

» Cache Symbolics Between Sessions is Enabled on page 290

» Cache Symbolics Between Sessions is Disabled on page 290

7.7.5.1.1 Cache Symbolics Between Sessions is Enabled
This section provides steps to replace the current vmlinux.elf file with the new vmlinux.elf file when the
cache symbolics between sessions is enabled.

Follow these steps:
1. Terminate the current debug session.
2. Right-click in the Debug window.

3. From the context menu, select Purge Symbolics Cache. The old vmlinux.elf file is being used by the
debugger, but after you select this option, the debugger stops using this file in the disk.

4. Copy the new vmlinux.elf file over the old file.

Now, when you reinitiate a debug session, the updated vmlinux.elf file is used for the current debug
session.

7.7.5.1.2 Cache Symbolics Between Sessions is Disabled
This section provides steps to replace the current vmlinux.elf file with the new vmlinux.elf file when the
cache symbolics between sessions is disabled.

Follow these steps:
1. Terminate the current debug session.
2. Copy the new vmlinux.elf file over the old file.

Now, when you reinitiate a debug session, the updated vmlinux.elf file is used for the current debug
session.

7.7.6 Configuring the kernel project for debugging

After you have created a CodeWarrior project using the Linux kernel image, the next action is to configure this
project for debugging.

+ Configuring a download kernel debug scenario on page 291
+ Configure an attach kernel debug scenario on page 291
+ Setting up RAM disk on page 294

» Using Open Firmware Device Tree Initialization method on page 297

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
290 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

7.7.6.1 Configuring a download kernel debug scenario
This section describes how to configure a download debug scenario.

For a download debug scenario, CodeWarrior:
* Resets the target
* Runs the initialization file

* Downloads the .elf file to the target; from the vmlinux.elf file, CodeWarrior writes the binary file to the
target memory

+ Sets the entry point based on the information available from the .e1f file
* Runs the target

For a download debug scenario, to boot the Linux kernel, CodeWarrior requires the RAMDISK or ROOTFS file
in addition to the vmlinux.elf file. This file is also built along with the image files when the kernel is compiled
using the build tool. CodeWarrior also requires a DTB file that specifies the resources to be used by the kernel
during its execution. For a download debug scenario, you need to configure the vmlinux.elf file, RAMDISK or
ROOTFS file, and the DTB files to be downloaded into the target memory. All these files can be found in the
specific target images folder.

NOTE
The location of the images directory might differ based on the BSP version being used.
For the correct location of where the kernel images are stored, see the SDK User Manual
in iso/help/documents/pdf.

These files are specified in the Download launch configuration after you have created the CodeWarrior project
with the Linux kernel image. Table 134. Kernel Project Download Launch Configuration Settings on page 309
describes the settings you need to provide in the launch configuration.

7.7.6.2 Configure an attach kernel debug scenario

This section describes how to configure an attach debug scenario.

For the attach debug scenario, CodeWarrior does not download any file on the target. The kernel is started
directly from U-Boot. You need to burn the U-Boot image to the flash memory of the hardware.

NOTE
See the Burning U-Boot to Flash cheat sheet for the entire procedure for burning U-Boot
to flash. To access the cheat sheets, select Help > Cheat Sheets from the CodeWarrior
IDE.

After the boot process, the U-Boot console is available and the Linux kernel can be started manually from U-
Boot. For this, the following files can be either written into flash memory or can be copied from U-Boot using
TFTP:

* Binary kernel image file, uimage

» Ramdisk to be started from U-Boot, for example,

<target version>.rootfs.ext2.gz.u-boot

« dtb file, for example, uImage-<target versions.dtb

After the Linux boot process, the Linux login appears and you can connect to debug the kernel using the
CodeWarrior Attach launch configuration. As all the files are manually loaded from U-Boot, these files must not
be specified in the launch configuration.

The table below describes the settings you need to provide in the launch configuration.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 291

Debugging Embedded Linux Software
Debugging the Linux Kernel

To specify the launch configuration settings in CodeWarrior:

1. Select Run > Debug Configurations.

2. Enter the launch configuration settings, given in the table below, in the Debug Configurations dialog.

Table 133: Kernel Project Attach Launch Configuration Settings

Debug Window Component

Settings

Main Tab

Debugger Tab > Debugger options >
Symbolics Tab

Debugger Tab > Debugger options > OS
Awareness Tab

Debugger Tab > Debugger options > OS
Awareness Tab > Boot Parameters

Select an appropriate system (if existing) from the Connection
drop-down list or define a new system.

Select the Cache Symbolics between sessions checkbox. The
symbolics are loaded from the elf file to the debugger for the first
session only. This shows a speed improvement for vmlinux.elf
as the size is bigger than around 100 MB.

Select Linux from the Target OS drop-down list.

Disable all settings on the Boot Parameters tab.

Table continues on the next page...

To define a new system, click New.

Select Hardware or Simulator Connection from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the connection.

Select an appropriate target (if existing) from the Target drop-
down list or define a new target.

To define a new target, click New on the Hardware or Simulator
Connection dialog.

Select Hardware or Simulator Target from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the target.

Select a target from the Target type drop-down list. On the
Initialization tab, ensure there are no initialization files selected.

Click Finish to create the target and close the Hardware or
Simulator Target dialog.

Select the type of connection you will use from the Connection
type drop-down list.

Click Finish.

Select all the cores on which Linux is running (for example, core
0 for single-core or cores 0-7 for 8-core SMP).

NOTE
For details on the options available on
the Boot Parameters tab, see Setting
up RAM disk on page 294.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

292

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

Table 133: Kernel Project Attach Launch Configuration Settings (continued)

Debug Window Component Settings

Debugger Tab > Debugger options > OS | Debug tab

Awareness Tab > Debug Tab » Select the Enable Memory Translation checkbox
Physical Base Address is set to value
CONFIG_KERNEL_START (0x0)

Virtual Base Address is set to value CONFIG_KERNEL_START
(0xc000 0000 for 32 bits, and 0xC000 0000 0000 0000 for
64bits).

