
MPR121 Touch Sensing Design Guidelines

Introduction

Today touch sensing is a popular human machine interface you can find everywhere from

consumer electronics to industry area. It is used in portable media player, eBook, notebook PC,

mobile phone handset, household appliance such as LCD TV, AV system, remote controller,

electrical kitchen appliance, and even in medical and personal health care devices.

MPR121 is an easy to use touch sensor. It can be used for many touch sensing functions

such as touch button, keypad matrix, slide bar, touch wheel, touchpad, finger gesture

recognition, hands grip/ hold detection, and near proximity detection.

Unlike straight forward mechanical button design, touch sensing design is much complex on

the physical design. Many questions may be asked in a touch sensing design project using

MPR121. The questions can be from product structure design, panel layout design, PCB layout,

to software code programming. This application note is aimed to provide MPR121 touch

sensing design guidelines so a better and reliable touch sensing design can be achieved.

MPR121 Key Features

MPR121 is Freescale second generation standalone touch sensing controller after its veteran

E-field capacitance sensor series. Comparing to previous maximum 3 channels in MPR03x,

MPR121 now has 12 sensing inputs while still keeping the same extreme low power

consumption level. Another improvement is the advanced intelligence like auto optimization

and configuration of the capacitance sensing parameter for each channel independently. This

can greatly reduce the design engineer’s trial and fine tune time. Beyond that, MPR121 also

supports LED driver and GPIO function if the input is not used for touch sensing input.

The key features of the device are the following:

� 12 sensing inputs with 8 capable for LED driver or GPIO

� Power supply range 1.71~3.6V

� Low power consumption,

• 29 μA typical current in run mode

• 3μA standby current in stop mode

� Stand alone intelligent touch sensing engine

• Auto environment capacitance calibration and baseline tracking

• Auto configuration for capacitance sensing parameter optimization

• Internal 2 stage signal filtering

• Independent touch/release trip threshold provide hysteresis

• Independent current/time setting allows buttons of various shape and size

� Near proximity sensing by simultaneous charging on all the electrodes

� Each channel provides touch/release status report as well as filtered raw data output

� I2C bus communication, and Interrupt output

� Pin selectable 4 I2C address enables channel expansion

� Compact 3x3x0.65mm, 20 pin QFN package

� -40°C to +85°C operating temperature range

Figure 1: MPR121 12 channel standalone touch sensor Figure 2: MPR121 pin out top view

in a 3x3x0.65mm 20 pin QFN package(close to real size)

 Touch Sensing Pattern and Channels

Simple touch button

When the number of touch buttons required is below or equal to 12, we can directly assign

one sensing input for each touch button, the unused inputs can be used for LED driver or GPIO

function.

In this configuration, the software code is the simplest as we get all the button status report

directly from MPR121 12 bits electrode status report (Registers 0x00[0:7], 0x01[0:3]).

Schematic in Figure 3 shows this kind of configuration:

Figure 3: Schematics showing a 6 buttons array and 4 way navigation buttons plus a LED output

Expanding channels with multiple MPR121

When the required number of t

multiple MPR121 to expand the inputs

selectable which enables easy channel expansion

SCL, the address selected is 0x5A, 0x5B, 0x5C, 0X5D

Table 1: MPR121 selectable I2C address

Using 4 MPR121 tied to one I2C

kind of channel expansion is the simplest with

cost. Figure 4 shows how to use

Figure 4: Parallel multiple MPR121 to one I2C bus

Multiplexed buttons

Most often when cost matters

multiplexing a logical touch button

which can be 2 or more sensing inputs. T

the used sensing channels are touched

composed by 2 sensing input channels. Figure 6 shows a pattern of

centered “OK” button by using 4 sensing inputs.

Figure 5: One touch button composed by 2 sensing

ADDR Pin Connection I2C Address

VSS

VDD

SDA

SCL

Expanding channels with multiple MPR121

number of touch buttons is larger than 12, one possible solution is

multiple MPR121 to expand the inputs. This is very easy to do as MPR121 I2C address is

selectable which enables easy channel expansion. When the ADDR pin is tied to VSS, VDD

, the address selected is 0x5A, 0x5B, 0x5C, 0X5D respectively, refer to Table 1.

: MPR121 selectable I2C address

tied to one I2C bus, we can expand the number of touch buttons to

the simplest without much design headache, the only expense is

shows how to use multiple MPR121 in one system.

: Parallel multiple MPR121 to one I2C bus

matters channel multiplexing can be considered. By channel

button is composed by multiple sensing pads from different

more sensing inputs. The button will only be activated /deactivated when all

touched /released simultaneously. Figure 5 shows a touch button

composed by 2 sensing input channels. Figure 6 shows a pattern of 4 way navigation with a

“OK” button by using 4 sensing inputs.

One touch button composed by 2 sensing inputs

I2C Address

0x5A

0x5B

0x5C

0x5D

possible solution is using

I2C address is pin

VSS, VDD, SDA,

touch buttons to 48. This

the only expense is

channel

pads from different inputs,

vated /deactivated when all

Figure 5 shows a touch button

4 way navigation with a

Figure 6: 4 Navigation buttons with a centered

In Figure 5, the status of the

only when both inputs report touch status

“OK” button will only be activated when all four channels are effectively touched.

used here is “AND” logic for a valid touch

By duplicating the button in Figure 5

inputs with respective row input and

5x3 keypad matrix in Figure 7.

Figure 7: Keypad array by XY matrix sensing inputs

Multiplexing can effectively reduce the number of input channels

number of buttons can be supported. As an example, a 6x6 matrix configuration

to 36 buttons by using one single MPR121. Using multiplexed matrix, the track r

much simple.

However, multiplexing is worth

layout.

1. Multiplexing can only be used

function definition. It ne

button and non_multiplexed button in one design, such as the case in Figure 8

Figure 8: Media player control using 2 sensing inputs

In Figure 8 three buttons are defined for med

touching button “< “and button

4 Navigation buttons with a centered virtual acknowledge button composed by 4 sensing inputs

he status of the button is decided by monitoring two channels simultaneously,

eport touch status the button is considered touched. In Figure 6, the

“OK” button will only be activated when all four channels are effectively touched.

for a valid touch.

in Figure 5 into a XY array and connecting each button’s two

inputs with respective row input and column input we can get a matrix keypad, for example, the

: Keypad array by XY matrix sensing inputs

ltiplexing can effectively reduce the number of input channels while expanding the

supported. As an example, a 6x6 matrix configuration can provide up

to 36 buttons by using one single MPR121. Using multiplexed matrix, the track routing is also

However, multiplexing is worth more careful thoughts before you embarking on the pattern

be used when there is no ambiguity on button operation

It needs to be noticed when one channel is used in both multiplexed

button and non_multiplexed button in one design, such as the case in Figure 8

: Media player control using 2 sensing inputs

buttons are defined for media playback but using only 2 inputs.

and button “>“ together, or touching all three buttons at the same

acknowledge button composed by 4 sensing inputs

s simultaneously,

. In Figure 6, the

 The logic

and connecting each button’s two

rix keypad, for example, the

while expanding the

can provide up

outing is also

you embarking on the pattern

when there is no ambiguity on button operation and

both multiplexed

button and non_multiplexed button in one design, such as the case in Figure 8.

2 inputs. When

or touching all three buttons at the same

time, the 2 channel status report will be exactly the same as only touching “play/stop”

button. Although there is some signal level difference, these three scenarios cannot be

differentiated from channel status bit. It is lucky that in practice this will not cause much

confusion if we just take all three situations as a “play/stop” button touch.

When all buttons are configured in matrix mode, since each button requires distinct 2

inputs combination, there shall be no ambiguity problem.

2. Multi touch can be detected, but there are limitations. Take matrix configuration as an

example, multi touch on one row or column can be correctly detected, but when

multiple rows and columns are touched at the same time, then there is a “ghost“ point

which cannot be distinguished from the true touch point.

Although there are limitations, multi touch still can be detected, which is very useful in

touch sensing design. For example, typically it is required that only one button touch is

valid to reject unintentionally multi button touch which could be caused by user holding

the device in hand. By multi touch detection, we can know how much area is touched,

and we can differentiate unintentionally touch from a valid touch which can also have

activated the buttons in nearby the total area is much smaller.

3. Multiplexing requires a relatively higher sensitivity since the sensing pad composing the

multiplexed button could be relatively small compared to a non_multiplexed button at

the same size.

Using the example of the “play/stop” button in Figure 8, both two channels composing

the button can have only about half of the total button area. As required, this half

button area should be able to activate the respective channel when the button is

touched.

So most often multiplexing is used with slim cover overlay or intentionally increased

button size, which effectively overcomes low sensitivity of small pad size. Refer to

section below for more on the sensitivity issue.

4. The software code shall be still relatively simple. Situations of all kinds of different

channel combination need to be considered.

In summary, the use of multiplexing needs to be evaluated carefully with the actual system

setup before you can benefit from it. Figure 9 shows an example of common key pad we see in

mobile handset which has 15 buttons and a 4 way navigation click wheel using just 12 inputs.

With careful arrangement, the supported number of buttons can be further expanded.

Figure 9: Typical mobile keypad with navigation click wheel

Touch slider and touch wheel

A linear touch slide bar or touch wheel

sensing inputs. These inputs are

There are three methods when design with touch slider and touch wheel.

finger position information simply

signal level. Base on the first method, w

of two neighboring pads if signal level

most complicated method is by using interpolation calculation, which can provide very higher

resolution but using less input channels.

The number of sensing inputs

the resolution needed, and which method will be used

approach, a slider by 6 inputs is

step positions. This design is common in volume adjustment we see.

obtained by MPR121 touch status report and

signal level.

Higher resolution can be achieved if f

considered. This is obtained by

neighboring pads are at the same level

resolution from originally 6 to 6+5=11.

Figure 10: Slider with 6 inputs. 6 step resolution vs.

: Typical mobile keypad with navigation click wheel

touch wheel

touch wheel can be done by sequencing and combining multi

These inputs are aligned in a line or a circular way.