* Memory Size is the kernel space translation size.

NOTE
The values shown above should be
set as configured in the linux config
file (.config). You can read the
MMU registers to verify what you
have configured and do a correction,
if required.

» Select Enable Threaded Debugging Support checkbox
« Select Enable Delayed Software Breakpoint Support

« If required, also select Update Background Threads on Stop.
When enabled, the debugger reads the entire thread list when
the target is suspended. This decreases the speed. If the option
is disabled, the speed is increased but the Debug window might
show non-existent threads, as the list is not refreshed.

3. Click the Source page to specify path mappings. Path mappings are not required if the debug host is
similar to the compilation host. If the two hosts are separate, the .e1£ file contains the paths for the
compilation host. Specifying the path mappings helps establish paths from compilation host to where the
sources are available to be accessed by the debugger on the debugger host. If no path mapping is
specified, when you perform a debug on the specified target, a source file missing message appears
(shown in the figure below).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 293

Debugging Embedded Linux Software
Debugging the Linux Kernel

Figure 106: Debug View When No Path Mapping is Specified

%5 Debug 32

D e = el R
El E P4030_kernel Linux SDK1.2_download (1) [CodeWarrior Download]
E@ EPPC, vmlinux-3.0, 13-00525-g6 152334, core 0 (Suspended)
= [Thread [ID: 0] (Suspended: Signal 'Halt' received. Description: User halted thread.)
E 4 atomic_dec_return() atomic.h: 165 0xc008b1cc
CeI= 3 mem_init() mem.c:354 0xc06ch338
. 2 mm_init() main.c:450 Oxc06045F3
"= 1 {AsmSection)() head_fsl_booke,S:227 0xc00003fc
| C:lworkljmagesiP4080_1.2wmlinux-3.0. 18-00525-0615e334 (3/20/12 11:27 AM)

Can't find a source file at "/data/gitfvocto fsdk-develflinux/arch/powerpc finclude fasm atomic.h”

View Disaszembly, .. |
Locate File. .. |

Edit Source Lockup Path... |

[~ Apply to Common Source Lookup Path

You can specify the path mappings, either by adding a new path mapping on the Source tab or by clicking

the appropriate buttons (Locate File, Edit Source Lookup Path) that appear when a source path mapping is
not found.

4. Click Apply to save the settings.
5. Click Close.

7.7.6.3 Setting up RAM disk

This section describes specifying RAM disk information that is used by the Linux kernel when it is booted.

You can specify RAM disk information in the Boot Parameters tab, which is present on the OS Awareness tab
of the Debugger tab of the Debug Configurations dialog, as shown in the figure below. Table 134. Kernel Project
Download Launch Configuration Settings on page 309 lists the instructions to set up the RAM disk.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

294 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

Figure 107: Kernel Debug - OS Awareness Tab

Target OS: |Linux %
.Boof.Parameters | Debug || Modules

[Enable Command Line Settings

Enable Initial RAM Disk Settings

File Path: | D:\Tempyootfs.ext?.gz | |Browse...

Address: | 0x02000000 |

Size: | 000000000 |

Download to target

Open Firmware Device Tree Settings

File Fath: | p4080sim.dth Browse. ..

Address: | 0x00500000

Depending on the method you choose for passing parameters to the kernel during kernel initialization, the RAM
disk information can be provided in any of the following ways:

+ Flattened Device Tree Initialization on page 295

» Regular Initialization on page 296

7.7.6.3.1 Flattened Device Tree Initialization
In this method, the RAM disk is set up by specifying a device tree file that contains the initialization
information.

To follow the Flattened device tree initialization method:

1.

Open the Debug Configurations dialog.

2. Select the Debugger tab.

3. From the Debugger options panel, select the OS Awareness tab.

4.

5. On the Boot Parameters tab, select the Enable Initial RAM Disk Settings checkbox.

From the Target OS drop-down list, select Linux.

The options in this group activate.

. In the File Path field, type the path of the RAM disk.

Alternatively, click Browse to display a dialog that you can use to select this path.

NOTE
The RAM disk is created by the build tool and not by the kernel. It contains the initial file
system. For details, see the SDK User Manual in iso/help/documents/pdf .

In the Address text box, enter 0x02000000, or another appropriate base address where you want the RAM
disk to be written.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 295

Debugging Embedded Linux Software
Debugging the Linux Kernel

NOTE
Ensure that the address you specify does not cause the RAM disk to overwrite the
kernel. The kernel is loaded to 0x00000000. The address you specify should be greater
than the size, in bytes, of the uncompressed Linux kernel with no debug symbols.

NOTE
If you use a DTB file, ensure to use the same addresses for RAM disk and initial RAM
disk (initrd) start value from the chosen section. The kernel must find the RAM disk
at the address specified in the .dtb file.

8. In the Size text box, enter the size of the RAM disk file. To copy all the contents of the RAM disk file, enter

zero (0).

9. Select the Download to target checkbox to download the RAM disk file to the target board.

The debugger copies the initial RAM disk to the target board only if this checkbox is checked.

NOTE
Most embedded development boards do not just use a small initial RAM disk, but a large
root file system. The Download to target option works in both the cases, but for large
file systems it is better to deploy the file directly to the target in the flash memory and
not have it downloaded by the debugger.

7.7.6.3.2 Regular Initialization

In this method, the RAM disk is set up by passing the parameters through the command-line settings using
the Boot Parameters tab.

To follow the regular initialization method:

1.

Open the Debug Configurations dialog.

2. Select the Debugger tab.

3. From the Debugger options panel, select the OS Awareness tab.
4.
5

From the Target OS drop-down list, select Linux.

. On the Boot Parameters tab, select the Enable Command Line Settings checkbox.

The options in this group activate.