There are three methods when design with touch slider and touch wheel. We can

simply by monitoring which input is activated and having

Base on the first method, we can further figure out the finger position

neighboring pads if signal levels from the neighboring pads are at the same level

method is by using interpolation calculation, which can provide very higher

resolution but using less input channels.

inputs used to form a bar or wheel is depended on the total span,

which method will be used. For example in Figure 10, using

is able to cover a length of 30mm with a minimum resolution of 6

This design is common in volume adjustment we see. The finger position ca

obtained by MPR121 touch status report and determined by the channel having the highest

Higher resolution can be achieved if finger position in between two neighboring pads is

by taking into consideration when the signal levels from

are at the same level. Using this simple method we can easily increase the

to 6+5=11.

. 6 step resolution vs. 11 step resolution

sequencing and combining multiple

can get the

and having the highest

figure out the finger position in between

the same level. The

method is by using interpolation calculation, which can provide very higher

on the total span,

using the first

resolution of 6

The finger position can be

determined by the channel having the highest

in between two neighboring pads is also

signal levels from two

increase the

Figure 11 shows an example using the third method. Pattern in Figure 11 is often used in

practice for slider bar and touch wheel. This method use spatially interleaved gradually

changing electrode pads, and then the finger position can be calculated out by interpolation. In

Figure 10 we actually see an example of 1 point interpolation between two neighboring regular

pads. Figure 12 shows an extreme example that using only 2 sensing inputs for a touch slider.

Figure 11: Increase the resolution by interleaved pattern and interpolation calculation

Figure 12: Linear slide bar using only 2 sensing inputs

For a spatially interleaved gradually changing electrode pads pattern, all the segments

nearby contribute to the finger position depending on the level of coupling between the finger

and the segments on the electrode patterns. With a design of good channel sensitivity we can

get a calculated resolution as high as 256 steps on a slider bar or 128 points on a touch wheel.

The Interpolation algorithm software code can be obtained from MPR121 demo reference

software code.

Touchpad

Touchpad enables 2D free finger movement on a wide surface area instead of 1D movement

on a line or circle. Touchpad can be used for many functions that cannot be realized by simple

touch button, slider or touch wheel, such as complex finger gestures recognition, 2D mouse

move emulation and even finger track recording. On the other side, touchpad is still able to

support 1D function with virtual button, slider and touch wheel.

In the simplest realization, touchpad can be composed by closely spaced button array. For

example in Figure 13 a 3x3 button array can provide the basic gestures like up/down/left/right

/diagonal scroll, as well as 9 touch button inputs and “anywhere” tap detection.

The array size of this kind of

inputs of MPR121. It is possible to have

relatively easy when the array size is small

lower cost comparing to two layer

design.

Figure 13: A 3x3 button array for

Unlike the one layer button array

input channels while quickly expanding the array

12 inputs can be configured into

touchpad size, which fits into most handheld portable device

player, eBook or MID. Shown in Figure 14 is an example of

more MPR121, we can even supp

Figure 14: A 5x7 touchpad using MPR121

Figure 15: Touchpad with trace tracking and a circle gest

Same as previous examples of

to get higher resolution than actual pixel number

shows a circle gesture. Using touchpad

select, mouse move emulation can be realized.

reference code.

is kind of pattern is normally small such as 3x3 or 3x4, limited by the

possible to have the whole pattern in a single layer since track routing

the array size is small. The one layer array solution gives the benefit of

lower cost comparing to two layer approach, which becomes more obvious when using ITO glass

: A 3x3 button array for simple gesture detection

Unlike the one layer button array, a 2 layer matrix pattern can help to reduce the sensing

ickly expanding the array size. For example by using one MPR121,

12 inputs can be configured into a 6x6 matrix array, providing approximately a 30mmx30mm

o most handheld portable device panel such as mobile phone, MP4

Shown in Figure 14 is an example of 5x7 matrix touchpad. By using 2 or

more MPR121, we can even support big panel size such as 12x12, 24x24.

: A 5x7 touchpad using MPR121

: Touchpad with trace tracking and a circle gesture

Same as previous examples of slide bar and touch wheel, software interpolation

to get higher resolution than actual pixel numbers. In Figure 15, the interpolated track

cle gesture. Using touchpad, application like picture scroll/pan, menu scroll and

select, mouse move emulation can be realized. Refer to MPR121 demo for these application and

, limited by the 12

track routing is

gives the benefit of

obvious when using ITO glass

2 layer matrix pattern can help to reduce the sensing

by using one MPR121, the

30mmx30mm

el such as mobile phone, MP4

By using 2 or

, software interpolation can be used

e 15, the interpolated track clearly

, application like picture scroll/pan, menu scroll and

Refer to MPR121 demo for these application and

The matrix touchpad can be realized using PCB, Flex PCB or ITO glass. The pixel size is

determined by the cover overlay thickness, but usually is below 5mm diagonal to best

accommodate typical finger tip size. For designs using plastic cover overlay such as PET material,

touch sensitivity is good when the cover thickness is below 0.5mm. Using slim (<0.5mm) plastic

sheet as cover material can help to get even better sensitivity.

Structure Design and PCB Layout

Industry design and PCB layout are two most important and fundamental parts in the whole

design process. Capacitive touch sensing enables modern artistic industry design such as

compact and curved shape, but this can also lead to the needs of careful structure design and

PCB layout.