. Specify the RAM disk parameters for use in the Command Line field. For example:

* You can specify the following when the regular initialization of the kernel is used:

root=/dev/ram rw"
» Sample NFS parameters:

"root=/dev/nfs ip=10.171.77.26

nfsaddr=10.171.77.26:10.171.77.21

nfsroot=/tftpboot/10.171.77.26"

"root=/dev/nfs rw

nfsroot:lO.171.77.21:/tftpboot/10.17l.77.26
ip=10.171.77.26:10.171.77.21:10.171.77.254:255.255.255.0:8280x:ethO0:0ff"

where, 10.171.77.21 is the IP address of the NFS serverand 10.171.77.26 is the IP address of the target
platform.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

296

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

n/tftpboot/10.171.77.26" is a directory on the host computer where the target platform file system is
located.
ng280x" is the host name.

» Sample flash parameters: root=/dev/mtdblock0 or root=/dev/mtdblock2

(depending on your configuration)

7.7.6.4 Using Open Firmware Device Tree Initialization method

You can use the Open Firmware Device Tree Initialization method as an alternate way of loading parameters
to the kernel from a bootloader on Power Architecture processors.

Since downloading the kernel with the CodeWarrior IDE emulates bootloader behavior, the IDE provides this
way of passing the parameters to the kernel.

The Open Firmware Device Tree initialization method involves the following general actions:
1. Obtain a DTS file on page 297

2. Edit DTS file on page 299

3. Compile DTS file on page 300

4. Test DTB file on page 300

5. Modify a DTS file on page 300

7.7.6.4.1 Obtain a DTS file

A device tree settings (.dts) file is a text file that contains the kernel setup information and parameters.

To obtain a device tree source file that can be used with CodeWarrior:

1. Configure a TFTP server on a Linux PC.

2. Copy the Linux images on the TFTP server PC in the specific directory. The following files are needed:
* ulmage

* rootfs.ex2.gz.uboot (if this is not present, check if the Target Image Generation > Create a ramdisk
that can be used by u-boot option is enabled.

» A device tree blob (DTB) obtained from the kernel sources. To convert this into a DTB, use the Device
Tree Compiler (DTC) that is available in the BSP:

dtc -f -b 0 -S 0x3000 -R 8 -I dtb -O dts <targets>.dtb > <target>.dts

NOTE
Standard DTS files are available along with Linux kernel source files in
<SDK_Linux_sources_roots>/arch/powerpc/boot/dts. For the exact location
of where the kernel images are stored, see the SDK User Manual from iso/help/
documents/pdf.

3. Power on the target. Wait until the uboot prompt is displayed.

4. Ensure that networking is working on the target. You need to have a network cable plugged in and set
several variables (ipaddr, netmask, serverip, gatewayip), including the IP address of the TFTP server. For
example,

ipaddr=10.171.77.230
netmask=255.255.255.0

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 297

Debugging Embedded Linux Software
Debugging the Linux Kernel

serverip=10.171.77.192
gatewayip=192.168.1.1

5. Check that network connectivity is working by pinging the TFTP server.

ping $serverip

6. On the uboot prompt, download the DTS and configure it for the current target. For example,

tftp 3000000 /tftpboot/<targets>.dtb
fdt addr 0x3000000

fdt boardsetup

fdt print

7. Copy the output of this command as a DTS file.

8. Modify the memreserve statement at the beginning of the DTS fie. The first parameter is the start address
of the memory reserved for the RAM disk. The second parameter is the size of the RAM disk and must be
modified each time the RAM disk is repackaged as you might add additional packages to the RAM disk.
For example,

/memreserve/ 0x20000000 0x453ecc;

9. Modify the chosen node in the DTS file. The linux,initrd-start argument must be the start address of the
RAM disk, and the linux,initrd-end value must be the end address of the RAM disk. For example,

chosen ({
linux,initrd-start = <0x2000000>;
linux, initrd-end = <0x2453ecc>;
linux, stdout-path = "/soc8572@ffe00000/serial@4500";

}i

10.Ensure that the frequencies of the target are correct. If the DTS was generated in U-Boot as described
above, the frequencies should be correct. However, if you update an existing DTS file for a new board
revision, the frequencies might have changed and they need to be corrected in the DTS file.

a. At the U-Boot prompt, inspect the current configuration.
bdinfo

intfreq 1500 MHz
busfreqg = 600 MHz

b. The intfreq value from the U-Boot output must be converted to a hexadecimal value and added to the
clock-frequency value of the CPU node in the DTS file. The busfreq value must be placed in the same
way in the bus-frequency parameter. For example,

cpus {
PowerPC, <target>@0 {

timebase-frequency = <0x47865d2>;
bus-frequency = <0x23c34600>;
clock-frequency = <0x5967£477>;
}i
b s

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
298 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

c. The same busfreq value is the clock frequency for the serial ports and must be updated in the DTS file
also:

serial0: serial@4500 {

clock-frequency = <0x23c34600>;

}i

NOTE
If you are using hardware for kernel debugging, see Edit DTS file on page 299.

7.7.6.4.2 Edit DTS file

You need to edit the settings (. dts) file with information relevant to the current target board and kernel.

If you have a DTS file specifically designed for your target board, you should modify only the RAM disk end
address and reserved memory area, in case you are using a RAM disk.

A standard .dts text file has a number of nodes which are given no value (actually <0>) or are missing nodes
(for example, the /chosen branch).

When the Linux kernel is started from U-Boot with bootm, U-Boot dynamically edits the . dtb file in RAM so as
to fill in the missing values and add the /chosen branch, based on the U-Boot environment variables.

The CodeWarrior IDE does not fill in the missing values and branches when it downloads the . dtb file to RAM.
You must manually create and compile a separate and complete .dts file.

The following steps detail the changes that must be applied to the . dts file so the kernel boots successfully
when the CodeWarrior IDE loads the .dtb file into RAM with a Linux kernel and a initial RAM disk.

1. Update the bus-frequency and clock-frequency nodes from the value KRD=>bi_busfreq
2. Update the clock-frequency nodes from the value KRD=>bi_initfreq:
3. Update the following nodes from the value KRD=>bi_tbfreq:

/cpus/ PowerPC,8349@0/timebase-frequency

4. Create the following node from the size on disk of the file entered in LKBP=>Enabile Initial RAM Disk=>File
Path or from the address entered in LKBP=>Enable Initial RAM Disk=>Address:

/memreserve/
5. Create the following node from LKBP=>Command Line:
/chosen/bootargs
6. Create the node:
linux, stdout-path
7. Create the following node from the address entered in LKBP=>Enable Initial RAM Disk=>Address:
/chosen/linux, initrd-start

8. Create the following node from the size on disk of the file entered in LKBP=>Enable Initial RAM Disk=>File
Path and from the address entered in LKBP=>Enable Initial RAM Disk=>Address:

/chosen/linux, initrd-end

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 299

Debugging Embedded Linux Software
Debugging the Linux Kernel

7.7.6.4.3 Compile DTS file

You can compile the settings (. dts) file to a binary (. dtb) file, if you need the binary file to set up the kernel
parameters for the board.

1. Ensure that you have the DTC device tree compiler on your host machine.
If the DTC device tree compiler is missing, get the latest DTC source archive from bitshrine.org. Extract
the archive, run make, and put the binary somewhere reachable by your PATH.

wget dtc-20070307.tar.bz2
wget dtc-20070307.tar.bz2.md5
wget dtc-20070307.tar.gz
wget dtc-20070307.tar.gz.md5

2. Navigate to the folder containing DTS files.

NOTE
The location of the DTS file might differ based on the BSP version being used. For the
correct location of the file, see the SDK User Manual in iso/help/documents/pdf.

3. Compile the .dts device tree source file for the board:

$ cd arch/powerpc/boot/dts
S dtc -I dts -0 dtb -V 0x10 -b 0 <target>.dts > <target>.dtb

NOTE
You can use the created binary (.dtb) file in the CodeWarrior IDE (in the Boot
Parameters tab); see Configure an attach kernel debug scenario on page 291 for details.

7.7.6.4.4 Test DTB file

You can test the binary (. dtb) file outside the CodeWarrior IDE.
The steps are as follows:
1. Load the uImage, rootfs.ext2.gz.uboot, and <targets>.dtb file onto the board.

2. Boot the board and verify that Linux comes up fine.

S bootm <kerneladdress> <ramdiskaddress> <dtbaddress>

NOTE
The target board must have U-Boot present in the flash at the reset address so that U-
Boot can run and set board configurations.

7.7.6.4.5 Modify a DTS file

You may need to modify a DTS file if you are using a BSP version that is not supported by a CodeWarrior
DTS file or custom board.

Follow these steps to modify the DTS file:
1. Obtain a DTS file.
NOTE

The location of the DTS file might differ based on the BSP version being used. For the
correct location of the file, see the SDK User Manual in iso/help/documents/pdf.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
300 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

2. Modify this DTS file with the information provided by U-Boot. To do this:
a. Check the /proc/device-tree/ directory for the required information after kernel boot from U-Boot.
Alternatively, you may:
b. Enable ft_dump_blob call from the u-boot /common/cmd_bootm. c file. By default this is disabled.
c. Build the U-Boot and write it on the target to have this enabled when booting the kernel.

d. After this, configure U-Boot as described in the BSP documentation to boot the kernel and save the
boot log.

e. Check the device tree displayed during kernel boot and accordingly modify your DTS file.

7.7.7 Debugging the kernel to download the kernel, RAM disk, and
device tree

This section describes how to debug the Linux kernel using CodeWarrior IDE to download the kernel, RAM
disk, and device tree.

Perform the following steps:

1. Create a project for the Linux kernel image. See Creating a CodeWarrior Project using the Linux Kernel
Image on page 289.

2. Configure the launch configuration for Linux kernel debug.
a. Select Run > Debug Configurations.
The Debug Configurations dialog appears.
b. From the left pane, in the CodeWarrior group, select the appropriate launch configuration.

c. On the Main page, in the Connection panel, select the appropriate system from the Connection drop-
down list.

d. Click Edit.
The Properties for <connection> window appears.
e. Click Edit next to the Target drop-down list.
The Properties for < 7arget> dialog appears.
f. On the Initialization tab, select the checkboxes for all the cores in the Run out of reset column.
g. In the Initialize target column, select the checkbox for core 0.
h. Click the ellipses button in the Initialize target script column.
The Target Initialization dialog appears.

i. Click File System and select the target initialization file from the following path:

<CWInstallDir>\PA\PA Support\Initialization Files\<Processor Family>
\<target> uboot init Linux.tcl

NOTE
The initialization file is automatically set when you select Linux Kernel as the Target
OS, while creating a new Power Architecture project using the CodeWarrior Bareboard
Project Wizard.

j- Click OK to close the Memory Configuration File dialog.
k. Click OK to close the Properties for < 7arget> dialog.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 301

Debugging Embedded Linux Software
Debugging the Linux Kernel

I. Click OK to close the Properties for <connectior> dialog.

m. On the Debug tab of the Debugger tab, select an Program execution option, to stop the debug process
at the program entry point or at a specified user function or address like start_kernel.

n. On the OS Awareness tab of the Debugger tab, select Linux from the Target OS drop-down list.
0. On the Boot Parameters tab of the OS Awareness tab:

i. Select the Enable Initial RAM Disk Settings checkbox.

The fields in that panel are enabled.

ii. In the File Path text box, enter the location of the BSP file, rootfs.ext2.gz.

iii. In the Address text box, enter the address where you want to add the RAM disk.

iv. In the Size text box enter 0 if you want the entire RAM disk to be downloaded.

v. Select the Open Firmware Device Tree Settings checkbox.

vi. In the File Path text box, enter the location of the device tree file.

vii.In the Address text box, enter the location in memory where you want to place the device tree.

NOTE
Ensure that the memory areas for kernel, RAM disk, and device tree do not overlap.
p. Click Apply to save the settings you made to the launch configuration.

3. Click Debug to start debugging the kernel.

NOTE
If the kernel does not boot correctly, check the values entered in the Boot Parameters
tab. Also ensure that you provided a valid device tree and RAM disk.