Eliminate the air gap

Quite often one meets the problem that the main PCB cannot contact with the cover

overlay material directly and closely because of curved cover shape or limited by the mounting

of main PCB.

For example the structure design may requires that the main PCB to be mounted in a 50mm

distance from the plastic cover. In this cases, the best choice maybe a dedicated touch sensing

daughter card accommodating all the sensing patterns and the MPR121 controller in one place,

such as a piece of FR4 PCB, or flex PCB. Sometimes lower cost 0.3mm slim bendable PCB maybe

a choice to better fit the curved shape.

 It also should be pointed out air gap between the PCB and the overlay can greatly degrade

the capacitance sensing field and sensitivity becomes very low, so air gap must be eliminated in

some way.

Depending on the sensitivity, even small air gap below millimeter level can result a touch

cannot be detected. In practice, various adhesive tape or film can be used between the PCB and

the cover, this helps to close the air gap and make a seamless and stable PCB / cover structure,

achieving stable and reliable touch sensing detection. Refer to Figure 16 for typical structure

used.

Figure 16: Cross section: no air gap between the pad and top cover. MPR121 on outside of bottom layer

In case where PCB is mounted at a distance about 10mm from the cover and the touch

sensing pattern is simple round shape, we can use metal coil spring or conductive sponge foam

such as used for EMC to fill the gap. Figure 17 shows an example used in electric /inductive

cooker touch sensing panel.

Figure 17: Using metal coil spring to close the air gap

Overlay thickness and touch sensing pattern size

The thickness as well as the dielectric characteristic of the

pattern size all plays an important role on the touch sensitivity. These factors

evaluated and decided based on

To understand how the touch response

paralleled capacitor model below

Figure 18: Parallel plate capacitor model

In above equation, C is the capacitance value, K

air for the medium between two 2 plates

plates overlaid area and relative

In touch sensing application, the sensing pad provide

capacitor model, and body or finger and

touch/ release is detected based on the

larger A will help to give larger delta C cha

larger sensing pad size.

Table 2 and Figure 19 provide an example of

PET overlay material thickness by using MPR121 demo kits.

minimum pad size is about 3mm for 0.5mm PET cover, while 7mm pad can be used with 2.0mm

PET cover. It is suggested that we should use slim cover and big pad size

Depending on the actual noise level,

relatively good touch sensitivity and SNR

coil spring to close the air gap

and touch sensing pattern size

he thickness as well as the dielectric characteristic of the PCB overlay and cover

an important role on the touch sensitivity. These factors shall be carefully

evaluated and decided based on the real system setup.

how the touch response is affected by these 3 factors, let’s look at the

below.

: Parallel plate capacitor model

C is the capacitance value, K is the material dielectric constant

between two 2 plates, ε0 is the dielectric constant of air, and A, d is the 2

area and relative distance between the two plates respectively.

In touch sensing application, the sensing pad provides one of the plates in the paralleled

body or finger and its ground return path form the other plate.

touch/ release is detected based on the delta C amplitude, from above equation small

give larger delta C change, which suggests to use slim overlay material and

19 provide an example of delta signal change under various pad size and

overlay material thickness by using MPR121 demo kits. It can be seen that the

3mm for 0.5mm PET cover, while 7mm pad can be used with 2.0mm

It is suggested that we should use slim cover and big pad size to get higher SNR.

Depending on the actual noise level, keeping the touch delta counts above 10 will

relatively good touch sensitivity and SNR in most design cases.

d

AK
C

0
ε

=

and cover, and the

shall be carefully

by these 3 factors, let’s look at the

dielectric constant relative to

and A, d is the 2

the paralleled

ground return path form the other plate. Since

rom above equation smaller d or

nge, which suggests to use slim overlay material and

delta signal change under various pad size and

It can be seen that the usable

3mm for 0.5mm PET cover, while 7mm pad can be used with 2.0mm

to get higher SNR.

will result a

Table 2: Delta counts under various pad size and PET thickness

 Pad Size 0.5mm PET 1.0mm PET 1.5mm PET 2.0mm PET

diameter ∆Counts ∆Counts ∆Counts ∆Counts

2mm 2 0 0 0

3mm 8 3 2 1

4mm 15 7 3 2

5mm 21 10 6 5

6mm 30 18 6 6

7mm 40 22 15 11

8mm 47 29 20 13

9mm 56 33 22 13

10mm 60 38 25 17

11mm 73 44 28 17

12mm 76 54 29 21

15mm 98 57 39 28

Test condition: 1.8V supply, non isolated, round pad with ground fill on MPR121 demo FR4 PCB (1.0mm)

bottom layer, each PET sheet has a mean thickness of 0.5mm

Figure 19: Delta signal change under different pad size and cover thickness

Notice K is also on the numerator as A, higher K material also helps increase the touch

response. It’s easy to understand that if two cover overlays are at the same thickness, then

larger K material will have larger touch delta signal change then lower one. For example when

the thickness are both 1.0mm, a glass (normally K>=4) cover will result a better sensitivity than a

plastic cover (normally K=2).

0

10

20

30

40

50

60

70

80

90

100

2mm 3mm 4mm 5mm 6mm 7mm 8mm 9mm 10mm 11mm 12mm 15mm

0.5mm thickness

1.0mm thickness

1.5mm thickness

2.0mm thickness

The concept can be further extended to serial or parallel multiple capacitors. Parallel

multiple sensing pads so that A is effectively increased that it can provide larger covering are

hence higher sensitivity for touch. This is the concept MPR121 used for near proximity

detection. Using the serial capacitor concept, when multiple overlays are stacked together, the

layer with the smaller k (for example air) will be the dominator one even its thickness may be

small. This also explains why we need to eliminate the air gap to get better sensitivity.

PCB Layout, Noise interference and ground fill

Capacitive touch sensing is basically an electric field detection method. The electric

magnetic field generated by nearby components and devices create an electric field

environment which is possible to produce a lot of noise interference to the touch sensing. This

EM field can affect all elements in the touch sensing signal chain, including the controller, track,

sensing pads, while the most easily to be impacted is the sensing pad as it is able to act as an

open antenna.

Sometimes EMI source is inevitable and apparent, for example, the RF components in

mobile handset including the power amplifier, the antenna. Sometimes it is not so obvious, but

also can generate EMI such as inductors used in switching power supply circuit.

The first rule is to put the controller, track and sensing pad away from EMI components as

far as possible to avoid the EMI. Put all the sensing elements on the far opposite side of the EMI

source on the PCB. The distance needed to keep the sensing elements away from the EMI

source is depended on the EMI strength level and the sensing elements size. It is always the best

practice to take experiment to evaluate the proper distance needed.

In space limited design, EMI protective solutions like RF shielding and isolation shall be used.

This can be RF shield can, PCB internal ground shielding layer and ground isolation.

On the other side, although ground isolation and ground layer can be helpful to EMI

reduction, they also reduce the capacitance sensing field as it also tends to find the shortest

return path to the ground. The sensing fields return directly to ground will not contribute to

touch sensing but only forms the background capacitance baseline.

We need to reduce the background capacitance as much as possible, and make sure the

ground connection does not deteriorate the touch sensing sensitivity too much while keeping

the necessary EMI isolation. In case there is no EMI issue, put the ground fill away from signal

tracks and sensing pads as far as possible. If ground fill must be used under or nearby the

sensing pads, then use a 40%~50% hatched ground fill maybe enough for proper RF isolation.

For more details about pad layout, refer to Freescale application note AN3863 and AN3747.

Proximity detection

MPR121 multiplexed inputs support the combination of some or all inputs into one channel

for dedicated proximity detection. With this method the same touch button keypad can be

changed into a large pad for proximity detection. MPR121 has internal independent settings for

touch and proximity detection, so touch button detection and proximity detection can be

performed at the same time.

Using the 12 numeric keypad demo in MPR121 demo kit can provide a distance of about

2cm for hand palm detection. In another demo, a pattern combined by two concentric circles of

10cm and 5cm diameter can provide a 5cm distance proximity detection when hand

approaching.

It shall be noted that larger pad size is also more prone to EMI interference. One can use

non-solid sensing element such as wire loop or 40~20% copper filled pad to act as the proximity

sensing elements.

Make a prototype

As previously mentioned that industry design and PCB layout are two most important and

fundamental parts of the whole design process, it is helpful to make a prototype for design

evaluation purpose before formal product design. The purpose is to evaluate the EMI

environment, the necessary pattern shape and size for given cover material and thickness. This

will help to reduce the reworks on PCB layout and make sure the SNR is within expected range.

Freescale provides evaluation tools and demo kits to help design evaluation, refer to figure

20. First you need to make a prototype of the product assembly. The prototype shall include the

key components such as the RF section, other noise generating device if there is, and touch

sensing sub systems with the cover material of the same thickness to be used.

Figure 20: MPR121 evaluation and demo kit

The touch sensing sub system used can be very simple and easy to do, such as a strip of

copper of the intended pattern size and shape on a ground filled PCB. You can then connect the

copper pads to the input channels on MPR121 evaluation kit. Another better way is to make a

prototype PCB board with MPR121 controller and sensing pattern all in on one place, such as

the one in Figure 21. Then connect the interface bus, including power supply, I2C, IRQ to the

socket on MPR121 evaluation kit.

Figure 21: Linking the prototype to MPR121 demo kit

Using the GUI provided with the evaluation kit and demo kit, you shall be able to run the

sensor and test it under different wo

use the PC Freemaster software, which provide another way of debug and test with graphical

interface. Figure 21 shows a screen copy of the Freemaster GUI.

be downloaded from Freescale website.

Freescale MCU, you can refer to MPR121 evaluation kit and demo kit.

Software Implementation

I2C communication

MPR121 is a standalone touch sensor controller. It acts as

communicates with the host processor by I2C bus and interrupt pin.

can be done with either a dedicated I2C

I2C. The MPR121 has 4 selectable I2C

1.