7.7.8 Debugging the kernel based on MMU initialization

This section describes how to debug the Linux kernel based on whether the MMU is disabled, being enabled,
or enabled.

NOTE

You can debug the kernel on all stages from 0x0 till start_kernel and further, without

the need of PIC changes, breakpoints at start _kernel, and multiple debug sessions.
Debugging the Linux kernel involves three stages with different views and functionality:
» Debugging the Kernel before the MMU is Enabled on page 302
+ Debugging the Kernel while the MMU is being Enabled on page 304
» Debugging the Kernel after the MMU is Enabled on page 304
7.7.8.1 Debugging the Kernel before the MMU is Enabled
This procedure shows how to debug the kernel before the memory management unit (MMU) is initialized.

You can always debug assembly before virtual addresses are being used, without setting the alternate load
address.

To debug the kernel before the MMU is enabled, follow these steps:

1. Select Run > Debug Configurations from the CodeWarrior menu bar to open the Debug Configurations
dialog.

2. From the Debugger page, select the PIC tab.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
302 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

3. Select the Alternate Load Address checkbox.

4. In the Alternate Load Address field, type the hexadecimal form of the memory address (for example,
0x00000000).

5. Click Apply. The CodeWarrior IDE saves your changes to the launch configuration.

6. Click Debug. The Debug perspective appears.

7. Set a breakpoint early in head fs1 booke.S.

You can perform source level debug until the r£1i instruction in head fsl booke.s.
Figure 108: Kernel Debug - Before MMU is Enabled

B2 EPPC, core 0, vinlinux(S{12/03 10:40 AM) (Suspendsd)
: Elufi‘ Thread [ID: Oxc03dd618] (Suspended: Breakpoint hit.)

- (AsmSection)() uikernel 857 2 Multicorelinux:-2 . 6,23 archlpowerpetkernelihead _fsl_booke. 5166 0w
Lot Delkernel 57 2\Mulkicorellinux:-2.6, 23 vmlinu (5712008 10:40 AM)

4

18] head_fsl_booke.5 X
w r7 — End of kernel command line string
w
B

.gection .text.head, "ax"
_ENTRY | _stext):
_ENTRY(start):
PR
* Beserwve a word at a fixed location to store the address
* 0f abatron pteptrs

o
nop
‘jw
* Bave parawmeLers we are paszed
#i
2 mr r3l;r3
wr r3id,r4
mr rZ9,rb
mr ri&,rh
wr r27,r7
li rzZ4.,0 f% CPU nber #f
J* We try to not make any assumptions sbout how the boot loader
% getup or used the TLE=. e invalidate all mappings from the
* hoot loader and load a single entry in TLE1[O] to map the
first 16M of kernel memory. Any boot info passed from the
ﬂ Lo ot] ool o,y]y 1 5w I U P R T e L 4 S

NOTE
You must stop the debug session and clear the Alternate Load Address checkbox in the
PIC tab to debug after the rfi instruction in head_fsl booke.S.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 303

Debugging Embedded Linux Software

Debugging the Linux Kernel

7.7.8.2 Debugging the Kernel while the MMU is being Enabled

This procedure shows how to debug the kernel while the memory management unit is being initialized.

To debug this section of code, ensure that the Alternate Load Address checkbox in the PIC tab is disabled.

7.7.8.3 Debugging the Kernel after the MMU is Enabled

This procedure shows how to debug the kernel after the memory management unit is initialized.

To debug the kernel after the MMU is enabled, follow these steps:

1. Select Run > Debug Configurations from the CodeWarrior menu bar to open the DebugConfigurations

dialog.

. Click Apply.

D O~ W N

. From the Debugger tab, select the PIC tab.

. Clear the Alternate Load Address checkbox.

. Click Debug to start the debug session. The Debug perspective appears.

session at start_kernel function (shown in the figure below).

l

Figure 109: Kernel Debug - After MMU is Enabled

=l EPPC, care 0, wrilinux(8111/03 4:49 PM) (Suspended)

= o® Thread [ID: 0xc03dde18] (Suspended: Signal 'Halt' received, Description: User halted thread,)
~= 2 skark_kernel) DiKerneligs7 2\ Multicorelinus:-2.6. 23\initmain. c:514 Oxc03bl b

; L= fasmSection)() \homeibogdan BSP_8572\ kib-mpeas72ds-2007 1203 rpr BUILDY inux-2, 6, 23 archipower poik.

gl DriKernel\8s72Multicare) inux-2. 6. 23 wmlinux (8/11/08 4:49 PM)

. In the editor area, set a breakpoint at start_kernel, after the eventpoint, in main.c. This will stop the debug

}

i
i

o {I

PR

7. Click Run.

o] main.c 2

cpu_set(cpu, cpu possible map);

roid _ init _ attribmte ([[wesk]] swp_setup processor_idivoid)

asmlinkage wvoid _ init start kernel (void)

char * commwand line:

extern struct kernel param _ start param[], _ stop paraml[] :

smp_setup processor_idi();

A
* Need to run as early as possible, to initialize the
* lockdep hash:
i

unwind init():

lockdep_init () ;

local irg disable():
early boot_irgs_offi):;
early_init_irg lock class();

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

304

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

The debugger halts execution of the program at whatever breakpoints have been set in the project (if any
breakpoints have been set).
8. Run through the rest of the code until the kernel starts to boot.

When the kernel boots, boot status messages appear in the simulator window.

NOTE
You can click Terminate to halt running of the kernel and set breakpoint/watchpoints in
the debug window, as shown in the figure below.

Figure 110: Kernel Stopped by User

- EPPC, care 0, wmlinuwsd(8/11/08 4:49 PM) {Suspended)

 Thread [ID: 0xc03dds 18] (Suspended: Signal 'Halt' received. Description: User halted thread.)
= R an B \rpr’ELILDY lin

3 rest_init() Dy\kernell 8572 Multicorellinux-2 .6, 23\ inithmain, c:460 DxclZeSadd

2 start_kernel() Diikernehss72\Multicorellinux-2,.6,23hnitimain, 01653 0xc03b1bbs

1 {AsmSection)) \home\bogdaniBSP 85724 kib-mpca572ds-2007 1 203 rprat BUILDYinusx-2, 6.2 3harchi power|

ead [ID: Oxeffclae0] (Suspended: Signal 'Process Suspended’ received. Description: Process Suspended.)