Refer to Figure 23, it shall b

operation, ended by not-acknowledge and stop.

registers except LED control registers, we can only write after setting MPR121 into stop mode

(none of the area and channel enable bit is 1 in 0x5E). Below is the write and read operation

format. Refer to MPR121 demo firmware code for the reference I2C communication code.

Figure 22: MPR121 read format.

Figure 23: MPR121 write format.

: Linking the prototype to MPR121 demo kit

Using the GUI provided with the evaluation kit and demo kit, you shall be able to run the

sensor and test it under different working situations. When using Freescale MCU, you can also

use the PC Freemaster software, which provide another way of debug and test with graphical

interface. Figure 21 shows a screen copy of the Freemaster GUI. The Freemaster software can

from Freescale website. For the demo reference software code running on

Freescale MCU, you can refer to MPR121 evaluation kit and demo kit.

Implementation

MPR121 is a standalone touch sensor controller. It acts as a I2C slave device and

communicates with the host processor by I2C bus and interrupt pin. The I2C communication

done with either a dedicated I2C peripheral in host, or by using bit bang GPIO emulated

MPR121 has 4 selectable I2C addresses depending on ADDR connection, refer to Table

t shall be noted that repeated start (Sr) shall be used in read byte

acknowledge and stop. For a write operation to all the configuration

ntrol registers, we can only write after setting MPR121 into stop mode

(none of the area and channel enable bit is 1 in 0x5E). Below is the write and read operation

Refer to MPR121 demo firmware code for the reference I2C communication code.

format. Gray means bits sending from MPR121 to host.

. Gray means bits sending from MPR121 to host.

Using the GUI provided with the evaluation kit and demo kit, you shall be able to run the

When using Freescale MCU, you can also

use the PC Freemaster software, which provide another way of debug and test with graphical

The Freemaster software can

reference software code running on

I2C slave device and

The I2C communication

GPIO emulated

, refer to Table

used in read byte

For a write operation to all the configuration

ntrol registers, we can only write after setting MPR121 into stop mode

(none of the area and channel enable bit is 1 in 0x5E). Below is the write and read operation

Refer to MPR121 demo firmware code for the reference I2C communication code.

Initialization procedure

MPR121 has internal 128 user accessible registers for various functions configuration and

status report. These registers can be divided into several groups according to their functions:

status register, signal and baseline registers, threshold registers, charge current/time setting

registers for each channel, filter setting registers, auto configuration registers and LED/GPIO

function registers.

All registers in MPR121 default is 0x00 after power up reset, except register 0x5C default is

0x10 and register 0x5D default is 0x24. MPR121 needs to be properly configured before working

for touch sensing.

The initialization procedure primary includes threshold setting for each channel, charge

current / time setting for each channel and baseline filter configuration.

Since MPR121 provides auto configuration capability, once the auto configuration control

register is properly set, there is no need to set the charge current / time setting for each channel

separately, this helps to reduce the number of registers need to be configured, most important

it helps to reduce the register setting fine tune time significantly. Below is the sample code for

MPR121 initialization and configuration.

#define TouchThre 10 // Touch threshold

#define ReleaThre 8 // Release threshold

#define Prox_TouchThre 6 // Proximity threshold

#define Prox_ReleaThre 4 // Proximity release threshold

void MPR121_init_to_run(void)

{

 IIC_ByteWrite(0x80,0x63); // Soft reset MPR121 if not reset correctly

 IIC_ByteWrite(0x73,0xFF); // LED Configuration, if not used, this part can be omitted

 IIC_ByteWrite(0x74,0xFF);

 IIC_ByteWrite(0x76,0xFF);

 IIC_ByteWrite(0x77,0xFF);

 IIC_ByteWrite(0x75,0xFF);

 IIC_ByteWrite(0x81,0x00);

 IIC_ByteWrite(0x82,0x00);

 IIC_ByteWrite(0x83,0x00);

 IIC_ByteWrite(0x84,0x00);

 //touch pad baseline filter

 //rising: baseline quick rising

 IIC_ByteWrite(0x2B,0x01); // Max half delta Rising

 IIC_ByteWrite(0x2C,0x01); // Noise half delta Rising

 IIC_ByteWrite(0x2D,0x00); // Noise count limit Rising

 IIC_ByteWrite(0x2E,0x00); // Delay limit Rising

 //falling: baseline slow falling

 IIC_ByteWrite(0x2F,0x01); // Max half delta Falling

 IIC_ByteWrite(0x30,0x01); // Noise half delta Falling

 IIC_ByteWrite(0x31,0xFF); // Noise count limit Falling

 IIC_ByteWrite(0x32,0x0); // Delay limit Falling

 //touched: baseline keep

 IIC_ByteWrite(0x33,0x00); // Noise half delta Touched

 IIC_ByteWrite(0x34,0x00); // Noise count Touched

 IIC_ByteWrite(0x35,0x00); // Delay limit Touched

 //Proximity baseline filter

 //rising: very quick rising

 IIC_ByteWrite(0x36,0x0f); // Max half delta Rising

 IIC_ByteWrite(0x37,0x0f); // Noise half delta Rising

 IIC_ByteWrite(0x38,0x00); // Noise count Rising

 IIC_ByteWrite(0x39,0x00); // Delay limit Rising

 //falling: very slow rising

 IIC_ByteWrite(0x3A,0x01); // Max half delta Falling

 IIC_ByteWrite(0x3B,0x01); // Noise half delta Falling

 IIC_ByteWrite(0x3C,0xff); // Noise count Falling

 IIC_ByteWrite(0x3D,0xff); // Delay limit Falling

 //touched

 IIC_ByteWrite(0x3E,0x00);

 IIC_ByteWrite(0x3F,0x00);

 IIC_ByteWrite(0x40,0x00);

 //Touch pad threshold

 IIC_ByteWrite(0x41,TouchThre); // ELE0 TOUCH THRESHOLD

 IIC_ByteWrite(0x42,ReleaThre); // ELE0 RELEASE THRESHOLD

 IIC_ByteWrite(0x43,TouchThre); // ELE1 TOUCH THRESHOLD

 IIC_ByteWrite(0x44,ReleaThre); // ELE1 RELEASE THRESHOLD

 IIC_ByteWrite(0x45,TouchThre); // ELE2 TOUCH THRESHOLD

 IIC_ByteWrite(0x46,ReleaThre); // ELE2 RELEASE THRESHOLD

 IIC_ByteWrite(0x47,TouchThre); // ELE3 TOUCH THRESHOLD

 IIC_ByteWrite(0x48,ReleaThre); // ELE3 RELEASE THRESHOLD

 IIC_ByteWrite(0x49,TouchThre); // ELE4 TOUCH THRESHOLD

 IIC_ByteWrite(0x4A,ReleaThre); // ELE4 RELEASE THRESHOLD

 IIC_ByteWrite(0x4B,TouchThre); // ELE5 TOUCH THRESHOLD

 IIC_ByteWrite(0x4C,ReleaThre); // ELE5 RELEASE THRESHOLD

 IIC_ByteWrite(0x4D,TouchThre); // ELE6 TOUCH THRESHOLD

 IIC_ByteWrite(0x4E,ReleaThre); // ELE6 RELEASE THRESHOLD

 IIC_ByteWrite(0x4F,TouchThre); // ELE7 TOUCH THRESHOLD

 IIC_ByteWrite(0x50,ReleaThre); // ELE7 RELEASE THRESHOLD

 IIC_ByteWrite(0x51,TouchThre); // ELE8 TOUCH THRESHOLD

 IIC_ByteWrite(0x52,ReleaThre); // ELE8 RELEASE THRESHOLD

 IIC_ByteWrite(0x53,TouchThre); // ELE9 TOUCH THRESHOLD

 IIC_ByteWrite(0x54,ReleaThre); // ELE9 RELEASE THRESHOLD

 IIC_ByteWrite(0x55,TouchThre); // ELE10 TOUCH THRESHOLD

 IIC_ByteWrite(0x56,ReleaThre); // ELE10 RELEASE THRESHOLD

 IIC_ByteWrite(0x57,TouchThre); // ELE11 TOUCH THRESHOLD

 IIC_ByteWrite(0x58,ReleaThre); // ELE11 RELEASE THRESHOLD

 //Proximity threshold

 IIC_ByteWrite(0x59,Prox_TouchThre); // ELE12 TOUCH THRESHOLD

 IIC_ByteWrite(0x5A,Prox_ReleaThre); // ELE12 RELEASE THRESHOLD

 //touch and release interrupt debounce

 IIC_ByteWrite(0x5B,0x00); // Not used for polling method, effective for INT mode.

 //AFE and filter configuration

 IIC_ByteWrite(0x5C,0x10); // AFES=6 samples, same as AFES in 0x7B, Global CDC=16uA

 IIC_ByteWrite(0x5D,0x24); // CT=0.5us, TDS=4samples, TDI=16ms

 IIC_ByteWrite(0x5E,0x80); // Set baseline calibration enabled, baseline loading 5MSB

 //Auto Configuration

 IIC_ByteWrite(0x7B,0x0B); // AFES=6 samples, same as AFES in 0x5C

 // retry=2b00, no retry,

 // BVA=2b10, load 5MSB after AC,

 // ARE/ACE=2b11, auto configuration enabled

 //IIC_ByteWrite(0x7C,0x80); // Skip charge time search, use setting in 0x5D,

// OOR, AR, AC IE disabled

 // Not used. Possible Proximity CDC shall over 63uA

// if only use 0.5uS CDT, the TGL for proximity cannot meet

 // Possible if manually set Register0x72=0x03

 // (Auto configure result) alone.

 IIC_ByteWrite(0x7D,0xc8); // AC up limit /C8/BD/C0/9C

 IIC_ByteWrite(0x7E,0x82); // AC low limit /82/7A/7C/65

 IIC_ByteWrite(0x7F,0xb4); // AC target /B4/AA/AC/8C target for /3.0V/2.8V/1.8V

 IIC_ByteWrite(0x5E,0xBC); // Run 12 touch + proximity, CL=2b10, load 5MSB to baseline

}

For the detailed explanation on each registers please refer to the datasheet and relevant

application note. All the registers can be read at anytime, but it’s suggested to use multiple

consecutive byte read to save the operation time and avoid data integrity issue. For example,

we can use one line code to read out registers from 0x00 to 0x2A to get all the sensing channels

output data and status information. All the registers except 0x5E and LED configuration registers

cannot be written in run mode but only when set into stop mode.