Th
= 4 _ switch_ta() Yhome\bogdan\BSP_8572\kib-mpeE572ds-20071203 rpral BUILDNinus-2., 6, 23 archipowerp

B

3 schedule) D:Kernel\857 2 Multicorellinux-2.6. 23 kernelisched. c: 1897 Dxc0Zea670
2 do_wait(y \homelbogdaniBSP_857 2 kib-mpc8572ds-2007 1203 rpmiBUILDY inuw-2. 6.2 Skerneliexit.c: 164
“e2= 1 {AsmSection) thomelbogdan\BSP_557 2\ kib-mpoS572ds-2007 1 203, rprmiBUILDYinwx-2. 6. 2 3 archiypower)
2 secondary Process (Suspended)
7 Thread [ID: Oxeffc04bo] (Suspended: Signal 'Process Suspended’ received, Description: Process Suspended.)
B g __switch_tal) thomebogdaniBsP 85724 tib-rpeas72ds-2007 1203 rpral BUILDY inux-2 . 6, 23 archipowerp
= 4 schedulel) D:\Kernel\857 2\Multicarelinux-2.6, 23 kernelisched, c: 1897 Oxc02e6670

sz [' i
ide.c 3@%___
ny
void cpu idle (void)
{

if (ppc md.idle loop)
ppe_md.idle loop(); /% doesn't return #/

set_thread flag(TIF_POLLING NRFLAG):
while (1) {
» while (!need resched(] && 'cpu should die{)) {
ppotd runlateh offi)

if (ppc_ wd.power save) {
clear thread flag(TIF_POLLING NEFLAG):
i
* oawp wh i3 so elearing of TIF POLLING MNRFLAG
* iz ordered w.r.t. nesd resched() test.
ft
swp_nb (] ;
local irg dissble():;

ki
9. Continue debugging.

10.When finished, you can either:
a. Kill the process by selecting Run > Terminate.

b. Leave the kernel running on the hardware.

7.7.9 Debugging the kernel by attaching to a running U-Boot

This section explains how to debug the Linux kernel by attaching it to a running U-Boot.

To debug the kernel by attaching to a running U-Boot, perform the following:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 305

Debugging Embedded Linux Software

Debugging the Linux Kernel

1.

© 0O N o o0 b~ W

Create a project for the Linux kernel image. For more details, see Creating a CodeWarrior Project using
the Linux Kernel Image on page 289.

. Configure the launch configuration for Linux kernel debug. For more details, see Configure an attach

kernel debug scenario on page 291.

. Select Run > Debug Configurations. The Debug Configurations dialog appears.

. From the left pane, expand the CodeWarrior Attach tree and select the appropriate launch configuration.
. From the Debugger tab, select the PIC tab.

. Clear the Alternate Load Address checkbox.

. Click Apply.

. Click Debug to start the debug session. The Debug perspective appears.

. While the U-Boot is running, attach the target.

The debugger displays a warning, in the console, as the kernel is not being executed on the target.

NOTE
For multi-core processors, only coreo is targeted in the Debug view. This is normal as
the secondary cores are initialized in the Linux kernel after MMU initialization.
CodeWarrior will automatically add other cores, in the Debug view, after the kernel
initializes the secondary cores.

10.Set software or hardware breakpoints for any stage (before or after MMU initialization).

To set a software breakpoint for the entry point address (for example, address 0x0), issue the following
command in the Debugger Shell view.

bp 0x0

11.Using the U-boot console, load the Linux kernel, DTB file, and RAM disk/rootfs from flash or from TFTP.
12.Debug the kernel.

The debugger halts execution of the program at whatever breakpoints have been set in the project. Typical
stages involved in debugging the kernel are discussed below:

a.

Debugging the kernel at the entry point

The CodeWarrior debugger will stop at the kernel entry point, if any software or hardware breakpoint has
been set for entry point.

NOTE
For the debugger to stop at the kernel entry point, set a breakpoint before loading the
kernel from the U-boot console.

At the entry point, the MMU is not initialized and therefore debugging before MMU initialization also applies
in this stage.
Debugging the Kernel before the MMU is enabled

Being in early debug stage, the user should set the correct PIC value, to see the source correspondence,
by issuing the setpicloadaddr 0x0 command in the Debugger Shell view.

Before setting a breakpoint for the stage after MMU initialization (for example, breakpoint at
start_kernel) the correct PIC should be set, by issuing the setpicloadaddr reset command in the
Debugger Shell view. This is required to ensure that the new breakpoint is set with the correct PIC for the
stage after MMU initialization.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

306

NXP Semiconductors

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

The user can set breakpoints and run/step to navigate, before MMU initialization. The correct PIC should
be setby issuing the setpicloadaddr reset command inthe Debugger Shell view, before the debuggers
enters the next stage.

c. Debugging the Kernel after the MMU is enabled

After the MMU is initialized, the PIC value must be reset y issuing the setpicloadaddr reset command
in the Debugger Shell view. During the Linux Kernel booting, you can debug this stage directly, if no
breakpoint has been set for the stage before MMU initialization. Alternatively, you can also debug this
stage after run or step from the stage before initialization.

NOTE
In case of SMP, all the secondary cores are targeted and displayed in the Debug view.
13.When finished, you can either:
a. Kill the process by selecting Run > Terminate.

b. Leave the kernel running on the hardware.