After initialization and set into run mode, the MPR121 will work automatically and

continuously until you set it into stop mode. MPR121 provides both touch status and touch

sensing data and provides interrupt output when touch/release status changed. The host

processor can read back output data and status upon interrupt, or poll the MPR121 periodically

on timer overflow.

Parameter adjustment to get the most from MPR121

It’s easy to understand, a stronger E-field helps to give larger touch response hence higher

sensitivity. Using auto configuration, the settings of charge current and time for each channel is

automatically optimized. The charge is at the maximum allowed level without any repeatedly

trial on different charge time, charge current, and input capacitance level combinations.

Though there is not many fine tune work at software code level, several points need to be

understand here.

1. Use of auto configuration. We choose to set the charge as high as possible to increase

the touch sensitivity and hence better SNR, the expense is a little bit higher power

consumption but this is still negligible.

Normally we set the target charge level at 90% of the full available dynamic input range.

The 90% is selected so that the charge is close to the input upper limited, but still allows

for channel variation and power supply change during actual work.

Note the 90% target charge is scaled with supply voltage, so you should use the highest

supply voltage in your system to get the highest charge. But in system where the supply

voltage is dynamically changing, the lowest working supply voltage shall be used. For

example when use direct 2 cell AA dry battery power supply, the typical working supply

voltage range is from 3.0V to 2.0V when battery finally drain out, then the target shall

be set at 2.0V instead of 3.0V to avoid possible auto configuration out of range error.

2. Touch /release threshold can be fine tuned. You can use one set of touch/release

threshold for all 12 channels, or each channel can be further fine tuned and configured

to get highest sensitivity.

Decrease the touch threshold will increase the sensitivity. The touch/release threshold

should be set according to the required signal to noise ratio (SNR). Suppose we have a

long term observed noise counts at 5LSB when no touch, then a touch threshold at

10LSB counts is relatively reliable. When a touch delta data change is 20 counts, this

setting provides a minimum SNR of 20/10=2 and a typical value of 20/5=4. The release

threshold shall be also configured in the same way.

Depending on the actual noise level, for most design cases, keeping the touch delta

counts above 10 will result a relatively good touch sensitivity and SNR. If touch

threshold setting at 10 counts cannot detect a touch, then probably either the sensing

pad size needs to be increased, or the cover thickness needs to be reduced.

3. Adjust the data filtering, baseline filter and touch/release debounce for noise rejection.

In case there is occasional random noise, such as a quick noise spike on touch sensing

pads, touch/release debounce can be used to avoid these occasionally happened noises.

Figure 24 shows another example. In this case the interfered noise causes both sensing

data and baseline to move upward, but the signal drops faster than the baseline which

result a dead lock of touch. Figure 25 shows that the baseline rising filter can be

adjusted to a slower speed to avoid this kind of noise.

Figure 24: Output when baseline rising filter noise limit register 0x2D =0x00

Figure 25: Output when baseline rising filter noise limit register 0x2D =0x10

4. Change the sampling interval. MPR121 has a register configurable sampling interval,

which can have a big impact on average current consumption. A sampling interval at

16ms is adequate for most application requiring immediate touch response.

For battery powered device such as a smart watch, lower power consumption is

extremely important. To save the power as much as possible, the sampling interval can

be set dynamically according to the user’s activity level.

For example, when there is no touch activity within period of 5 minutes, the MPR121

sampling interval can be set to 128ms by host to get an average current as low as 8uA so

the whole system can go into low power hibernate mode. To wake up the system from

hibernate by a touch, the user touches for a little bit long time (say approximately 1

second), then the host MCU can set the MPR121 into a higher sampling interval (for

example 16ms) to detect user frequent touch activity, and the whole system goes into

full power run mode.

5. Disable the proximity detection and LED function if not used, and do not enable unused

electrode channel. This will help to avoid unnecessary power consumption.

6. Get touch signal output. For simple touch button application, after the MPR121 is

properly configured and set to run mode, the host processor just need to read back the

status register and all other registers are not cared.

Along the touch/ release status output for each channel, MPR121 also provides 10 bit

filtered output data which is a voltage represent of the sensed capacitance input on

each channel, and 8 bit baseline data which is the internally filtered output of the

previously mentioned 10 bit filtered data. Note the 10bit Filtered output data includes

the DC component from background capacitance (the baseline value), the actual touch

signal change should be calculated using below equation:

Touch signal change =

((Filtered output data high byte*256+ low byte) >> 4)-Baseline Value

This calculated data then can be used for slider, touch wheel and touchpad application

interpolation calculation.

Conclusions

MPR121 is an easy to use touch sensor with intelligent touch detection engine for simple

touch button design. PCB layout and structure design is the most important and fundamental

part in the touch sensing design. With proper design, MPR121 can be successfully used to

realize many functions like keypad matrix, slide bar, touch wheel, touchpad, finger gesture

recognition, hands grip/ hold detection, and near proximity detection.