7.8 Debugging Loadable Kernel Modules

This section explains how to use the CodeWarrior debugger to debug a loadable kernel module.
This section contains the following subsections:

» Loadable Kernel Modules - An Introduction on page 307

» Creating a CodeWarrior Project from the Linux Kernel Image on page 308

» Configuring Symbolics Mappings of Modules on page 310
7.8.1 Loadable Kernel Modules - An Introduction

The Linux kernel is a monolithic kernel, that is, it is a single, large program in which all the functional
components of the kernel have access to all of its internal data structures and routines.

Alternatively, you may have a micro kernel structure where the functional components of the kernel are broken
into pieces with a set communication mechanism between them. This makes adding new components to the
kernel using the configuration process very difficult and time consuming. A more reliable and robust way to
extend the kernel is to dynamically load and unload the components of the operating system using Linux /oadable
kernel modules.

A loadable kernel module is a binary file that you can dynamically link to the Linux kernel. You can also unlink
and remove a loadable kernel module from the kernel when you no longer need it. Loadable kernel modules are
used for device drivers or pseudo-device drivers, such as network drivers and file systems.

When a kernel module is loaded, it becomes a part of the kernel and has the same rights and responsibilities
as regular kernel code.

Debugging a loadable kernel module consists of several general actions, performed in the following order:

1. Create a CodeWarrior Linux kernel project for the loadable kernel module to be debugged. See Creating a
CodeWarrior Project from the Linux Kernel Image on page 308

2. Add the modules and configure their symbolics mapping. See Configuring Symbolics Mappings of Modules
on page 310

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 307

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

7.8.2 Creating a CodeWarrior Project from the Linux Kernel Image

The steps in this section show how to create a CodeWarrior project from a Linux kernel image that contains
symbolic debugging information.

NOTE

The following procedure assumes that you have made an archive of the Linux kernel
image and transferred it to the Windows machine. For kernel modules debugging,
ensure that you build the kernel with loadable module support and also make an archive
for the rootfs directory, which contains the modules for transferring to Windows.

. Launch CodeWarrior IDE.

. Select File > Import. The Import wizard appears.

. Expand the CodeWarrior group and select CodeWarrior Executable Importer.

. Click Next.

A W N -

The Import a CodeWarrior Executable file page appears.

)]

. Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

NOTE
An existing directory cannot be specified for the project location.

7. Click Next.

The Import C/C++/Assembler Executable Files page appears.
8. Click Browse next to the Executable field.
9. Select the vmlinux.elf file.
10.Click Open.
11.From the Processor list, expand the processor family and select the required processor.
12.Select Bareboard Application from the Toolchain group.
13.Select Linux Kernel from the Target OS list.
14.Click Next.

The Debug Target Settings page appears.
15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board, launch configuration, connection type, and TAP address if you are
using Ethernet or Gigabit TAP.

17 Click Next.

The Configuration page appears.
18.From the Core index list, select the required core.
19.Click Finish.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
308 NXP Semiconductors

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

The wizard creates a project according to your specifications. You can access the project from the
CodeWarrior Projects view on the Workbench.

20.Configure the launch configuration for linux kernel debug.

a. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

21.Enter the launch configuration settings in the Debug Configurations dialog. The table below lists the launch

configuration settings.

Table 134: Kernel Project Download Launch Configuration Settings

Debug Window Component

Settings

Main Tab

Debugger Tab > Debugger options >
Symbolics Tab

Debugger Tab > Debugger options > OS
Awareness Tab

Table continues on the next page...

Select an appropriate system (if existing) from the Connection
drop-down list or define a new system.

Select the Cache Symbolics between sessions checkbox. The
symbolics are loaded from the elf file to the debugger for the first
session only. This shows a speed improvement for vmlinux.elf
as the size is bigger than around 100 MB.

Select Linux from the Target OS drop-down list.

To define a new system, click New.

Select Hardware or Simulator Connection from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the connection.

Select an appropriate target (if existing) from the Target drop-
down list or define a new target.

To define a new target, click New on the Hardware or Simulator
Connection dialog.

Select Hardware or Simulator Target from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the target.

Select a processor from the Target type drop-down list. On the
Initialization tab, ensure that there are no initialization files
selected.

Click Finish to create the target and close the Hardware or
Simulator Target dialog.

Select the type of connection you will use from the Connection
type drop-down list.

Click Finish.

Select all the cores on which Linux is running (for example, core
0 for single-core or cores 0-7 for 8-core SMP).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

309

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

Table 134: Kernel Project Download Launch Configuration Settings (continued)

Debug Window Component Settings

Debugger Tab > Debugger options > OS | Select the Enable Initial RAM Disk Settings checkbox

Awareness Tab > Boot Parameters Tab * File Path: Path of the RAM disk that you transferred from the
Linux machine

» Address: The address specified in Linux, initrd-start from the dts
file

Select the Download to target checkbox

Select the Open Firmware Device Tree Settings checkbox
* File Path: Path to the <target>.dtb file

+ Address: 0x00600000

Debugger Tab > Debugger options > OS | . gselect the Enable Memory Translation checkbox
Awareness Tab > Debug Tab .
Physical Base Address is set to value

CONFIG_KERNEL_START (0x0)

Virtual Base Address is set to value CONFIG_KERNEL_START
(0xc000 0000 for 32 bits, and 0xC0O00 0000 0000 0000 for
64bits).

» Memory Size is the kernel space translation size.

NOTE
The values shown above should be
set as configured in the linux config
file (.config). You can read the
MMU registers to verify what you
have configured and do a correction,
if required.

Select the Enable Threaded Debugging Support checkbox

Select the Enable Delayed Software Breakpoint Support
checkbox

Debugger Tab > Debugger options > OS | . geglect the Detect module loading checkbox
Awareness Tab > Modules Tab
 Click Add to insert the kernel module file. See Configuring

Symbolics Mappings of Modules on page 310

« Select the Prompt for symbolics path if not found checkbox

22.Click the Source page to add source mappings for rootfs and 1inux-<versions.

23.Click Apply to save the settings.

7.8.3 Configuring Symbolics Mappings of Modules

You can add modules to the Linux kernel project and configure the symbolics mappings of the modules using
the Modules tab of the Debug Configurations dialog.

The figure below shows the Modules tab of the Debug Configurations dialog.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
310 NXP Semiconductors

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

Figure 111: Kernel Module Debug - Modules Tab

[+] Datect module loading
Modules' symbolics mappings
Todule Symbokcs Path | fdd |

mooc_ric_best D \weorklUinue_2_6_ 18 my_busldUinus_L1_07_2007 sourcesimiscimodule_testipxc_ptic_best ko

mioc_wdog_tm O hweorkLinae_2 6 18Ry _buld|Linus_11_0F_ 2007 sourcesimiscimoduls_testmxc_wdog_tm, ko | Sean]

riry_dery DlworkiLiru:_jtag_onimy_devimy dav.ko o
| Rernone
| Fremaen A1

[#] Prompt For symbokcs pah F not Found

[]kesp target suspended

The table below describes the various options available on the Modules tab.

Table 135: Kernel Module Project Launch Configuration - Modules Tab Settings

Option Description

Detect module loading Enables the debugger to detect module load events and insert an
eventpoint in the kernel. Disabling this setting delays the module
loading. This is useful in scenarios where multiple modules are
loaded to the kernel and not all of them need to be debugged. You
can enable this setting again in the Modules dialog. The dialog is
available during the Debug session from the System Browser
View toolbar > Module tab.

Add Adds a module name along with the corresponding symbolic path
This option displays a dialog in the following scenarios:

» The file that you have selected is not a valid compiled kernel

module
« If the selected module already exists in the list with the same
path
Scan Automatically searches for module files and populates the kernel
module list.
Remove Removes the selected items. This button will be enabled only if a

row is selected.

Remove All Removes all items. This button will be enabled only if the kernel
list contains any entries.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 311

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

Table 135: Kernel Module Project Launch Configuration - Modules Tab Settings (continued)

Option Description

Prompt for symbolics path if not found Prompts to locate the symbolics file if a mapping for it is not
available in the settings A Browse dialog appears that allows you
to browse for a module file containing symbolics. The debugger
will add the specified symbolics to the modules' symbolics

mapping.

Keep target suspended Keeps the target suspended after the debugger loads the
symbolics file for a module. This option is useful if you want to
debug the module's initialization code. It allows you to set
breakpoints in the module's initialization code before running it.

NOTE
This option is automatically enabled
when activating the Prompt for
symbolics path if not found option.

NOTE
Breakpoints are resolved each time a symbolics file is loaded and the debugger uses
the modules unload events for symbolics disposal and breakpoints cleanup.

7.9 Debugging Hypervisor Guest Applications
This section shows you how to debug hypervisor guest applications.

This section explains:

+ Hypervisor - An Introduction on page 312

 Prerequisites for Debugging a Guest Application on page 313

» Adding CodeWarrior HyperTRK Debug Stub Support in Hypervisor for Linux Kernel Debugging on page
313

* Preparing Connection to P4080DS Target on page 314
+ Debugging AMP/SMP Guest Linux Kernels Running Under Hypervisor on page 315

+ Debugging Hypervisor During the Boot and Initialization Process on page 322

7.9.1 Hypervisor - An Introduction

The embedded hypervisor is a layer of software that enables the efficient and secure partitioning of a multi-
core system.

A system's CPUs, memory, and I/O devices can be divided into groupings or partitions. Each partition is capable
of executing a guest operating system.

Key features of the hypervisor software architecture are summarized below-
« Partitioning: Support for partitioning of CPUs, memory, and I/O devices:

* CPUs: Each partition is assigned one or more CPU cores in the system.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
312 NXP Semiconductors

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

+ Memory: Each partition has a private memory region that is only accessible to the partition that is
assigned the memory. In addition, shared memory regions can be created and shared among multiple
partitions.

« 1/O devices: P4080 I/O devices may be assigned directly to a partition (Direct I/0), making the device a
private resource of the partition, and providing optimal performance.

Protection and Isolation: The hypervisor provides complete isolation of partitions, so that one partition
cannot access the private resources of another. The P4080 PAMU (an iommu) is used by Topaz to ensure
device-to-memory accesses are constrained to allowed memory regions only.

Sharing: Mechanisms are provided to selectively enable partitions to share certain hardware resources
(such as memory)

Virtualization: Support for mechanisms that enable the sharing of certain devices among partitions such as
the system interrupt controller

Performance: The hypervisor software uses the features of the Freescale Embedded Hypervisor APU to
provide security and isolation with very low overhead. Guest operating systems take external interrupts
directly without hypervisor involvement providing very low interrupt latency.

Ease of migration: The hypervisor uses a combination full emulation and para-virtualization to maintain high
performance and requiring minimal guest OS changes when migrating code from an e500mc CPU to the
hypervisor.

7.9.2 Prerequisites for Debugging a Guest Application

The P4080 software bundle is the prerequisite for debugging a hypervisor guest application using the
CodeWarrior IDE.

The software bundle used in the current example is P4080 Beta 2.0.2 SW Bundle.

7.9.3 Adding CodeWarrior HyperTRK Debug Stub Support in

Hypervisor for Linux Kernel Debugging

This section explains how to add CodeWarrior HyperTRK debug stub support in the hypervisor for guest LWE
or Linux kernel debugging.

To add CodeWarrior HyperTRK debug stub support:

1.

Download the appropriate P4080 software bundle image (the BSP in . iso format) to a Linux computer.

2. Mount the . iso image file using this command: mount -o loop BSP-Image-Name.iso /mnt/iso
3.
4. Add CodeWarrior HyperTRK debug support to the hypervisor image (hv.uImage)

Install the BSP image file according to the instructions given in the BSP documentation.

You can enable the HyperTRK debug support directly in the BSP. Alternatively, you can modify and build the
HyperTRK manually, and then enable it in the hypervisor.

Perform the steps given in the subsections below:

» Enabling HyperTRK Debug Support Directly in Build Tool on page 314

» Applying New HyperTRK Patches from CodeWarrior Install Layout on page 314
* Modifying and Building HyperTRK Manually on page 314

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 313

